
J Intell Manuf (2018) 29:451–462
https://doi.org/10.1007/s10845-015-1121-x

Parallel bat algorithm for optimizing makespan in job shop
scheduling problems

Thi-Kien Dao1 · Tien-Szu Pan1 · Trong-The Nguyen1 · Jeng-Shyang Pan2

Received: 14 March 2015 / Accepted: 29 June 2015 / Published online: 14 July 2015
© Springer Science+Business Media New York 2015

Abstract Parallel processing plays an important role in effi-
cient and effective computations of function optimization.
In this paper, an optimization algorithm based on parallel
versions of the bat algorithm (BA), random-key encod-
ing scheme, communication strategy scheme and makespan
scheme is proposed to solve the NP-hard job shop schedul-
ing problem. The aim of the parallel BAwith communication
strategies is to correlate individuals in swarms and to share
the computation load over few processors. Based on the
original structure of the BA, the bat populations are split
into several independent groups. In addition, the communi-
cation strategy provides the diversity-enhanced bats to speed
up solutions. In the experiment, forty three instances of the
benchmark in job shop scheduling data set with various sizes
are used to test the behavior of the convergence, and accu-
racy of the proposed method. The results compared with the
othermethods in the literature show that the proposed scheme
increases more the convergence and the accuracy than BA
and particle swarm optimization.

Keywords Parallel bat algorithm · Job shop scheduling
problem · Swarm intelligence

Introduction

The idea of the parallel bat algorithm (BA) is to divide
the artificial bats into independent subpopulations so that
they can share the computation load. The parallel processing

B Jeng-Shyang Pan
jengshyangpan@fjut.edu.cn

1 Department of Electronics Engineering, National Kaohsiung
University of Applied Sciences, Kaohsiung, Taiwan, ROC

2 College of Information Science and Engineering, Fujian
University of Technology, Fuzhou, China

also had been applied for the existing methods, including
in the ant colony system with communication strategies
(Chu et al. 2004), a parallel particle swarm optimization
algorithm with communication strategies (Chu et al. 2005),
parallel cat swarm optimization (Tsai et al. 2008), the island-
model genetic algorithm (Whitley et al. 1998), and parallel
genetic algorithm (Abramson and Abela 1991). The global
search capacity could be extended and the accuracy could be
increased from the parallelized subpopulation structure of
artificial agents more than that the original structure. The
parallelized strategies simply share the computation load
over several processors. The sum of the computation time
for all processors can be reduced compared with the single
processor works on the same optimumproblem (Kuck 1977).
Besides, the no free lunch theorem (Wolpert and Macready
1997) has logically proven that there is no meta-heuristic
algorithm best suitable for solving all optimization problems.
In other words, a particular meta-heuristic algorithm may
show highly promising results on a set of problems, but the
same algorithm may show poor performance on a different
set of problems (Wolpert and Macready 2005). This theorem
makes the field of meta-heuristic algorithm and the study
of its applications highly active. This also motivates us to
consider the strength of the algorithm in parallel processing
for solving complicated and difficult scheduling problems
(Garey and Johnson 1990).

Scheduling can be defined as a problem of finding an
optimal sequence to execute a finite set of operations of
satisfied constraints (Błażewicz et al. 1996). It is a decision-
making process of allocating resources over time to perform
a collection of required tasks. Effective scheduling plays a
vital role in the growth of any kind of industries. Different
types of scheduling problems were addressed in the liter-
ature with unlike performance measures (Behnamian and
Fatemi Ghomi 2014; Gen and Lin 2014). Single machine

