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Abstract In order to improve the prediction accuracy
of non-Gaussian data and build reasonably the prediction
model, a novel residual life prediction method is proposed. A
dynamic weightedMarkov model is constructed by real time
data and historical data, and the residual life is predicted by
particle filter. The particles of the state vector are predicted
and updated instantaneously using particle filter. The proba-
bility distribution of the predicted value is estimated by the
updated particles. The residual life can be predicted using the
set threshold of the state. This method improves the accuracy
of residual life prediction. Finally, the advantage of this pro-
posed method was shown experimentally using the bearings’
full cycle data.

Keywords Dynamic weighted Markov model · Particle
filtering · Residual life prediction · Probability distribution

Introduction

Rolling element bearings are themost important components
used in machinery. Accurate residual life prediction can pre-
vent rolling element bearings from critical damage in order
to guarantee the personal safety. Therefore, it deserves much
research attention in improving the residual life prediction
accuracy for rolling element bearings.

The residual life prediction for rolling element bearings
is to value the current or future state and obtain the residual
life. Generally, one or more fault features are chosen as the
health indicator of machinery. The prognostic model is used
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to predict the bearings’ future state so that the residual life can
be obtained. Effective health indicator and robust model can
boost the prediction accuracy. However, the full life data of
rolling element bearings is non-stationary and non-Gaussian.
Hence, the main problem of residual life prediction is how
to build reasonably the prediction model and improve the
prediction accuracy using non-Gaussian data.

To address this problem, lots of methods have been pro-
posed. Chen et al. (2012), Tian (2012), Chao and Hwang
(1997) proposed a new prediction method based on neural
network which improve the long-term prediction accuracy
slightly. However, the neural network has some limitations
of: (1) difficulty of determining the network structure and
the number of nodes; (2) slow convergence of the training
process. Gebraeel et al. (2005), Kharoufeh and Cox (2005)
proposed some prognostic approach based on Bayesian the-
ory, which can predict the probability distribution of the
residual life. Meanwhile, Kharoufeh and Mixon (2009) also
proposed a new method that can obtain the residual life by
computing Phase-Type (PH) distribution. But the shortcom-
ing of this method is also very obvious. It needs a large
number of accurate data of prior probability distribution.
Unfortunately, it is difficult to meet in actual application.
Çaydaş and Ekici (2012), Kimotho et al. (2013), Yaqub et al.
(2013),Chen et al. (2013) used support vectormachine to pre-
dict the residual life of rolling element bearings and obtained
high accuracy of short-term prediction. However, the long-
term prediction accuracy is low. Wang et al. (2013), Ng
et al. (2014), Tobon-Mejia et al. (2012) used Bayesian model
for residual life prediction, which made high accuracy val-
uation for Gaussian data. The above mentioned methods
are not good at dealing with non-stationary data and non-
Gaussian data. Markov model can deal with these kinds
of data very well and exhibit great effectiveness in com-
parison to the above mentioned methods. Liu et al. (2012)
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presented a prediction methodology based on hidden semi-
Markov model and sequential Monte Carlo methods, which
enhanced the prediction accuracy of non-stationary.Yan et al.
(2011) proposed a dynamic multi-scaleMarkovmodel based
methodology for residual life prediction, which used histori-
cal data basedmodel and real-time data basedmodel to obtain
the residual life and enhanced long-term prediction accu-
racy. Particle filtering doeswell in dealingwith non-Gaussian
problems. Particle filtering uses non-parameter Monte Carlo
method to achieve recurrence Bayesian filtering with great
estimation accuracy and easy implementation.What is more,
particle filtering is easier implementation. Orchard (2007)
used the Paris’ law for crack propagationmodel based on par-
ticle filtering. Baraldi et al. (2013) also used particle filtering
to predict residual life and obtained good results. However,
the previous prediction models were mostly built by histori-
cal data, which seldom compromised the information of the
real-time data. But the real time data can directly reflect the
current development trend of the bearings’ residual life while
the historical data contains the empirical information of the
bearings’ residual life. To this point, Using both historical
data and real time data can exhibit some advantages theoret-
ically in terms of efficiency and accuracy.

Motivated by the aforementioned problems, a novel resid-
ual life prediction method based on dynamic weighted
Markov model and particle filtering is proposed. In this
method, the real-time data and historical data are used to
build dynamic weighted Markov models. The weights of
the Markov models are adjusted according to the real-time
predicted error. The distribution of predicted value can be
obtained through generating the particles by particle filter-
ing with great estimation accuracy under non-Gaussian data.
The experimental results show that the proposed method is
effective in residual life prediction.

