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Abstract Theoretical modeling of manufacturing
processes assists the design of new systems for predic-
tions of future behavior, identifies improvement areas, and
evaluates changes to existing systems. A novel approach is
proposed to model industrial machines using probabilistic
Boolean networks (PBNs) to study the relationship between
machine components, their reliability and function. Once
a machine is modeled as a PBN, through identification of
regulatory nodes, predictors and selection probabilities, sim-
ulation and property verification are used to verify model
correctness and behavior. Using real machine data, model
parameters are estimated and a PBN is built to describe
the machine, and formulate valid predictions about proba-
bility of failure through time. Two models were established:
one with non-deterministic inputs (proposed), another with
components’ MTBFs inputs. Simulations were used to gen-
erate data required to conduct inferential statistical tests
to determine the level of correspondence between predic-
tions and real machine data. An ANOVA test shows no
difference between expected and observed values of the
two models (p value=0.208). A two-sample T test demon-
strates the proposedmodel provides values closer to expected
values; consequently, it can model observable phenomena
(p value=0.000). Simulations are used to generate data
required to conduct inferential statistical tests to determine
the level of correspondence between model prediction and
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real machine data. This research demonstrates that using
PBNs tomodelmanufacturing systems provides a newmech-
anism for the study and prediction of their future behavior
at the design phase, assess future performance and identify
areas to improve design reliability and system resilience.

Keywords Bio-inspired modeling · Biological manufactur-
ing systems · Probabilistic Boolean networks

Introduction

ProbabilisticBooleannetworks (PBN) aremathematical con-
structs that can be used to model Gene Regulatory Networks
(GRN). GRNs are collections of DNA segments within a cell
that interact indirectly with other segments and substances
in a cell in order to govern the expression levels of genes.
They can be used to better understand the general rules that
govern gene regulation in genomic DNA. PBNs are transi-
tion systems that satisfy theMarkovProperty (Markov 1954),
such that the probability that the system will take a transi-
tion from a given state to another depends exclusively on
the current state, and is not dependent on the past history
of the system. PBNs were proposed by Ilya Shmulevich in
several publications (Shmulevich et al. 2002a, b; Shmulevich
and Dougherty 2010) as an extension of Stuart Kauffman’s
Boolean Network (BN) concept (Kauffman 1969a, b). This
alternative to modeling GRNs combines the rule-based mod-
eling of Kauffman’s BNs with uncertainty principles. PBNs
consist of a group of constituent BNs that have assigned
selection probabilities, where each Boolean Network can be
considered a “context”. Data for the cells comes from dif-
ferent sources; each source represents a context of the cell
(Shmulevich and Dougherty 2010). In a given time t , a sys-
tem can be governed by one of the constituent BNs, and at
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any other time the system may switch to another constituent
BN with a given switching probability. Qualitative frame-
works, such as Boolean Networks (Ristevski 2013) permit
the description of large biological networks without losing
important system properties.

Although, it is frequent to find several applications of BNs
and PBNs in Systems Biology to model GRNs, applications
or uses outside this realm remain vastly unexplored. One of
the few studies venturing on the application of PBNs outside
GRNs proposed to model credit defaults (Gu et al. 2013).
A PBN-based model was applied to study the link between
correlated defaults of different industrial sectors and business
cycles, and the impact of these cycles on modeling and pre-
dicting defaults. With PBNs, a transition probability matrix
that describes the correlated defaults of the business sec-
tors studied was determined and decomposed into several
BN matrices that house information about business cycles.
Actual default data is used to build the PBN to explain the
default structure, and achieve predictions of joint defaults in
different business sectors. In this same area of application,
Liang et al. (2014) concentrates on the construction of PBNs
from credit default data and presents a heuristic construction
algorithm. These recent studies provide a baseline to expand
further the utility of PBNs. This paper proposes the applica-
tion of PBNs as a mechanism to model industrial machines.

Industrial manufacturing environments are complex and
dynamic due to constant changes in customer expectations
and demands, different product types, features and suppliers,
and the unexpected disturbances inherent to the manufacture
and assembly of products. It is desirable to obtain mathemat-
ical models that aid the study of the manufacturing process
operation under a set of specific conditions and modes, tak-
ing into account the elevated complexity inherent of such
a system. In this way, fulfillment of design requirements,
alternative design proposals, and the study and control of
operating environmental conditions is facilitated. Modeling,
paired with simulation, permits the study of behaviors and
dynamics, among other factors, in a virtual environment.
Modeling is relevant in manufacturing to aid the design of
new manufacturing systems, to make predictions of future
behaviors of a system, identify areas of improvement, and
also, as a mechanism to assess changes on existing systems.

PBNs are proposed here as a simplified representation of
a Pick and Place machine’s dynamics in order to use this
representation to model and predict system behavior through
the use of simulation and analysis. The machine chosen is
frequently used in manufacturing processes, where different
machines are integrated, to load and unload parts in assem-
bly processes. The machine has several components with
known reliability; however, it is relevant to assess the reliabil-
ity and interaction of the integrated components functioning
as a system. PBNs are a relevant and appropriate method
for modeling industrial machines, because of the similarities

in characteristics between them: they are both stochastic,
dynamic, and exhibit rule-based, state-transition behavior.
The application of PBNs to industrial machines may thus
allow improvements in terms of design, maintenance, relia-
bility, availability, and other performance factors.

The main contribution of this paper is the application of a
biomimetic modeling methodology that accurately predicts
the next state of the modeled machine based on logical rules
determined by the physical relationship between its compo-
nents. This model characterizes machine components into
two simple states: operational or failed, and establishes sets
of simple logical, predictive functions that define constituent
networks, thus allowing for the study of the steady-states
of the machine. In turn, a designer or engineer may make
educated design decisions about the future behavior of the
machine that can result in better reliability-based decisions,
including maintenance, time to failure, and risk analysis.

Related work and theoretical background

Bio-inspired techniques in manufacturing systems

As a way of coping with changes endemic to manufactur-
ing, technologies andmethodologies have been proposed that
mimic biological processes. Genetic (Booker et al. 1989),
Biological (Park and Tran 2010), and Holonic (Babiceanu
and Chen 2006)Manufacturing Systemsmimic the organiza-
tional structures and mechanisms seen in biological systems
and transfer them into manufacturing environments. Con-
cepts such as Genetic and Evolutionary Algorithms (Kumar
and Dhingra 2012 Artificial Neural Networks (ANN) (Assef
et al. 1996; Barghash and Santarisi 2004; Leger et al. 1998;
Skitt et al. 1993; Sood 2013; Sun et al. 2014), Ant Colony
Optimization (Dorigo and Blum 2005), Particle SwarmOpti-
mization (Liu et al. 2011), and Petri nets (Moore and Gupta
1996), among others, are used to implement intelligent
functionalities. It is relevant to review previous research
performed in biological manufacturing systems (BMS). All
these modeling techniques use biomimetics, emulating the
behavior of biological systems and using this behavior to
solve problems in other fields of knowledge. The concept of
biological manufacturing systems (Ueda 1992, 1993, 1994,
1997) has beenwidely discussed in the literature. It was intro-
duced to research the feasibility of creating dynamic and
adaptablemanufacturing systems through the use of elements
that are related to biological processes and organisms such
as, evolution, self organization and self-growth, and adap-
tation. In this way, part transporters (product carriers) can
self-organize towards specific manufacturing facilities/units
(product processors), through attractions fields (machine
tools, robots) that these generate (using the concept of
attraction–repulsion fields from biology). In a living organ-
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ism, a stimulus from the environment causes a behavioral
response. In BMS, the response can be a product or man-
ufactured good. The procedures that generate the response
can be described as a network of local procedures that in
turn lead to a response at the macro level. For a biological
system, the responses are interactions within the cell, but in
manufacturing systems, these can be subtasks that are per-
formed to assemble a final product, performed by subunits
that have operations similar to biological cells, differentiated
for particular tasks. The manufacturing cells “attract” the
components needed and “repulse” the products. Cells and
subcomponents flow in a manufacturing plant floor, mov-
ing each other until a stable condition is reached. All BMS
elements (e.g. materials, machine tools, transporters, robots)
have an equivalent and are comparable to autonomous bio-
logical organisms.