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-015-1121-x&domain=pdf

452 J Intell Manuf (2018) 29:451–462

scheduling (Çakar 2011), flow shop scheduling (Mirabi et al.
2013), parallel machine scheduling (Ying et al. 2012), job
shop scheduling (Meeran andMorshed 2012) are some of the
important types of scheduling environments. Among them,
the job shop scheduling problem (JSSP) is considered in this
paper.Minimization ofmakespan, total of flow time, mean of
flow time, total earliness, total tardiness, weighted earliness,
and tardiness and number of tardy jobs are the important
objective functions of scheduling problems. The objective of
this paper is to minimize makespan. In recent years, an inter-
est in using meta-heuristic methods to solve JSSP has been
growing rapidly, such as simulated annealing (SA;Laarhoven
et al. 1992; Song et al. 2012), tabu search (TS; Dell’Amico
and Trubian 1993; Geyik and Cedimoglu 2004; Zhang et al.
2007), genetic algorithms (GA;Davis 1985;Moin et al. 2015;
Gonçalves et al. 2005; Cheng et al. 1996), particle swarm
optimization (PSO; Lian et al. 2006; Lin et al. 2010), arti-
ficial immune system and their hybrids (AIS; Coello et al.
2003; Qiu and Lau 2014; Luh and Chueh 2009; Zhang and
Wu 2010), discrete artificial bee colony (DABC; Yin et al.
2011), discrete imperialist competitive algorithm (Hosseini
and Al Khaled 2014) and hybrid imperialist competitive
algorithm(Hosseini et al. 2014). These approaches comprise
the emergence of promise for conquering the combinatorial
exploration in a variety of decision-making arenas.

A newmeta-heuristic optimization algorithm, namely, BA
and its parallel version based on swarm intelligence and the
inspiration for observing the searching for the prey of the bats
was introduced as in (Yang 2010; Tsai et al. 2014). The key
advantage of the BA is that it can provide very quick conver-
gence at a very initial stage by switching from exploration
to exploitation (Yang and He 2013). It is potentially more
powerful than PSO and GA as well as harmony search. The
primary reason is that BA uses a good combination of major
advantages of these algorithms in some way. Moreover, PSO
and harmony search are the special cases of the BA under
appropriate simplifications.

In this paper, the concept of a parallel processing is applied
to BA and a communication strategy for PBA is proposed to
solve JSSP. A set of independent jobs must be processed on
a set of available machines in JSSP. Each job is a sequence
of operations. Each operation requires a predefined machine.
These are all handled efficiently with PBA.

The rest of this paper is organized as follows. The prob-
lem of job shop scheduling is reviewed in “The job shop
scheduling problem” section. The analysis and designs for
PBA with the communication strategy and its experimental
results are presented in “Parallelized bat algorithm with a
communication strategy” section. The application of PBA to
the JSSP problems is presented in “Parallel bat algorithm for
JSSP” section. “Experimental results” section shows further
results of testing JSSP. Finally, the conclusion is summarized
in “Conclusion” section.

The job shop scheduling problem

The JSSP was defined (Cheng et al. 1996; Gonçalves
et al. 2005) as follows. There are a machine set M =
{M1,M2, . . .,Mm} and a job set J = {J1, J2, . . ., Jn}. Each
job, Jk, must go through m machines to complete its work.
One job consists of a set of operations, and the operation order
for the machines is predetermined. Each operation uses one
of themmachines to complete one job’s work for a fixed time
interval. Once an operation is processed on a given machine,
it cannot be interrupted before it finishes the procedure. The
sequence of the operations of a job should be predefined
and maybe different for any job. Every job has a sequence
of m operations. Each machine can process only one oper-
ation during the time interval. A schedule is the assignment
of operations to time slots on a machine. The objective of
the JSSP is to find an appropriate schedule. A good sched-
ule is an appropriate operation permutation for all jobs that
can minimize the makespan or one that minimizes the idle
time of machines. The makespan is denoted as Cmax . It is
the maximum total completion time of the final operation in
the schedule of n × m operations. A set of the operations is
denoted as O = {0, 1, 2, . . . , n × m + 1}. The operations 0
and n×m+1 are the dummy operations which represent the
initial and the last operations, respectively. A dummy oper-
ation is used to model the JSSP problem and does not need
any processing time. Furthermore, let T and P denote the
fixed processing time and the preceding operations.