The review of the Markov model and particle
filtering

The Markov model

Assuming {Xn, n = 1, 2, y} is a random process. Xn = i for
state i at moment n and Pi j is the probability that the state i
transmit to state j . The formula of transition probability can
be written by:

P{Xn+1 = j |Xn = i, Xn−1 = in−1, . . . , X2 = i2, X1 = i1}
= P{Xn+1 = j |Xn = i} = Pi j (i, j, n > 0) (1)

Markov chain is a sequential random process that satisfy
Markov property; The current state Xn is dependent only on
the state of one step prior Xn−1 and the past and the future is
irrelevant. This paper selects discreteMarkovmodel, because

the experimental data used in this paper is time discreteness
and states discreteness.

Particle filtering

In general, particle filtering is aMonte Carlo method that can
achieve the recursiveBayesian filtering. Thuswe’ll introduce
the particle filtering based on a quick overview of Bayesian
filtering. The state space of dynamic system can be described
as follow:

xk = f (xk−1) + uk−1 (2)

yk = h (xk) + vk (3)

where f (·) and h (·) are respectively state transition equa-
tion and observation equation; xk is the system’s state at time
k; yk is observation at time k; uk is process noise at time k; vk
is observation noise at time k. Bayesian filtering includes
prediction and update. Prediction is to obtain the prior prob-
ability of the next moment, and the update is to correct the
prior probability using the latestmeasurement so that the pos-
terior probability can be obtained.Assume that p(xk−1|yk−1)

is the probability at time k−1, and
−→
Xk = x0:k and

−→
Yk = y0:k

respectively express the states and observations from time 0
to time k. Thus the prediction can be given by:

p

(
xk, xk−1|

−→
Yk−1

)
= p

(
xk |xk−1,

−→
Yk−1

)
p

(
xk−1|

−→
Yk−1

)

(4)

Since xk and
−→
Yk−1 are independent of each other when xk−1

is given, we can obtain the formula as follow:

p

(
xk, xk−1|

−→
Yk−1

)
= p (xk |xk−1) p

(
xk−1|

−→
Yk−1

)
(5)

Thenwe integrate xk−1 at the both sides of the above formula,
and the Chapman–Kolmogorov equation can be obtained as
follow:

p

(
xk |

−→
Yk−1

)
=

∫
p(xk |xk−1)p

(
xk−1|

−→
Yk−1

)
dx (6)

When the prediction is done, the update is launched to get

p(xk |
−→
Yk ) based on p(xk |

−→
Yk−1) as follow:

p

(
xk |

−→
Yk

)
=

p

(
yk |xk,

−→
Yk−1

)
p

(
xk |

−→
Yk−1

)

p

(
yk |

−→
Yk−1

) (7)

Assume that yk is determined by xk , which is given by:
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p

(
yk |xk,

−→
Yk−1

)
= p (yk |xk) (8)

Then after normalization, we can obtain:

p

(
yk |

−→
Yk−1

)
=

∫
p(yk |xk)p

(
xk |

−→
Yk−1

)
dx (9)

Then particle filtering can be used to solve the above integra-
tion formula. The key idea of particle filtering is to represent
the posterior probability by taking weighted average of ran-
dom samples. Assume that N random samples x (i)

k can be

extracted from p(xk |
−→
Yk ), then:

p

(
xk |

−→
Yk

)
≈ ωi

k

N∑
i=1

δ
(
xk − x (i)

k

)
(10)

where δ(xk − x (i)
k ) is unit impulse function and ωi

k is the
corresponding weight. These particles can be generated from

the importance density function q(xk |
−→
Yk ). Thus

ωi
k ∝

p

(
x (i)
k | −→

Yk

)

q

(
x (i)
k | −→

Yk

) (11)

Assume that the importance density function q(x0:k |y1:k) can
be decomposed as follow:

q (x0:k |y1:k) = q (xk |x0:k−1, y1:k) q (x0:k−1|y1:k−1) (12)

By plugging formula (7) and (12) in formula (11), new for-
mula is obtained as follow:

ωi
k ∝ ωi

k−1

p
(
yk |x (i)

k

)
p

(
x (i)
k |x (i)

k−1

)

q

(
x (i)
k |x (i)

0:k−1,
−→
Yk

) (13)

Generally, we choose the state transition function p(xk |xk−1)

as the typical choice of importance density in PF. Then

ωi
k = ωi

k−1 p
(
yk |x (i)

k

)
(14)

Residual life prediction based on dynamic
weighted Markov model and particle filtering

The principle of Residual life prediction based on dynamic
weighted Markov model and particle filtering is to use K-
means clustering algorithm to divide the kurtosis of the
historical data, and two Markov models are respectively
built by historical data and real-time data. By combining

two Markov models with particle filtering, two predicted
results can be obtained. The ultimate prediction residual life
is obtained by take weighted average of the two predicted
results.