Relevant research includes the application of algorithms
that are inspired on the behavior of insects, such as Ant
Colony Optimization, and Particle Swarm Optimization. In
particular, Ant Colony Optimization (Dorigo 1992) has been
used optimize layouts of machines (Corry and Kozan 2004),
for process planning optimization (Liu et al. 2013) and
wasps for task allocation and factory routing and scheduling
(Cicirello and Smith 2001a, b). Particle Swarm Optimiza-
tion has been applied to the detection of faults in machines
(Samanta and Nataraj 2009), inspection of component place-
ment in Printed Circuit Boards (Wu et al. 2009) and the
flexible job-shop scheduling problem (Nouiri et al. 2015),
among other applications. Swarm Intelligence techniques
such as these are, as PBNs, stochastic in nature, but center on
agency and definition of behaviors. PBNs offer a predictive,
more elegant approach that does not require defining agents
or behaviors. ANNs attempt to simulate either the structural
or functional aspects of the central nervous systems, and like
GRNs in general, have features like flexibility and robust-
ness, which are endemic to biological systems. ANNs are
trained by means of techniques that are influenced by evolu-
tion. ANNs have a complex structure, and BNs can provide
a simpler model of GRNs.

Based on previous studies, there is ample evidence to
demonstrate that biomimetic algorithms are appropriate
mechanisms for manufacturing systems modeling.

Bayesian Networks have also been discussed extensively
in manufacturing scientific literature, especially in reliabil-
ity related topics (Huang et al. 2008; Mosallam et al. 2014;
Tchangani 2004). Dynamic Bayesian Networks (DBN) have
been shown to model GRNs in the same way as PBNs can
(Li et al. 2007). In said paper, PBNs and DBNs were com-
pared using a biological time series set of data taken from the
Drosophila Interaction Database, which served as the basis
to evaluate the performance of both approaches. Both were
found to have good performance, and while DBN identified a
larger number of gene interactions, their accuracy depended

on the particular DBN inference algorithm selected, making
DBNs more time consuming.

In addition, Multi-Agent Systems (MAS) (Wooldridge
2002) have been applied to manufacturing systems as a
framework to develop adaptive, robust and reconfigurable
manufacturing systems. These have a distributed nature
because they are based on a group of autonomous agents that
cooperate, determining the function of the system from their
interactions. The agents divide their labor by defining distinc-
tive roles, behaviors, goals and skills, as in insect colonies.
MAS also exhibit emergent characteristics. It is an alternative
to centralized control that provides flexibility, adaptability
and robustness. Recent research has been conducted about
MAS applied to manufacturing systems (Ayhan et al. 2013;
Hsieh and Lin 2013, 2014; Wang et al. 2014).

MAS can be coupledwith self-organization, thus enabling
agents to achieve self-configuration, self-optimization, and
self-healing (Leitão 2008). In multi-agent systems, a holonic
agent is one that can be composed of other agents. The term
holon, introduced by Arthur Koestler in his book “The ghost
in the machine” (Koestler 1967), points to structures that are
neither parts or whole in absolute terms. Holons are classified
in holarchies; ontologies or classifications of agents, where a
sub component cannot be understood completely without its
super-component. Holonic Multi-agent Systems are the cor-
nerstone of Holonic Manufacturing Systems (HMS). HMS
are a very active field of study in manufacturing systems.

MAS and HoloMAS are complex-adaptive systems that
have been applied extensively in manufacturing science and
engineering. PBNs, like MAS, serve to model complex man-
ufacturing systems. PBNs are not agent-based systems but
can self-organize as HoloMAS, given that each realiza-
tion of a PBN is a constituent BN that has transitions that
can lead to attractors, the study of these realizations, con-
stituent networks and attractors can yield information about
the machine’s steady states. Machine states are derived from
component states through time. A combination of compo-
nent states can lead to a particular machine state, which can
lead to it being operational or in fault. An analysis can be per-
formed to determine which of these states lead to “healthy”
machine states, or which can lead to faults in the machine’s
operation. Through a separate mechanism called perturba-
tion/intervention, a PBN can be directed to “heal itself”. In
an open system such as the human genome, there are inputs
that are received from outside the system, and these can acti-
vate or inhibit the expression of genes. These perturbations
can be deliberate (considered then an intervention), and by
introducing an intervention vector for a selected set of nodes,
the network can be guided to achieve a desired state, or to
move from an undesirable one.

The underlying structures in BMS are biomimetic algo-
rithms and techniques, which are used to describe, model,
simulate and design manufacturing systems in order to over-
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come the challenges that these dynamical systems present.
Many biomimetic systems are complex, adaptive, intelligent
systems, which can self-organize to achieve goals. A system
that exhibits self-organization, as described in Gershenson
(2007), is “one in which elements interact, achieving dynam-
ically a global function or behavior”. Cells (where molecules
interact and self-organize to produce life, brains (where neu-
rons interact, producing cognition), insect colonies (where
insects interact and self-organize to perform collective tasks),
animal swarms, herds, flocks, or schools (where each animal
interacts with others to coordinate collective behavior), and
other systems of bio-agents, such as ecosystems and soci-
eties, are examples of self-organized biomimetic systems.

Compared to previous related work, the approach of this
research adds a new perspective to bio-inspired modeling.
Instead of simulating the behavior of live organisms tomodel
manufacturing system, this paper is based on the application
of models used for GRNs to model manufacturing systems.
PBNs are chosen here over other bio-inspiredmodeling tech-
niques because they predict the behavior of manufacturing
systemswith good accuracy, basedmainly on the logical rela-
tionships between system components, without the need of
obtaining reliability/failure rate data.

Boolean and probabilistic Boolean networks

Boolean networks

Boolean Networks have been used to model biological sys-
tems and its use has been extensively documented in scientific
literature (Arnosti and Ay 2012; Bane et al. 2012; Chaouiya
et al. 2013; Cheng et al. 2013; Didier and Remy 2012;
Ghanbarnejad 2012; Vahedi 2009). probabilistic Boolean
networks have also been used extensively to model GRNs
(Chen and Sun 2014; Chen et al. 2012; Ching et al. 2009;
Gao et al. 2013; Kobayashi and Hiraishi 2010; Trairatphisan
et al. 2013).