For an n × m JSSP, the problem can be modeled on a
set of m machines to process a set of n × m operations. An
operation can be scheduled for an appointed free machine.
A precedence constraint is used to schedule Operation i-th
after finishing Pi . ti is the processing time of Operation i on
a given machine.

The objective fitness function can be formulated to mini-
mize makespan Cmax as follows:

Fitness = minimize On×m+1(Cmax) (1)

Oq ≤ Oi − ti , i = 0, 1, 2, . . . , n × m + 1; q ∈ Pi

(2)∑

i∈T (t)

ωim ≤ 1, m ∈ M, t ≥ 0 (3)

Oi ≥ 0, i = 0, 1, 2, . . . , n × m + 1 (4)

where ωim is the weight of setting for Operation i initiat-
ing Machine m and it also can be set to the probabilities for
diversity-enhanced solutions (Wang et al. 2013). The con-
straint on precedence relationships is defined by Eq. (2). The
constraint on one machine can process at most one operation
at a time that is indicated in Eq. (3). The completion time of
operations must be positive about the constraint as indicated
in Eq. (4).

123

J Intell Manuf (2018) 29:451–462 453

Parallelized bat algorithm with a communication
strategy

In the parallel structure, several groups are created by divid-
ing the population into subpopulations to construct the
parallel processing. Each of the subpopulations evolves inde-
pendently in regular iterations. A good solution based on the
best fitness evaluation is selected to continue next periods.
After a communication scheme is triggered, bad areas of the
solution space are eliminated and exploration of promising
regions is carried out. The bat-inspired algorithm should be
reviewed briefly as follows the subsection, before analyzing
and designing the communication strategy.

Bat-inspired algorithm

Original BA (Yang 2010) simulates parts of the echolocation
characteristics of the micro-bat in a simple way. Three major
characteristics of themicro-bat are employed to construct the
basic structure of BA. Themicro-bat, one of species of the bat
is a famous example of extensively using the echolocation.
Hence, the first characteristic is the echolocation behavior.
The second characteristic is the frequency that the micro-bat
sends out. The frequency f with a variable wavelength λ

and the third characteristic is the loudness that the micro-bat
uses to search for prey. The basic concepts of BAs can be
described as follows:

1. Bats fly randomly with velocity vi at position xi . They
can adjust the wavelength (or frequency) of their emitted
pulses and adjust the rate of pulse emission r ∈ [0, 1],
depending on the proximity of their target.

2. There are many ways to adjust the loudness. For simplic-
ity, the loudness is assumed to be varied from a positive
large A0 to a minimum constant value, which is denoted
by Amin .

The movement of the virtual bat is simulated as follows:

fi = fmin + (fmax − fmin) ∗ β (5)

vti = vt−1
i +

(
xt−1
i − xbest

)
∗ fi (6)

xti = xt−1
i + vti (7)

where, f is the frequency used by the bat seeking for its prey;
fmin and fmax , represent the minimum and maximum value,
respectively. xi denotes the location of the i-th bat in the
solution space; vi represents the velocity of the bat, t indicates
the current iteration, β is a random vector, which is drawn
from a uniform distribution, β ∈ [0, 1]; and xbest indicates
the global near best solution found so far over the entire
population. In addition, the rate of the pulse emission from
the bat is considered in the process. The micro-bat emits the

echo and adjusts the wavelength depending on the proximity
of their target. The pulse emission rate is denoted by the
symbol ri , and ∈ [0, 1], where the suffix i indicates the i-th
bat. In every iteration, a random number is generated and
compared with ri . If the random number is greater than ri , a
local search strategy, namely, random walk is detonated. A
new solution for the bat is generated by Eq. (8):

xnew = xold + εAt (8)

where ε is a random number and ε ∈ [−1, 1]; it represents
the average loudness of all bats at the current time step. After
updating the positions of the bats, the loudness Ai and the
pulse emission rate ri are updated only when the global near
best solution is updated and the randomly generated number
is smaller than Ai . The updates of Ai and ri are operated by
Eqs. (9) and (10):

At+1
i = αAt

i (9)

r t+1
i = r0i

[
1 − e−γ t] (10)

where, α and γ are constants.