State division

The most important step of residual life prediction is state
division. K-means clustering algorithm Hartigan and Wong
(1979) is used to divide kurtosis of the full life cycle. K-
means clustering algorithm can take the most similar data to
the same subset so that the different subsets have the least
similar. The principle is as follow:

Divide n vectors x j (1, 2 . . . , n) into c clusters and deter-
mine the clustering center ci of the full clusters. The objective
function is as follow:

J =
c∑

i=1

J i =
c∑

i=1

⎛
⎝ ∑

k,xk∈Gi

||xk − ci ||2
⎞
⎠ (15)

According to the clustering center, the new division is imple-
mented so that new clusters are obtained. Then, the clustering
iteration is implemented and does not stop until the objective
function value is less than the set threshold.

The prediction principle of the Markov model

The data in every state of the full life cycle is non-stationary
and Markov model can deal with non-station data very well.
Using Markov model can achieve forecast by state vectors
and state transitionmatrix. The full states transition probabil-
ity can be expressed by a transition matrix P, which is shown
as follow:

P =

⎡
⎢⎢⎢⎣
P11 P12 . . . . . . P1s
P21 P22 . . . . . . P2s
...

... . . . . . .
...

Ps1 Ps2 . . . . . . Pss

⎤
⎥⎥⎥⎦

The formula of the transition probability is given by:

Pi j = Ni j

Ni
(16)

where Ni j denotes the transition times from i to j and Ni

denotes the number of NLLP indicator values belonging to i .

Assume that the state vector at moment t − 1 is
−→
Pt−1 and

the state vector at moment t is
−→
Pt . The formula of state

transition is shown as follow:

−→
Pt = P · −→

Pt−1 (17)
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when time t from 1 to K , the formula (17) transforms as
follow:

−→
Pk = Pk · −→

P0 (18)

where
−→
Pk is the state vector at moment K . The state vector

expresses the probability that each state may occur. Once the
initial state vector and state transition matrix are given, the
state vector at any time can be predicted. In order to fully
express the current state of the machine through the state
vector, the weighted average method proposed by Liu et al.
(2012) is used to obtain the state value. Assume that state

vector at moment t is
−→
Pt , where

−→
Pt = (p1, p2, . . . , pn), n

is the state number. Then, the state value Ct at this moment
is calculated as follow:

Ct = 1 × p1 + 2 × p2 + · · · n × pn (19)

The state value expresses the current state. If state value has
decimal part, it can tell that the machine is in the transition
state of the adjacent states. Once the state value reaches the
threshold set according to the historical data, the correspond-
ing moment is defined as the fail-point. Then, the residual
life can be obtained according to the current moment and the
predicted fail-point.

The prediction principle based on particle filtering

Particle filtering with great estimation of non-Gaussian data
generates plenty of particles to obtain the distribution of
the predicted value that the predicted results can be more
effectively expressed in comparison to the single predicted
value. The prediction principle based on particle filtering and
Markov model contains prediction and update.

The prediction principle is to used Markov model and
particles to implement the prediction. Firstly, the state vec-
tor’s particles with the corresponding weights are generated.
Secondly, the predicted results corresponding to every parti-
cle is obtained by Markov model. At last, the final predicted
result is obtained by takingweighted average of the predicted
results corresponding to every particle. Assume that the state

vector’s particles is expressed as
−→
φw
t = (x1, x2, . . . , xn),

where n is state number, t is the moment, w is particle num-
ber;ωw is the weight of the particle; the predicted results cor-
responding to every particle is expressed as lw; the total num-
ber of the particles is m. The ultimate result L is as follow:

L =
m∑

w=1

ωw · lw (20)

The update principle is to update the particles and theweights
by obtaining the new observation so that the predicted res-

idential life can be updated. The real-time state vector is
obtained according to the updated observation, which can be
combinedwith formula (14) to update theweights and resam-
ple so that the new particles and the corresponding weights at
the current moment can be got. According to the prediction
principle, a new predicted result can be obtained by using the
new particles andweights. Therefore, the predicted result can
be updated when a new observation is got.