Boolean Networks, introduced by Kauffman (1969a), are
a finite set of Boolean variables for which their state (rep-
resented as 0 or 1) can be determined by the state of other
variables in the network. Several input genes called regula-
tory genes/nodes, via a given Boolean function, determine
the value of a target gene/node. If the nodes and the corre-
sponding functions are given, then the BN is defined.

Adapted from Ching et al. (2009), formally, a Boolean
Network is a graph G (V,F) defined by the set V =
{x1, x2, . . . , xn} that contains the network nodes, and the
set F = {f1, f2, . . . , fn} , fi : {0, 1}n −→ {0, 1} of Boolean
functions. Each xi ∈ V, i = 1, . . . , n xi∈ V, i = 1, . . . , n
is a binary variable that represents a gene/node. The rules
of interaction between nodes are given by Boolean predic-
tors as such: xi (t + 1) = fi (x (t)) , i = 1, . . . , n, where

Table 1 Boolean network truth
table

State x1(t) x2(t) f1 f2

A 0 0 0 1

B 0 1 1 0

C 1 0 0 0

D 1 1 1 0

(x1 (t) , x2 (t) , . . . , xn (t)) is a vector that can take any state
from the set S = {

(x1, x2, . . . , xn)
T : xi ∈ {0, 1}}.

Given an initial state, the BN will transition into a fixed
state or set of states within a finite number of steps, known
as attractor. Singleton attractors are fixed states, and a
set of states is known as a cyclic attractor. Attractors of
a BN characterize the networks steady-state or long-run
behavior.

As an example, consider a 2 geneBNG (V, F), represented
by the set of nodes V = {x1, x2} , and the set of Boolean
Functions F = {f1, f2}. Let xi(t) be the state (0 or 1) of the
node i at time t. The rules of interaction among the nodes can
be represented by the predictors xi (t + 1) = fi (x(t)) , i =
1, 2 where the vector x (t) = (x1 (t) , x2 (t)) can take any
possible states from the set S = {

(x1, x2)T : xi ∈ {0, 1}},
|S| = 2n. Table 1 is a truth table listing the possible states, the
genes/nodes and the result of the application of the predictor
functions that yields the next state.

From the truth table, four states can be determined ((0,0),
(0,1), (1,0) and (1,1)), labeled A through D, respectively. If
the network is currently in state A, it transitions into state B
with a probability of 1. The transition matrix of the BN is

given by M =

⎛

⎜
⎜
⎝

0 0
1 0

1 0
0 0

0 1
0 0

0 1
0 0

⎞

⎟
⎟
⎠.

Table 1 gives the one-step transition probability between
any given two states. BNs are deterministic models, and each
column inMhas a single non-zero element. There is only one
attractor cycle, with a period of three: (0, 0) → (0, 1) →
(1, 0) → (0, 0)(0, 0) → (0, 1) → (1, 0) → (0, 0). The
state (1,1) belongs to the basin of attraction of this cycle.

Probabilistic Boolean networks

Extending the BN concept to a stochastic (non-deterministic)
model (Ching et al. 2009), for every node xi in a PBN, there
canbemanyBooleanPredictor functions f ( j)

i (i = 1, 2, . . . ,
l( j)) instead of only one per node as in a BN, that can be
chosen to determine the state of node/gene xj. The probabil-

ity of choosing f(j)i as the predictor is given by c(j)
i , where:

0 < c( j)
i ≤ 1,

l( j)∑

i=1

c( j)
i = 1,∀ j = 1, 2, . . . , n.
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Table 2 Probabilistic Boolean network truth table

State x1(t) x2(t) f (1)
1 f (1)

2 f (2)
1 f (2)

2

A 0 0 0 1 0 1

B 0 1 1 0 0 1

C 1 0 0 1 1 0

D 1 1 1 0 0 1

Let fi be the i th possible realization of the network,with fi =(
f (1)
i1

, f (2)
i2

, . . . , f (n)
in

)
, for each 1 ≤ i j ≤ l ( j) , and j =

1, 2, . . . , n. A realization of the PBN is one of the network’s
constituent BNs. The maximum number of realizations of
BNs is D = ∏n

j=1 l( j).

The probability c( j)
i of selecting a predictor can be approx-

imated statistically with the use of a coefficient of determi-
nation and data sets (Dougherty et al. 2000). Given the fact
that there are D possible realizations of a BN and these can
be characterized by D vector functions f1, f2, . . . , fD , then

f1 =
(
f (1)
1 , f (2)

1 , . . . , f (n)
1

)
is the first vector function for

the first BooleanNetwork, and fD =
(
f (1)
l(1), f (2)

l(2), . . . , f (n)
l(n)

)

is the last vector function from the Dth BN. Assuming that
selecting a predictor fi j for any node j is an independent
process, the probability of choosing a BN with predictors(
f (1)
i1

, f (2)
i2

, . . . , f (n)
in

)
is:

ui1i2...in =
n∏

j=1

c( j)
i j

.

Transitioning from state to state of S forms a Markov Chain.
If a and b are any two columnar vectors in S, the transi-
tion probability is given by P{x (t + 1) = a|x(t) = b} =∑D

i=1 P{x (t + 1) = a|x(t) = b, selecting the i thBN } ·ui
Letui = ui1i2...in and i = i1+∑n

j=2

((
i j − 1

) (∏ j−1
k=1 l(k)

))
.

If a and b can take any of the states in S, the transition prob-
ability matrix for the matrix is A = ∑N

i=1 ui Ai , where Ai

is the transition probability matrix of the i th BN, and ui
is the likelihood of selecting the i th BN matrix Ai , where∑D

i=1 ui = 1, ui ≥ 0.
To further illustrate how a PBN is constructed given the

concepts discussed above, consider the 2-gene PBN from
Ching et al. (2009), with the truth table given in Table 2.

In this PBN, each node has two predictors, with l (i) =
2, (i = 1, 2), where

D =
2∏

i=1

l (i) = 4

is the amount of realizations of this PBN, which are:

f1 =
(
f (1)
1 , f (2)

1

)
, f2 =

(
f (1)
1 , f (2)

2

)
,

f3 =
(
f (1)
2 , f (2)

1

)
, f4 =

(
f (1)
2 , f (2)

2

)
.

For each realization of the PBN, there is a transition matrix
for every constituent BN, and a selection probability for each
network. If c(1)

1 = 0.6, c(1)
2 = 0.4, c(2)

1 = 0.5, and c(2)
2 =

0.5, the selection probabilities of each corresponding BN can
be computed, being u1 = c(1)

1 · c(2)
1 = 0.3, u2 = c(1)

1 · c(2)
2 =

0.3, u3 = c(1)
2 · c(2)

1 = 0.2, u4 = c(1)
2 · c(2)

2 = 0.2.
The transition probability matrices of the corresponding

constituent BNs are as follows:

M1 =

⎛

⎜
⎜
⎝

1 0
1 0

0 0
1 0

0 1
0 0

0 1
0 0

⎞

⎟
⎟
⎠ , M2 =

⎛

⎜
⎜
⎝

0 0
1 0

1 0
0 0

0 0
0 1

0 0
0 1

⎞

⎟
⎟
⎠ ,

M3 =

⎛

⎜
⎜
⎝

0 1
0 0

0 1
0 0

1 0
0 0

0 0
1 0

⎞

⎟
⎟
⎠ , M4 =

⎛

⎜
⎜
⎝

0 0
0 1

0 0
0 1

0 0
1 0

1 0
0 0

⎞

⎟
⎟
⎠ .