Communication strategy

In our previous work (Tsai et al. 2014), has proven that the
parallel approach to BA is the faster and more accuracy than
original one by providing the communication strategies for
processing parallel of the swarm of bats in different sub-
groups. The swarmof bats inBA is divided intoG subgroups.
Each subgroup evolves from the BA optimization indepen-
dently, i.e., each subgroup has its own bats and the finest
solution. These finest bats among all the bats in a group will
be migrated to other groups to replace the poorer bats of that
group and update for each group after running every fixed
number of iterations. Several partitions could be run in par-
allel and thenmerged.The child processes are halted and their
results are compared. After communicating, bad areas of the
solution space are eliminated and the promising regions are
explored. Let G j be the number of agents of the subgroup,
where j is the index of the subgroup.While t∩R �= φ, where
t is current iteration, and R is the fixed iterations, k agents
(where the top k fitness in G j) will be copied to G(j + 1)
to replace the same number of agents with the worst fitness,
where j = 0, 1, 2, . . . ,G. The diagram of the parallelized
BA with a communication strategy is shown in Fig. 1.

The steps can be described as follows:

1. Initialization: Generate bat population and divide it
into G subgroups. Each subgroup is initialized by BA
independently. Assign R-th number of iterations for
executing XT

i j solutions for N j bats in the j-th group,
i = 0, 1, . . ., N j−1; j = 0, 1, . . .,G −1, where G is the

123

454 J Intell Manuf (2018) 29:451–462

Migrate

 and

Update

Migrate

 and

Update

=tt=11t=10=tt=2t=1 1R 2R t=20

Fig. 1 The diagram of PBA with a communication strategy

number of groups, Nj is the j-th subpopulation size and
t is the current iteration and set to 1.

2. Evaluation: Evaluate the value of f (Xt
i j) for bats in j-th

group.
3. Update: Update the velocity and bat positions using

Eqs. (5), (6) and (7).
4. Communication strategy: Migrate k best bats among

Gt
j to the (j+1)-th groupGt

j+1, mutateGt
j+1 by replac-

ing k poorer bats in that group and update all of the group
in each R iterations.

5. Termination:Repeat Step 2 to Step 5 until the predefined
value of the function is achieved or themaximumnumber
of iterations has been reached. Record the best value of
the function f (Xt

i j) and the best bat position among all
the bats Xt

i j .

Parallel bat algorithm for JSSP

JSSP is a combinatorial problem, and its solution space is
discrete. However, the encoding scheme for PBA is contin-
uous, so it cannot be applied to solve JSSP directly. In order
to apply PBA to JSSP, a direct mapping relationship between
the job sequence and the vector of individuals in PBA must
be constructed as a discrete one. To do so, a random-key
encoding scheme (RES; Bean 1994) is used to combine with
PBA to solve this issue. The parallel processing with com-
munication strategy and the embedding of the random walk
of a local search strategy in proposed algorithm PBA is an
effective way to obtain a more effective solution. The fol-
lowing example illustrates the JSSP problem with three jobs
(n = 3) and three machines (m = 3). The operations must
be processed for jobs in Table 1. The initiated machine order
for each operation and the processing times are provided in
Tables 2 and 3.

The satisfied operation ordering with the stated constraint
Eqs. (1–4) is a feasible schedule. The feasible result from
this JSSP is 1,4,7,5,2,8,3,6,9 with the obtained makespan of
17. Figure 2 shows the Gantt chart of the schedule of this
3 × 3JSSP.