Weight degeneracy is an inevitable problem in particle
filtering, which can’t be worked out by conventional resam-
plingmethod.Therefore, this paper usesMetropolis-Hastings
algorithm of Pitt et al. (2010) to solve this problem. By using
Metropolis-Hastings algorithm, the concrete step that gen-
erates the particles from the probability density q(x) is as
follow:

(1) Generate random number ν ∼ U [0, 1] from uniform dis-
tribution with the range [0,1].

(2) Generate particles x∗
k ∼ p(x∗

k |x (i)
k ) from the impor-

tance density function.

(3) If ν ≤ min

{
1,

q(x∗
k )p(x (i)

k |x∗
k )

q(x (i)
k )p(x∗

k |x (i)
k )

}
, x∗

k is adopted, other-

wise, rejected.

Markov model with dynamic weights

The prediction model based on historical data can capture
the overall trend information of the full historical life cycle,
but the real time information cannot be compromised. The
prediction model based on real time data can only obtain the
high accuracy of short-term prediction. In order to improve
the long-term prediction accuracy by taking full advantage
of historical data and real time data, two Markov models is
constructed by historical samples and real time data, respec-
tively. The ultimate predicted result is calculated by taking
a weighted average of the prediction results of the two pre-
diction models. Because the prediction accuracy of the two
models is different in different fault stages, the dynamic cor-
rection coefficient of the weights is set to adjust adaptively
the coefficient in accordancewith the relative prediction error
of the two models. Therefore, the prediction accuracy can be
improved according to the real condition. The formula of
residual life is given by:

Rul = (α1 − ω) · l1 + (α2 + ω) · l2 (21)

Here,ω is the dynamic correction coefficient;α1 is theweight
of the Markov model built by historical data and α2 is the
weight of theMarkov model built by real-time data, α1, α2 ∈
[0, 1], α1 + α2 = 1; l1 stands for the residual life predicted
by the historical data based Markov model and l2 stands for
the residual life predicted by the real-time data basedMarkov
model.
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α1 and α2 can be obtained by predicted error of the his-
torical data. Firstly, the historical data is divided into two
groups that one group contains one sample which stands for
real-time data and another group stands for historical sam-
ples used for prediction. α1 is valued between 0 and 1 at a
step of 0.1 with the initial value 0.1. For each value, calcu-
late the residual life errors between prediction and real values
of the historical samples at all moments. Then, the α1 value
corresponding to minimal mean error is the ultimate weight
coefficient.

If α1 and α2 are directly used for prediction, the real-time
performance of prediction is very poor for the reason that
α1 and α2 is obtained by historical data. Hence, the ω is
set to adjust the weights according to the relative predicted
error. Assume that

−→
η1 and

−→
η2 are the two models’ state

vectors predicted atmoment t and
−→
η3 is the real state vector at

moment t . Through Euclid distance calculation, the dynamic
correction coefficient of the two Markov models can be got
as follow:

ω = 0.1 ∗
⎛
⎝

∥∥∥−→
η1 − −→

η3

∥∥∥∥∥∥−→
η2 − −→

η3

∥∥∥ − 1

⎞
⎠ (22)

Here, ‖·‖ stands for Euclid distance calculation.
In a word, the steps of residual life prediction based on

dynamic weighted Markov model and particle filtering are
as follow:

(1) Construct dynamic weights Markov model
(2) Calculate the initial state vectors according to the full

real-time data.
(3) Predict the state vectors’ particles at the next moment
(4) The predicted particles are compared with the set thresh-

old. If the predicted value exceeds the threshold, the
prediction should cease and calculate the residual life.
If the predicted value doesn’t exceed the threshold, the
prediction goes on step (3).

(5) The predicted results of the two Markov models are
calculated respectively according to formula (20). The
ultimate result is obtained according to formula (21).

(6) Once the new observation is got, the update of particles
and weights is implemented and the new particles and
weights are put back to the model for new prediction.

The detailed process is shown in Fig. 1.

Experimental verification

The full life cycle data of rolling element bearings is from
NASA website. The experimental bearing type is Rexnord
ZA-2115. The experimental rotate speed is 2000 rm/min and

sampling frequency is 20KHz. Every sampling length of the
data segment is 1s and the interval of the data segment is
10min. Six groups of data are used in this paper. The formula
of the average prediction error is given by:

e = 1

n

n∑
r=1

|xr − dr |
dr

× 100% (23)

Here, xr stands for the predicted value at moment r , and dr
stands for the real value at moment r .

This paper uses kurtosis as fault indicator. The kurtosis
has better sensitive to the fault and its formula is as follow:

kurtosis =
∑K

k=1 (x(k) − xm)4

(k − 1)x4std
(24)

Here, x(k) expresses signal sequence; k stands for the length
of the signal sequence; xstd stands for standard deviation of
x(k); xm stands for the mean value of the x(k).