State-Transition diagrams can then be used to further illus-
trate how each BN transitions from state to state through
time.

Probabilistic Boolean network modeling of an
industrial machine

According to Beaudin (1990), analysis and design of man-
ufacturing systems are processes that produce functional
specifications/requirements that are a consistent represen-
tation of the system. The machine modeled in this paper,
can be thought of as an agent or organism that behaves as
an integrated unit or organization. From the field of Dis-
tributed Artificial Intelligence, an organization (Chaib-Draa
et al. 1992) may be defined as a set of agents that have
mutual commitments, global commitments, mutual beliefs
and eventually, joint intentionswhen these agents act together
to achieve a given goal. This definition can be extended to
incorporate not only agents, but also machines or compo-
nents within amanufacturing system, where these objects act
together to achieve goals. This organization can be thought
of as an organism, since as the dictionary definition reflects,
organisms are complex structures of interdependent and
subordinate elements, whose relations and properties are
determined by their function in the whole. It is appropri-
ate to consider of the machine to be presented here as an
organism; a complex, adaptive system, that has several inter-
dependent elements, and these elements serve a particular
function for the manufacturing machine as a whole. Instead
of utilizing holons and holonic ontologies for describing the
elements of the system and their interactions, the proposed
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method utilizes a state-based approach to system decompo-
sition.

Description of the process

According to Jamhour and García (2012), industrial
processes can be modeled using finite state machines. Finite
state machines are analogous to BN’s, as both are directed
graphs with rules that govern their transitions. To illustrate
the proposed approach, a Pick and Place that loads and/or
unloads parts in a manufacturing assembly process is mod-
eled. The “Pick andPlace” is amechanism that hasmovement
in the x and y axes, and through a grip holds, places and
removes the parts to and from an assembly line. Initially,
designed features and requirements for the Pick and Place
and its components is identified according to their intended
function and operation.

A model of the Pick and Place has been developed to cap-
ture the dynamics and interactions of each of its components
using PBN’s in a high-level language. PBNs can model the
selected machine because of its similarities with GRNs that
are modeled using BNs and PBNs, which are:

• GRNs and PBNs are state-based stochastic transition
systems, with transitions based on probabilities of occur-
rence of certain factors.

• Their components/nodes can assume binary states, rela-
tionships between nodes can be expressed using Boolean
logic,

• Relevant nodes can be considered regulatory nodes.

Model semantics

This research proposes the application of PBNs as a mecha-
nism to model the behavior of a Pick and Place machine by

studying the relationship between the state of the machine
and its main components. In the context of a manufacturing
machine, each of its components is considered equivalent to a
node in a PBN. Each node of the system is treated analogous
to the gene abstraction in a GRN using binary quantization,
where an expressed gene is assigned a value of 1 and an unex-
pressed gene a value of 0. In this model, when a particular
machine component is operating properly, it is analogous to
an expressed gene while an unexpressed gene is analogous
to a component that is experiencing a failure. Understanding
this relationship between the states of the components and
states of the components, a transition probability matrix is
calculated. The transition matrix describes correlated com-
ponent states constructed through the application of predictor
functions that are stochastically selected. Each realization of
the network is a BN that has a set of transitions that represent
the possible states of the machine that can be achieved by
applying the selected predictors. The transitions probability
matrices that compose each realization of the machine lead
to attractor or cyclic states. These states are reached though
the combined effect of component failures and operation.
These are then interpreted as states of the machine. Some of
the states of the machine that are described in the transition
matrix of each realization are states that equate to a machine
failure, and some are healthy states that translate to normal
operation of the machine. Figure 1 illustrates key concept of
a Probabilistic Boolean Network, a transition from state to
state.

Each box shows a state of the Pick and Place at differ-
ent times. At t = 0, the state of the Pick and Place is in
normal operation (represented by a ‘1’) as all individual
components or nodes are functioning (111111), these nodes
are denoted as x1 . . . x6. The double arrows between boxes
denote a transition of the Pick and Place from an operating
state at t = 0 to failure state (101111) at t + 1. This particu-

Gripper, X1
“1”

Motor A, X2
“1”

Fixed Axis, X3
“1”

Motor B, X4
“1”

Rotary Axis, X5
“1”

Power Supply, X6
“1”

Pick and Place
“Operating = 1”

Initial State at t = 0
111111

Gripper, X1
“1”

Motor A, X2
“0”

Fixed Axis, X3
“1”

Motor B, X4
“1”

Rotary Axis, X5
“1”

Power Supply, X6
“1”

Pick and Place
“Failure = 0”

State at t +1
101111

Transition

Given by predictor
X2 (t+1) = [X2(t) OR X6

(t)]
P = 0.1232

Fig. 1 Semantic model of PBN: example of a transition from t = 0 to t + 1
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PBN Approach for Modeling an Industrial Machine

Divide each
machine into key

components (genes/
nodes)

Determine
regulatory nodes
and the predictors

for each node,
according to the

logical relationships
between nodes and

their functions /
failure modes

Construct the
transition matrix
starting from an

initial state
and apply the
predictors to
determine the

subsequent states

Determine the
probability of

selection for each
predictor for each

node
(among all must add

to 1)

Characterization of PBNs

System is modeled
as a Markov

Decision Process
(MDP) using

PRISM

The behavior of the
model is analyzed

with model
checking through

property
verification using

PCTL

Build constituent
networks based on the

transition matrix

Determine attractors
based on constituent

networks

Fig. 2 PBN approach for modeling an industrial machine

lar transition occurred based on a predictor function given by
x2(t+1) = [x2(t)OR x6(t)]. In physical terms, the predictor
function tells that at t+1 the Pick and place will be in failure
because eitherMotor A or the power supply failed, which can
occur with a probability equal to 0.1232. The Probabilistic
Boolean Network, then:

• Is a collection Boolean Networks that consist of a group-
ing of nodes/genes, such as each components of the Pick
and Place (gripper, motor A, and so forth).

• Transitions from state to state in time based on a set that
contains the group of Boolean functions or predictors
that govern the network in that specific time, such as
the transition shown on Fig. 1 on which Pick and Place
transitioned from (111111) to (101111).

• Consists of 16 different constituent BNs for the Pick and
place, and each has a specific group of predictors. At
every time step, a stochastic decision is made on whether
or not to continue with the same BN or switch to a new
realization.

• Each realization has a different Transition Probability
Matrix.

Description of the method

The Pick and Place is modeled as a set of components (the
genes of the PBN), and a set of Boolean functions that
describe the logical relationships between them. The pro-

posed approach of applying PBNmodeling tomanufacturing
systems is depicted in Fig. 2.

Construction of the PBN: the pick and place

The Pick and Place is modeled as a PBN in the form of
PP = G(V, F), where V = {x1, x2, x3, x4, x5, x6}, and
for every xi in the network a set Fi =

{
f (i)
1 , . . . , f (i)

6

}
of

Boolean functions is assigned that represents the predictors
of target node xi . The set F = {F1, . . . , F6} contains the
network’s predictors, each Fi in F as described before. At
each time step of the network, a function f (i)

j is chosen with

a probability c( j)
i to predict xi . The nodes are analogous to

the robot’s components, where x1 represents the gripper, x2
is motor A, x3 is motor B, x4 the fixed axis, x5 the rotary
axis, and x6 represents the power supply.