Table 1 Jobs and operation
index in a 3 × 3 JSSP

Jobs Operations

J1 O1 O2 O3

J2 O4 O5 O6

J3 O7 O8 O9

Table 2 Machine allocation in
a 3 × 3 JSSP

Machine allocations

M1 M2 M3

O1 O3 O2

O5 O4 O6

O8 O9 O7

Table 3 Operation times in
3 × 3 JSSP

Jobs operation times

J1 (O1,O2,O3) 2 3 5

J2 (O4,O5,O6) 1 5 2

J3 (O7,O8,O9) 4 6 4

#Machine

M1 O1/2 O5/5 O8/6
M2 O4/ O3/5 O9/4
M3 O O2/3 O6/2

1 2 3 4 5 7 8 9 10 11 12 13 14 15 17
Time slots

Fig. 2 A sample Gantt chart for feasible schedule for example of a
3 × 3 JSSP

Representation of individuals in PBA for JSSP

Random key encoding scheme can be used to transform a
position in a continuous space to a discrete space. The search-
ing space is created in an n × m dimensions space for n
jobs on m machines JSSP. The location of a bat consists of
n × m dimensions and is represented with n × m real num-
bers. In order to simulate an operation permutation sequence
of JSSP, the n × m real numbers are transformed into an
integer series from 1 to n × m by the RES. Each integer

123

J Intell Manuf (2018) 29:451–462 455

An artificial bat 10.2 2.5 7.5 6.7 1.3 5.3 4.2 8.1 9.5

Integer series 9 2 5 1 4 3 7 8

 mod 3 1 3 1 3 2 2 1 2 3

Operation sequence o11 o31 o12 o32 o21 o22 o13 o23 o33

Fig. 3 The RES processing for an individual representation in a 3× 3
JSSP

number represents an operation index according to its order-
ing in all n × m real numbers. A real vector in the RES
is sorted through an ascending order for an integer series
(τ1, τ2, . . . , τk) in which each integer τk indirectly represents
an operation order of a job, where 1 ≤ k ≤ n × m. Because
each job must go through m machines to complete its work,
a job must have m operations that are scheduled for a pre-
ceding constraint. For this constraint, the job index can be
calculated by (1+ τk mod n), where n is the number of jobs.
An operation sequence is figured out by the integer series
transformation. Scanning from the left to the right, each job
index hasm occurrences, which correspond to the number of
operations for a job. The operation order can be satisfied with
the preceding constraint because the operation permutation
is feasible.

Figure 3 illustrates an example of processing from an RES
virtual space to a feasible operation permutation in the 3× 3
JSSP solution space. It is supposed that the location of a
bat in an RES virtual space is (10.2, 2.5, 7.5, 6.7, 1.3, 5.3,
4.2, 8.1, 9.5). It can be encoded to an integer series (9, 2,
6, 5, 1, 4, 3, 7, 8) by sorting the 3 × 3 real numbers in an
ascending order, i.e., 1.3 is the smallest number, it is then
ranked to 1 and so on. In this integer series, the integers 9,
6 and 3 indicate that the operations belong to Job 1 because
(9 mod 3)+1 = 1, (6 mod 3)+1 = 1 and (3 mod 3)+1 = 1.
The integers 1, 4 and 7 indicate that the operations belong
to Job 2, because (1 mod 3) + 1 = 2, (4 mod 3) + 1 =
2 and (7 mod 3) + 1 = 2. The integers 2, 5 and 8 indicate
that the operations belong to Job 3, because (2 mod 3)+1 =
3, (5 mod 3) + 1 = 3 and (8 mod 3) + 1 = 3, respectively.
An operation permutation (1, 3, 1, 3, 2, 2, 1, 2, 3) cor-
responding to job indexes is obtained. Scanning from the
left to the right for these operations, the first 1 means the
first operation of job 1, corresponding to o11, the second
1 means the second operation of job 1, corresponding to
o12 and the third 1 means the third operation of job 1, cor-
responding to o13. According to this scanning process, the
partial series (2, 2, 2) corresponds to (o21, o22, o23) and (3,
3, 3) corresponds to (o31, o32,o33). After scanning the job
index series from the left to the right, the permutation (1,
3, 1, 3, 2, 2, 1, 2, 3) corresponds to an operation sequence
(o11, o31, o12, o32, o21, o22, o31, o23, o33) as shown in Fig. 3.
The operation sequence represented by this encoding scheme
is always a feasible solution of JSSP.