State division

K-means clustering algorithm is used to divide kurtosis
of the signal. Figure 2 represents the kurtosis map of
the fault trend, which contains six groups of data. As
can be seen from Fig. 2, kurtosis becomes larger as the
operation time grows longer. The kurtosis is below 20
when operation time doesn’t exceed 3000min; kurtosis is
maintaining 50 ∼ 100 when operation time is between
3000 and 8000min; the fault condition reaches fail-point
when operation time surpasses 8000min. According to the
above information, the full life cycle data is divided into
four states used for initial state of K-means clustering
algorithm, where the states is: (0, 20), (20, 60), (60, 100),
(100,∞). Then, the division iteration for six groups of
data is implemented. At last, the ultimate divided states is:
(0, 26), (26, 72), (72, 108), (108,∞).

The construction of the dynamic weight Markov model

According to calculation steps of chapter 2.2, α1 can be
calculated. Five samples are chosen to be divided into two
groups that one group contains four samples while another
one contains one sample. There are five arraymodes to divide
five samples into two groups. Therefore, five weights can be
obtained according to the five array modes, and the ultimate
weight can be obtained by taking a weighted average of the
five weights. Figure 3 is the trend map of prediction error
and the weights. At last, the initial weight value is α1 = 0.7.
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Fig. 1 The flow chart of
residual life prediction
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Product particles
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Exceed the
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Exceed the
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Calculate residual
life by formula

(20)

Calculate residual
life by formula

(20)

yes yes

no no

Calculate the
ultimate result by

formula (21)

Update particles
and weights

Obtain new
observation

Residual life prediction analysis

Five groups of data are used to train the Markov model and
one group is used for prediction. The algorithm of refer-
ence Liu et al. (2012), on-line monitoring data basedMarkov
model and historical data based Markov model are used for
comparison. The total number of particles of reference Liu
et al. (2012) is 30 and the initial distribution of the particles is
Gaussian distribution. Figure 4 represents the predictionmap
of the proposed method and Fig. 5 represents the prediction
map of the algorithm of reference Liu et al. (2012). Figures 6
and 7 are the prediction map of the Markov model based on
on-linemonitoring data and the predictionmapof theMarkov
model based on historical data, respectively. The predicted
error between every predicted value and the actual life is

shown in Figs. 8, 9, 10 and 11, and the average prediction
error of the four figures respectively are 0.101, 0.351, 0.372
and 0.394 according to the formula 23. Otherwise we use 3σ
rule to compute the mean confidence interval of the four pre-
diction results,which respectively are [11, 550], [123, 1450],
[36, 933], and [154, 1157]. As shown from Figs. 4, 5, 6 and
7, the curve in Fig. 4 is closer to the real life curve in com-
parison to other figures. As can be seen from Figs. 8, 9, 10
and 11, the error of every predicted value in Fig. 8 is all
below 600min, and other figures’ predicted errors are very
large.We can also see that the predicted error of the proposed
method is smaller than other methods from the average pre-
diction error of the four methods. Moreover, the confidence
interval of the proposed method is smaller than other meth-
ods’.
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Fig. 2 The full-life kurtosis figure of the rolling bearing
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Fig. 3 The trend figure of prediction error and the weights
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Fig. 4 The life forecast figure of method based on dynamic weighted
Markov model and particle filtering
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Fig. 5 The figure of life forecast based on reference Liu et al. (2012)
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Fig. 6 The predictionmap of theMarkovmodel based on on-linemon-
itoring data
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Fig. 7 The prediction map of the Markov model based on historical
data
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Fig. 8 The predicted error map of method based on dynamic weighted
Markov model and particle filtering
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Fig. 9 The predicted error map of method based on reference Liu et al.
(2012)
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Fig. 10 The predicted errormap of theMarkovmodel based on on-line
monitoring data
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Fig. 11 The predicted error map of the Markov model based on his-
torical data

Therefore, the proposed method has higher prediction
accuracy than the other three methods according to the error
of every predicted value and the average error.

Conclusion

This paper proposes a novel prediction method based on
dynamic weights Markov model and particle filtering. The
historical data and real-time data are used to construct
dynamic weights Markov models, and then, residual life
prediction can be evaluated by particle filter. Through ver-
ification of actual bearing data, the results show that the
predicted error is small and the prediction accuracy can be
improved by making full use of model based on both histor-
ical data and real-time data.
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