Predictors in F are Boolean functions, estimated through
component relationships and connectivity. In GRNs, the
Coefficient of Determination (CoD), as in Dougherty et al.
(2000), is used to discover such associations, by measur-
ing the strength of a predictor in using an observed gene
set to infer a target gene set, in the absence of observations.
In the case of the Pick and Place, component connectivity
and influence determine the logical functions that dictate the
relationships between nodes. In order to utilize PBNs as the
modelingbasis, the genes/nodes of thePBNare equated to the
basic components of the machine. These components were
treated as non-repairable items, which can have one of two
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Table 3 Pick and place predictors and regulatory nodes

Component Predictor Regulatory nodes

x1, gripper f (1)
1 : x1 (t + 1) = x1 (t). Gripper

x2, motor A f (2)
1 : x2 (t + 1) = (x2 (t) AND x6 (t)). Motor A, power supply

f (2)
2 : x2 (t + 1) = (x2 (t) OR x6 (t)).

x3, motor B f (3)
1 : x3 (t + 1) = (x3 (t) AND x6 (t)). Motor B, power supply

f (3)
2 : x3 (t + 1) = (x3 (t) OR x6 (t)).

x4, fixed axis f (4)
1 : x4 (t + 1) = (x2 (t) AND (x4 (t) AND x6 (t))). Fixed axis, motor A, power supply

f (4)
2 : x4 (t + 1) = (x2 (t) OR (x4 (t) OR x6 (t))).

x5, rotary axis f (5)
1 : x5 (t + 1) = (x5 (t) AND (x3 (t) AND x6 (t))). Rotary axis, motor B, power supply

f (5)
2 : x5 (t + 1) = (x5 (t) OR (x3 (t) OR x6 (t))).

x6, power supply f (6)
1 : x6 (t + 1) = x6 (t). Power supply

values: ‘0’, representing total failure, and ‘1’, representing
normal operation.

Evaluating the Pick and Place as a system, only two
states are distinguished in the basic components, a function-
ing state and a failed state. The state of each component
i = 1, 2, . . . , n can be described by a binary variable Xi ,
where:

Xi =
{
1 − if the component i is functioning
0 − if the component i is in a failed state

The state variables X1(t),X2(t) . . .Xn(t), n = 6, are treated
as random variables, with a state vectorX(t) = (X1(t),X2(t)
. . . Xn(t)), and a structure functionφ(X(t)),whereφ(0) = 0,
and φ(1) = 1, meaning that if all components in the machine
are failed, the machine is failed, and if all are functioning,
the machine is functioning. Knowing the states of all n com-
ponents, the state of the machine is also known. Similarly
the state of the machine can be described by a logic function
φ(X(t)) = φ(X1(t),X2(t) . . .Xn(t)), where:

φ (X (t)) =
{
1 − if themachine is operational
0 − if themachine is in a failed state

.

Components can follow series, parallel, or k-out-of-n struc-
tures (Rausand and Høyland 2004). A system with all of its
n components functioning is said to be in a series structure,
with a structure function:

φ (X (t)) = X1 (t) · X2 (t) . . . Xn (t) =
n∏

i=1

Xi (t)

When establishing the structure of a system, the compo-
nents that do not play a direct role for the functioning ability
of the system are left out. Those that are considered are called
relevant, and the ones that are left out are called irrelevant.
A component is said to be irrelevant with respect to a partic-
ular system function; however, it may be relevant to another

function. In terms of a system of components, it is said to
be relevant if all of its components are relevant and its struc-
ture is non-decreasing (Rausand and Høyland 2004). The six
components that are being modeled for the Pick and Place
constitute the relevant components of the machine.

In the case of the Pick and Place, in order for the fixed
axis to operate, both motor A and the power supply must
also operate. Because of the relationship between themotors,
axes and power supplies, the logical function that predicts the
state of node X4 and X5 can be determined. Therefore, the
logical function that correctly expresses this relationship is
AND.

Predictors for each node are determined based on node
physical connectivity. Instead of using the CoD as ameans of
determining which nodes/genes are regulating the node that
is being analyzed, the physical and logical relations between
components determine which nodes are regulatory nodes.
Based on this assumption, regulatory nodes and predictors
for each node (component) were determined, as shown on
Table 3 below. Therefore, relying in an estimation of error
as the CoD for the predictors is not required, because the
effect that the state of their regulatory nodes have on their
state on the next time step it is known based on the physical
and logical relationships of the components.

Predictors: selection probabilities estimation

In GRN Analysis using PBNs, the probability c( j)
i can

be estimated by using a statistical method, or Coefficient
of Determination (Dougherty et al. 2000) with real gene
expression data sets. For the proposed approach, in order to
determine the selection probability for each predictor, c( j)

i ,
a reliability analysis of the machine is performed in order
to assess the frequency of occurrence of the failures of each
component and of the machine. Similar to the estimation of
error in the CoD, this analysis facilitates the estimation of
predictor selection probabilities.
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Table 4 Annualized failure rate of all pick and place components

Machine Component AFR

Pick & place robot Gripper 0.442337

Fixed axis 0.103718

Motor A 0.021662

Motor B 0.021662

Rotary axis 0.103718

Power supply 0.056727

The reliability of components was calculated in the con-
stant rate of failure period, and it assumed that the probability
of failure of each component is independent. Let R =
P{success f ul component operation} = reliabili t y, and
Q = P{unsuccess f ul component operation} = 1 − R.

Reliability of each component is dependent of time,
intended use, and the environmental conditions of usage.
Data on Mean Time Between Failure (MTBF) for each of
the key components of the modeled machine was obtained
from technical data sheets from manufacturers. Based on the
MTBF, their failure occurrence was calculated in terms of
their Annualized Failure Rate (AFR) using the formula:

AFR = 1−exp(− 8760
MT BF ),which is a formof the equation

F(t) = 1 − exp(−λt) from Ebeling (1997), where λ is the
failure rate of each component, and t is time. Table 4 details
the AFR of the Pick and Place components.

Since the state variables (components) are binary,
E [Xi (t)] = 0 · P (Xi (t) = 0) + 1 · P (Xi (t) = 1) =
pi (t) ,∀ i = 1, 2, . . ., where ps (t) = E (φ (X (t))).
Here pi (t) is the probability that component i is function-
ing at time t, and ps (t) the probability that the system
is functioning at time t. When components are indepen-
dent, ps (t) will be a function of pi (t) only. Therefore,
ps (t) = h (p1 (t) , p2 (t) , . . . , pn (t)) = h ( p (t)), where
h is used to refer to system reliability of independent
components exclusively. The structure function of series sys-
tems is φ (X) = X1 (t) · X2 (t) . . . Xn (t) = ∏n

i=1 Xi (t),
which can be expressed as RS (t) = ∏n

i=1 Ri (t). But it
is known from Rausand and Høyland (2004) that Ri (t) =
e− ∫ t

0 zi (u)du , where zi (t) is the failure rate of component

i at time t. Inserting Ri (t), Ri (t) = ∏n
i=1 e

− ∫ t
0 zi (u)du =

e− ∫ t
0

∑n
i=1 zi (u)du , therefore the failure rate zs(t) of a series

structure of independent components is the sum of the fail-
ure rate of each of the components, zs (t) = ∑n

i=1 zi (t) and
the MTBF of the structure is then MTBF = ∫ ∞

0 Rs (t) dt =
∫ ∞
0 e− ∫ t

0
∑n

i=1 zi (u)dudt . Since X1 (t) , . . . , Xn (t) are inde-
pendent, the system reliability is

h ( p (t)) = E (φ (X (t))) = E
(∏n

i=1
Xi (t)

)

=
∏n

i=1
E (Xi (t)) =

n∏

i=1

pi (t),

where h ( p (t)) ≤ mini (pi (t)), since a series structure is as
reliable as its least reliable component.