Neighborhood operators

Because the solutions space of sequential operations in JSSP
are discrete, PBA must be constructed in the discrete solu-
tions based on the mapping relationship between the job
sequence and the vector of individuals. For improving the
diversity of population, enhance the quality of the solution
and process parallel strategies, several operations have to
be used the application methods of the diversity-enhanced
solutions (Wang et al. 2013) and a wrapper feature selection
(Rodrigues et al. 2014). These operations include swap-
ping, insertion, inversion and long distance communication
schemes based on Hamming distance methods. They could
be defined as follows.

Swap is to choose two different positions of an operation
permutation sequence randomly and swap them.

Insert is to choose two different positions of an opera-
tion permutation sequence randomly and insert the back one
before the front.

Inverse is to inverse the subsequences between two differ-
ent random positions of an operation permutation sequence.

Long distance communicate is to choose a subsequence
in a random interval of another random the operation per-
mutation sequence and replace the corresponding part of the
subsequence.

For example, when two positions of an operation sequence
in an individual need to exchange the order, the “swap”
operator has to be used. Compare the makespan before
being exchanged and after being exchanged, if the makespan
after being exchanged is better, then the new permutation
operation of this individual of the current solution will be
updated.

Communication strategies

As mentioned above, the parallelization of algorithms is
based on dividing (partitioning) the problem so that several
partitions could be run in parallel and then merged. This idea
is to run several processes for the entire problem in parallel
and periodically compare the results. The search is then con-
tinued by all the processes from a common good solution.
A main process reads the problem definition. A set of child
processes on separate processors is then created for running
an operation sequence of each machine by the communica-
tion schemes. After running specified time interval, the child
processes are halted and the main process compares their
results. A good solution for the child process is selected to
continue next specified time interval. The promising area of
the solution space will be explored. To be satisfied the con-
straint in Eq. (3), a machine can process only one operation
at a time, total of the distributed weights for the operation
diversity of individual is equal to or less than one. To do
so, a solution enhancement algorithm based on the neigh-

123

456 J Intell Manuf (2018) 29:451–462

Fig. 4 The pseudo-code of
communication strategy (COM
scheme)

Input: sol, the individual to communicate
Output: sol’, one individual after executing a communication
1: b rand()
2: if (then execute swapping scheme for individual sol
3: else if (then execute inserting scheme for individual sol
4: else if (then execute inversion scheme for individual sol
 //Finally, (b will match with
5: else execute long distance communication movement scheme for individual sol

end if

Input: sol, the individual to communicate; a starting temperature T; a final temperature Tf ; a cooling rate
Output: an improvement makespan
1: Makespan (sol) makespan of an operation permutation represented by sol
2: while (T > do
3: Randomly select an operation from Communication strategy scheme (Figure 4), and generate a new
individual sol0 by the selected operation.
4: Makespan(sol0) makespan of an operation permutation represented by sol0
5: Makespan(sol0) – Makespan(sol)

 > 0 then //sol0 is worse than (sol)
// randomly generate a probability rand() to accept the worse (sol0) with a probability,
7: if (R = rand() < min {1; , }) then
8: sol sol0 //update sol to be an improved sol0
9: Makespan(sol) Makespan (sol0)
10: end if
11: else
12: sol sol0 // to accept a better sol0
13: Makespan(sol) Makespan(sol0)
14: T
15: end if

end while

Fig. 5 The pseudo-code of the objective function (CMX method)