The Pick and Place machine has six main components for
which corresponding AFRs are detailed on Table 4. These
calculations were performed based on the MTBF of each
of the components. A series system structure is one that
is functioning if all of its components are functioning. The
Pick and Place machine is a coherent series structure of non-
repairable components. The structure function of thePick and
Place, which has six components is: φ (X) = ∏6

i=1 Xi (t) =
X1 (t) · X2 (t) · X3 (t) · X4 (t) · X5 (t) · X6 (t) .

The reliability of the machine is:

h ( p (t)) =
6∏

i=1

E (Xi (t)) =
6∏

i=1

pi (t)

= p1 (t) · p2 (t) · p3 (t) · p4 (t) · p5 (t) · p6 (t)

= 0.557663 · 0.978338 · 0.978338 · 0.896282
·0.896282 · 0.943273

= 0.404461.

The AFR is 1 − 0.404461 = 0.595539.
The Pick and Place model can assume two different

modes: failure or normal operation. It can be observed that
for eachmode, there is a unique set of predictors. Their selec-
tion probability, as with GRNs, is based on the observations
made (analogous to the CoD) of the machine component’s
interactions and their reliability assessment. When in either
mode, the power supply and gripper’s next state will only
be dependent on their current state. Since there is only a
single predictor for both of these nodes, the selection prob-
ability is always 1. The rest of the nodes have two predictor
functions. The selection probability is based on the reliabil-
ity calculation. Predictors corresponding to normal operation
have a probability of 0.1232 in each node, and those for fail-
ure, a 0.8768 probability of occurrence. Table 5 details the
predictors of the Pick and Place, along with the selection
probabilities for each predictor.

Determining constituent networks and attractors

Based on the predictor functions, a determination can be
made of howmany realizations, and transitions are part of the
Pick and Place’s PBN. The Pick and Place is a six gene PBN,
where l(i) is the number of possible predictors per node. This
means that l (i) , i = 1, . . . , 6 is l (1) = 1, l (2) = 2, l (3) =
2, l (4) = 2, l (5) = 2, l (6) = 1. The total number of real-
izations D is: D = ∏6

i=1 l(i) = 1 ·2 ·2 ·2 ·2 ·1 = 16. There
are 16 possible BNs, characterized by 16 vector functions,
listed in Table 6 below.
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Table 5 Pick and place
predictors and selection
probability

Component Predictor Selection probability, c( j)
i

x1, gripper x1 (t + 1) = x1 (t) 1.0

x2, motor A x2 (t + 1) = (x2 (t)& x6(t)) 0.8768

x2 (t + 1) = (x2 (t) |x6(t)) 0.1232

x3, motor B x3 (t + 1) = (x3 (t)& x6(t)) 0.8768

x3 (t + 1) = (x3 (t) |x6(t)) 0.1232

x4, fixed axis x4 (t + 1) = (x2 (t)& (x4 (t)& x6(t))) 0.8768

x4 (t + 1) = (x2 (t) | (x4 (t) |x6(t))) 0.1232

x5, rotary axis x5 (t + 1) = (x5 (t)& (x3 (t)& x6(t))) 0.8768

x5 (t + 1) = (x5 (t) | (x3 (t) |x6(t))) 0.1232

x6, power supply x6 (t + 1) = x6 (t) 1.0

Table 6 Pick and place’s BN vector functions

Realization Vector function

1 f1 =
(
f (1)
1 , f (2)

1 , f (3)
1 , f (4)

1 , f (5)
1 , f (6)

1

)

2 f2 =
(
f (1)
1 , f (2)

1 , f (3)
1 , f (4)

1 , f (5)
2 , f (6)

1

)

3 f3 =
(
f (1)
1 , f (2)

1 , f (3)
1 , f (4)

2 , f (5)
1 , f (6)

1

)

4 f4 =
(
f (1)
1 , f (2)

1 , f (3)
1 , f (4)

2 , f (5)
2 , f (6)

1

)

5 f5 =
(
f (1)
1 , f (2)

1 , f (3)
2 , f (4)

1 , f (5)
1 , f (6)

1

)

6 f6 =
(
f (1)
1 , f (2)

1 , f (3)
2 , f (4)

1 , f (5)
2 , f (6)

1

)

7 f7 =
(
f (1)
1 , f (2)

1 , f (3)
2 , f (4)

2 , f (5)
1 , f (6)

1

)

8 f8 =
(
f (1)
1 , f (2)

1 , f (3)
2 , f (4)

2 , f (5)
2 , f (6)

1

)

9 f9 =
(
f (1)
1 , f (2)

2 , f (3)
1 , f (4)

1 , f (5)
1 , f (6)

1

)

10 f10 =
(
f (1)
1 , f (2)

2 , f (3)
1 , f (4)

1 , f (5)
2 , f (6)

1

)

11 f11 =
(
f (1)
1 , f (2)

2 , f (3)
1 , f (4)

2 , f (5)
1 , f (6)

1

)

12 f12 =
(
f (1)
1 , f (2)

2 , f (3)
1 , f (4)

2 , f (5)
2 , f (6)

1

)

13 f13 =
(
f (1)
1 , f (2)

2 , f (3)
2 , f (4)

1 , f (5)
1 , f (6)

1

)

14 f14 =
(
f (1)
1 , f (2)

2 , f (3)
2 , f (4)

1 , f (5)
2 , f (6)

1

)

15 f15 =
(
f (1)
1 , f (2)

2 , f (3)
2 , f (4)

2 , f (5)
1 , f (6)

1

)

16 f16 =
(
f (1)
1 , f (2)

2 , f (3)
2 , f (4)

2 , f (5)
2 , f (6)

1

)

The probability of selecting the i th realization that has the
vector function is given by ui = ∏6

k=1 c
(i)
ik
. Table 7 lists the

selection probability for each constituent BN.
It would be impractical to show all the possible transi-

tion diagrams for 16 different constituent BNs. Nonetheless,
Table 8 presents the attractors of every constituent BN,which
are the steady states of the PBN, where the states are listed
by their decimal equivalent, with state (000000) = 1, through
(111111) = 64, for simplicity. All the listed attractors are sin-
gleton attractors, or fixed point. Finding attractors in Boolean
Networks is, in itself, an area of active research (Akutsu et al.