Input: The probability to execute COM scheme; Objective function f(sol), based on CMX method
Define pulse frequency fi at solution i i; initialize pulse rates ri and the loudness A
Output: one best operation permutation schedule represented by the global best
1: Initialize the bat population soli (i = 1, 2, ..., n) and vi based on RES method
2: while the stop condition (the optimal solution is found or
 the maximal number of iteration is reached) is not met do
3: Generate new solution by RES method.
4: for each bat id do
5: if (rand > ri)

Select a solution among the best solutions and update as Eqs. (6) and (7)
7: Generate a local solution around the selected best solution by COM method
8: if (rand < & rand <Ai)
9: Execute the CMX method for batid
10: Increase ri and reduce Ai , according to Eqs. (9) and (10)
11: end if; end if
12: end for
13 Find the current best sol
14: end while

Fig. 6 The pseudo-code of PBA for JSSP

borhood operations, (named as COM) is employed as shown
in Fig. 4. ws, wi , winv and wlong means the probability of
executing the swapping scheme, the insertion scheme, the
inversion scheme and the long distance movement scheme,
respectively.

Objective function

The objective function is to minimize makespan with satis-
fied constrains in Eqs. (1–4). Evaluation for this objective
function is employed in the transformed solution space of

123

J Intell Manuf (2018) 29:451–462 457

Table 4 Computational result comparison of PBA, PSO and BA methods for instances FT and LA of the test benchmark

Instances Size (n × m) BKS (Best
known solution)

PBA (Proposed in this paper) PSO (Ge et al. 2008) BA (Encoded RES)