Table 7 Pick and Place: constituent Boolean network selection proba-
bilities

Network Probability

1 u1 = c(1)
1 · c(2)

1 · c(3)
1 · c(4)

1 · c(5)
1 · c(6)

1 = 0.5911

2 u2 = c(1)
1 · c(2)

1 · c(3)
1 · c(4)

1 · c(5)
2 · c(6)

1 = 0.0727

3 u3 = c(1)
1 · c(2)

1 · c(3)
1 · c(4)

2 · c(5)
1 · c(6)

1 = 0.0727

4 u4 = c(1)
1 · c(2)

1 · c(3)
1 · c(4)

2 · c(5)
2 · c(6)

1 = 0.0117

5 u5 = c(1)
1 · c(2)

1 · c(3)
2 · c(4)

1 · c(5)
1 · c(6)

1 = 0.0727

6 u6 = c(1)
1 · c(2)

1 · c(3)
2 · c(4)

1 · c(5)
2 · c(6)

1 = 0.0117

7 u7 = c(1)
1 · c(2)

1 · c(3)
2 · c(4)

2 · c(5)
1 · c(6)

1 = 0.0117

8 u8 = c(1)
1 · c(2)

1 · c(3)
2 · c(4)

2 · c(5)
2 · c(6)

1 = 0.0016

9 u9 = c(1)
1 · c(2)

2 · c(3)
1 · c(4)

1 · c(5)
1 · c(6)

1 = 0.0727

10 u10 = c(1)
1 · c(2)

2 · c(3)
1 · c(4)

1 · c(5)
2 · c(6)

1 = 0.0117

11 u11 = c(1)
1 · c(2)

2 · c(3)
1 · c(4)

2 · c(5)
1 · c(6)

1 = 0.0117

12 u12 = c(1)
1 · c(2)

2 · c(3)
1 · c(4)

2 · c(5)
2 · c(6)

1 = 0.0016

13 u13 = c(1)
1 · c(2)

2 · c(3)
2 · c(4)

1 · c(5)
1 · c(6)

1 = 0.0117

14 u14 = c(1)
1 · c(2)

2 · c(3)
2 · c(4)

1 · c(5)
2 · c(6)

1 = 0.0016

15 u15 = c(1)
1 · c(2)

2 · c(3)
2 · c(4)

2 · c(5)
1 · c(6)

1 = 0.0016

16 u16 = c(1)
1 · c(2)

2 · c(3)
2 · c(4)

2 · c(5)
2 · c(6)

1 = 0.0002

2012; Berntensis and Ebeling 2013; Dubrova and Teslenko
n.d.; Guo et al. 2014; Hopfensitz et al. 2012; Pal et al. 2006;
Qiu et al. 2014; Zheng et al. 2013).

Figure 3 presents the transition diagrams corresponding
to one of the 16 realizations of the Pick and Place’s PBN.
Marked in dar1ker circles are the attractor states of the BN.
Described in the figure are all of the possible attractor and
non-attractor states of realization 11 of this PBN. States are
listed by their decimal equivalent, with state (000000) = 1,
through (111111) = 64, for simplicity. Each realization is a
collection of transitions. States in these constituent BNs have
transitions that lead to attractor states.

A TransitionMatrix for the Pick and Place was built. With
it, the constituent networks, attractors, and other elements of
the PBN’s dynamics can be determined. For every state, e.g.
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Table 8 Pick and Place’s PBN attractors

Realization Attractors

1

(
1, 2, 10, 12, 18, 22, 26, 28, 32, 33, 34, 42,

44, 50, 54, 58, 60, 62, 64

)

2

(
1, 3, 4, 12, 18, 20, 24, 28, 32, 33, 35, 36,

44, 52, 56, 64

)

3

⎛

⎜
⎜
⎝

1, 5, 6, 14, 15, 16, 22, 30, 32, 33, 37, 38,
46,
48,

54, 62, 64

⎞

⎟
⎟
⎠

4

(
1, 3, 5, 7, 8, 16, 24, 28, 32, 33, 35, 37,

39, 40, 48, 56, 64

)

5

(
1, 9, 10, 12, 18, 26, 28, 30, 32, 33, 41, 42,

44, 54, 58, 60, 62, 64

)

6

(
1, 3, 11, 12, 28, 32, 33, 35, 43,

44, 64

)

7

(
1, 5, 9, 13, 14, 16, 26, 28, 30, 32, 33, 37, 41,

45, 46, 48, 62, 64

)

8

(
1, 3, 5, 7, 11, 15, 16, 28, 32, 33, 35, 37,

39, 43, 47, 48, 64

)

9

(
1, 10, 17, 18, 22, 26, 28, 30, 32, 33, 44,

49, 50, 54, 58, 60, 62, 64

)

10

(
1, 3, 17, 19, 20, 24, 28, 32, 33, 35, 49,

51, 52, 56, 60, 64,

)

11

(
1, 5, 21, 22, 30, 32, 33, 37,

53, 54, 62, 64

)

12

(
1, 3, 5, 7, 21, 23, 24, 32, 33, 35, 37,

53, 55, 56, 64

)

13

(
1, 9, 17, 25, 26, 28, 30, 32, 33, 41,

49, 57, 58, 60, 62, 64

)

14

(
1, 3, 11, 17, 19, 27, 28, 32, 33, 35, 43,

49, 51, 59, 60, 64

)

15

(
1, 5, 9, 13, 14, 21, 29, 30, 32, 37, 41,

45, 53, 61, 62, 64

)

16

(
1, 3, 5, 7, 11, 15, 21, 23, 31, 32, 33, 35, 37, 39,

43, 47, 53, 55, 63, 64

)

(x1 = x2 = x3 = x4 = x5 = x6 = 0), or (000000), the
predictors are applied, based on the selection probabilities,
to obtain the state on the next time step in order to construct
a transition diagram.

Attractors play a seminal role in Boolean networks, since
given an initial state, within a finite number of time steps, the
network will transition into a state or cycle of states, and if
there are no perturbations on the network, it will continue to
cycle thereafter. States that are not attractor states are called
transient because these are visited at most once. Attractors
characterize the steady-state behavior of BN’s and PBNs.

Experimental results

This section presents results of experiments designed to
test the adequacy of the proposed model. According to

Dougherty (2011), model validation relies on its ability to
draw predictions that can be checked against experimen-
tal observations, requiring that a relationship be established
between model characteristics and observables. Moreover,
the model must allow performing experimental predictions
that can be related to observable phenomena so there is a cor-
respondence between experimental and predicted values. In
order to quantitatively validate the proposed model, PRISM
Model Checker (Kwiatkowska et al. 2011) was used to gen-
erate the data required to conduct inferential statistical tests
to determine the level of correspondence.

A control group was established, by simulating the Pick
& Place’s relevant components with their corresponding
MTBFs, obtained from actual technical data sheets. This
control group represents expected values. Two experimen-
tal groups were also established: (1) the PBN model of the
system with non-deterministic control inputs (the proposed
model); and (2) the PBN model of the system with the com-
ponents’ MTBFs as control inputs. Property verification in
PRISMwas used to determine the maximum probability that
at least one of the Pick and Place machine components fails
through verification of the following property:

Pmax =?[F < = t ime (grip1 = f alse)

| (power1 = f alse) | (motor1A = f alse)

| (motor1B = f alse) | (rotary_axis1 = f alse)

| ( f i xed_axis1 = f alse)].

The property verifies what is the maximum probability that
in the future, when time reaches a certain value, either of
the components in the machine is in failure. The results are
plotted and shown on Figure 4 below.

A one-way ANOVA was performed using Minitab 16
to verify if there were statistically significant differences
among the group means. The null hypothesis for the test
is that all population means (group means) are the same or
Ho : μcontrol = μE1 = μE2. The alternative hypothesis is
that one or more population means differ from the others or
H1 : μcontrol �= μE1 �= μE2. The p value for the ANOVA is
0.208. Given α-level of 0.05 for the test, it is concluded that
there are no significant differences in probabilities of failure
between the groups. In practical terms, there is no difference
between expected and observed values. Results of this test
are shown on Fig. 5.

Also, differences between the control group and each
of the two experimental groups were determined. A two-
sample t-confidence interval and test procedure was used to
make inferences about the difference between two popula-
tion means based on data from two independent, random
samples. The null hypothesis is that there is no difference
between the delta in Control and Experimental Group 1 and
the delta in Control and Experimental Group 2, or Ho :
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Fig. 4 Maximum probability of failure of at least one component of
the Pick and place. Control and Experimental groups

μ di f control − E1 = μ di f control − E2. The alternative
hypothesis is that difference between the delta in Control and
Experimental Group 1 is less than the delta in Control and
Experimental Group 2, or Ho : μ di f f erence control −
E1 < μ di f f erence control − E2. The p value for the
hypothesis test is 0.000 and given α-level of 0.05, the null
hypothesis is rejected. Therefore, the delta observed in Con-

trol and the Experimental Group 1 (the proposed model) is
statistically significantly less than the one observed between
Control and the Experimental Group 2. The proposed model
provides values closer to the expected values; consequently,
it can adequately model observable phenomena. Results of
the two-sample T test are shown in Fig. 6.

Figure 7 shows a two-sample T test performed to deter-
mine differences between the control group and the proposed
model. This serves to further demonstrate that there is no sta-
tistically significant difference between the control group and
the proposed model, since the p value is larger than alpha.

When modeling and simulating known manufacturing
machines characterized as PBNs, it is expected that themodel
performs very close to what the machine would actually be
in a production environment. Similar to other bio-inspired
modeling techniques already discussed in the second section,
PBNsmimic behavior exhibited in nature and provide certain
advantages. PBN modeling is a methodology based on the
comprehension of the logical relationships between nodes
that yields state-based models that have predictive behavior.
The main advantages of PBN modeling, compared to other
bio-mimetic modeling methodologies, are that PBN mod-
els are straightforward to construct, provide a mechanism
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Fig. 5 One-way ANOVA:
control versus experimental
groups

Fig. 6 Two-sample T test: delta
between experimental groups
and control

Fig. 7 Two-sample T test:
control and proposed model

of predicting the behavior of a system, and produces accu-
rate results. Through the results obtained, it is statistically
demonstrated that when modeling and simulating a known
manufacturing machine characterized as PBN, the model
performs very close to what the machine would actually
be in a production environment. Therefore, PBN modeling,
along with model checking and simulation, facilitates exper-
imenting with or examining a machine’s possible behavior

without having to use it directly. The added value of this
research, compared to other methods, is that with PBNmod-
eling the designer or engineer can have a semantically correct
model that is simple to define that allows to observe the
evolution of the system and predict its future state. Given
that the model capability to reproduce results very close to
expected actual values, complexity is reduced and allows the
designer to make accurate design decisions. Model Check-
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ing permits formal verification of the model and its state
sequence/evolution. Besides being a model definition easy
to create, formal verification provides the assurance that it is
computationally/mathematically correct model.

According to Ueda et al. (1997), BMS deal with dynamic
changes in external and internal environments using biolog-
ically inspired ideas, such as self-growth, self-organization,
adaptation and evolution. As other BMS, systems modeled
using PBNs are able to evolve through time, and its evolution
through time is oriented towards its steady-states or attrac-
tors. PBNs are able to adapt to noise or fluctuations, and
knowledgeof thosemechanisms that govern themprovide the
means to control their behavior. Guiding network dynamics
in such a way is called intervention. Similar to other bio-
inspired methodologies, such as swarms, ant colonies and
multi-agents, PBNs exhibit emergent characteristics, such
as self-organization, and that interact with other individ-
ual entities in the system. In manufacturing systems, swarm
intelligence technology can be expressed as evolutionary
algorithms, as in Anghinolfi et al. (2007), Moon et al. (2014)
andZainal et al. (2014), or asmulti-agent systems (Leitão and
Restivo 2002; Sahin et al. 2015; Barbosa and Leitão 2011;
Xiong and Fu 2015).

Guided Self-Organization (Prokopenko 2009) steers the
self-organizing dynamics of a system to a favored configura-
tion, balancing design and self-organization. PBNs exhibit
self-organizing characteristics (Kauffman 1993). BN and
PBNdynamics self-organize towards attractors, be it attractor
cycles or point attractors, and they reduce system complex-
ity. As an example, there are over 30,000 genes (nodes)
in the human genome, and only around 300 cell types, or
attractors, cells that self-organize towards a limited sub-set
of possible states (Kauffman 1993). When a system has a
group of preferred states, or attractors, the system will self-
organize toward them. When two levels of representation
are present and there is a relationship or interaction between
these, the system can be self-organizing and the interac-
tions of the lower level change the properties of the higher
level (e.g. bee-swarm, ant-colony, gene-cell). In PBNs the
mechanism of intervention can be used as a guided self-
organizing technique that steers the evolution of the system
towards a desired operational or chosen state. The criti-
cality (balance between ordered and chaotic behavior) of
a system or network depends on many factors, and these
can be advantageous to engineers and designers to steer
the evolution of the system. The evolution of an industrial
machine, like the Pick andPlace, can be guided towards a pre-
ferred state (normal operation), and the machine’s evolution
in time will oscillate (criticality) between ordered dynam-
ics (the operating state of the machine) and chaos (states
leading to machine failure). Every time a component fails
and steers the system into chaotic behavior, the system can
eventually organize and correct its behavior to reach a pre-

ferred state. The topics of perturbation and intervention in
the systems of interest will be addressed in future research
articles.

Conclusions

This paper presented a bio-inspired, stochastic modeling
methodology for an industrial machine using probabilistic
Boolean networks. The methodology aids the development
and validation of a bio-inspired model from which statis-
tically valid predictions about its behavior were obtained.
A Pick and Place machine was modeled using the pro-
posed approach and, coupledwith validation and verification,
experiments were conducted to perform empirical predic-
tions of system behaviors. Experimental data showed results
that were congruent with expected observable events. This
research demonstrates that PBN modeling of industrial
machines is appropriate because of the similarities in charac-
teristics between both: probabilistic, dynamic systems, with
rule-based state-transition behavior. Moreover, this research
pioneers the application of PBNs outside the well-studied
area of GRNs, thus serving as a basis for future research on
PBN modeling in industrial processes.

Findings from this research suggest that the proposed
approach can be repeated for multiple machines in a major
system,which can afterwards be characterized as a PBN. The
predictors for the system can be determined in the same way,
studying the relationship between the nodes to determine rel-
evant nodes, logical equations, among others. The predictor
selection probability is also determined from a probability
analysis. Future research can also be focused on “interven-
tions”, or deliberate perturbation of a network to achieve a
desired response, in order to identify those conditions that
can attract “healthy” machine states, thus improving its reli-
ability and efficiency.
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