Best RD Best RD Best RD

FT06 6 × 6 55 55 0.00 55 0.00 55 0.00

FT10 10 × 10 930 930 0.00 930 0.00 951 2.26

FT20 20 × 5 1165 1165 0.00 1165 0.00 1177 1.03

LA01 10 × 5 666 666 0.00 666 0.00 666 0.00

LA02 10 × 5 655 655 0.00 655 0.00 657 0.31

LA03 10 × 5 597 597 0.00 597 0.00 599 0.34

LA04 10 × 5 590 590 0.00 590 0.00 590 0.00

LA05 10 × 5 593 593 0.00 593 0.00 597 0.67

LA06 15 × 5 926 926 0.00 926 0.00 926 0.00

LA07 15 × 5 890 890 0.00 890 0.00 899 1.01

LA08 15 × 5 863 863 0.00 863 0.00 863 0.00

LA09 15 × 5 951 951 0.00 951 0.00 951 0.00

LA10 15 × 5 958 958 0.00 958 0.00 958 0.00

LA11 20 × 5 1222 1222 0.00 1222 0.00 1232 0.82

LA12 20 × 5 1039 1039 0.00 1039 0.00 1049 0.96

LA13 20 × 5 1150 1150 0.00 1150 0.00 1160 0.87

LA14 20 × 5 1292 1292 0.00 1292 0.00 1299 0.54

LA15 20 × 5 1207 1207 0.00 1207 0.00 1217 0.83

LA16 10 × 10 945 945 0.00 945 0.00 965 2.12

LA17 10 × 10 784 784 0.00 784 0.00 794 1.28

LA18 10 × 10 848 848 0.00 848 0.00 858 1.18

LA19 10 × 10 842 842 0.00 842 0.00 852 1.19

LA20 10 × 10 902 902 0.00 902 0.00 912 1.11

LA21 15 × 10 1046 1046 0.00 1046 0.00 1066 1.91

LA22 15 × 10 927 933 0.65 932 0.54 944 1.83

LA23 15 × 10 1032 1032 0.00 1032 0.00 1042 0.97

LA24 15 × 10 935 941 0.64 950 1.60 970 3.74

LA25 15 × 10 977 977 0.00 979 0.20 989 1.23

LA26 20 × 10 1218 1218 0.00 1218 0.00 1228 0.82

LA27 20 × 10 1235 1247 0.97 1256 1.70 1256 1.70

LA28 20 × 10 1216 1216 0.00 1227 0.90 1227 0.90

LA29 20 × 10 1152 1179 2.34 1184 2.78 1184 2.78

LA30 20 × 10 1355 1355 0.00 1355 0.00 1365 0.74

LA31 30 × 10 1784 1784 0.00 1784 0.00 1794 0.56

LA32 30 × 10 1850 1850 0.00 1850 0.00 1871 1.14

LA33 30 × 10 1719 1719 0.00 1719 0.00 1739 1.16

LA34 30 × 10 1721 1724 0.17 1723 0.12 1731 0.58

LA35 30 × 10 1888 1889 0.05 1888 0.00 1919 1.64

LA36 15 × 15 1268 1279 0.87 1281 1.03 1291 1.81

LA37 15 × 15 1397 1411 1.00 1415 1.72 1425 2.00

LA38 15 × 15 1196 1208 1.00 1213 1.42 1223 2.26

LA39 15 × 15 1233 1236 0.24 1246 1.05 1256 1.87

LA40 15 × 15 1222 1225 0.25 1240 1.47 1252 2.45

123

458 J Intell Manuf (2018) 29:451–462

20 40 60 80 100 120 140 160 180 200
56

58

60

62

64
Comparison of three methods: PBA, PSO, and BA for a 6x6 JSSP

Iterations

B
es

t s
co

re
 s

o
fa

r

0 10 20 30 40 50

1

2

3

4

5

6
PBA-Optimal

P
ro

ce
ss

in
g

M
ac

hi
ne

Processing Time

1 4
1

25 31
1

3132
3

01
1
1 6

3

6 10
3

27 30
4

31 38
1

30 38
4

38 45
3

10 18
3

38 42
5

42 45
1

6 9
1

13 18
4

18 27
3

28 38
6

38 48
2

48 51
5

0 8
2

8 13
4

13 16
6

16 22
1

22 25
5

2728
3

0 5
3

5 6
1

8 13
2

13 22
5

22 27
4

4950
6

5 9
3

16 19
6

22 29
1

29 32
4

48 52
2

5253
5

13 23
2

25 30
5

30 37
3

37 45
4

45 49
6

49 55
1

9 17
3

19 28
6

28 38
2

38 41
1

41 45
5

45 54
4

0 10 20 30 40 50

1

2

3

4

5

6
BA-Optimal

P
ro

ce
ss

in
g

M
ac

hi
ne

Processing Time

16 22
1

4243
6

30 37
1

30 38
4

38 42
6

42 48
1

48 55
3

38 41
1

41 45
5

6 9
1

13 18
4

18 27
3

28 38
6

38 48
2

48 51
5

0 8
2

8 13
4

13 16
6

22 25
5

2728
3
28 34

1

0 5
3

5 6
1

8 13
2

13 22
5

22 27
4

4950
6

5 9
3

16 19
6

27 30
4

34 41
1

48 52
2

5253
5

13 23
2

25 30
5

30 37
3

37 45
4

45 49
6

49 55
1

9 17
3

19 28
6

28 38
2

38 42
5

42 45
1

45 54
4

0 10 20 30 40 50

1

2

3

4

5

6
PSO-Optimal

P
ro

ce
ss

in
g

M
ac

hi
ne

Processing Time

18 21
1

21 30
3

25 31
1

3132
3

31 38
1

30 38
4

38 45
3

42 45
1

45 54
4

13 18
4

18 27
3

27 30
1

30 40
6

40 50
2

50 53
5

0 8
2

8 13
4

13 16
6

22 25
5

2728
3

30 36
1

01
1
1 6

3
8 13

2
13 22

5
22 27

4
4950
6

6 10
3

16 19
6

27 30
4

36 43
1

50 54
2

5455
5

13 23
2

25 30
5

30 37
3

37 45
4

45 49
6

49 55
1

10 18
3

19 28
6

28 38
2

38 42
5

43 46
1

46 55
4

PBA -Optimal
PSO -Optimal
BA -Optimal

Fig. 7 Convergence comparison of BA, PSO and PBA methods for a 6 × 6 JSSP and their Gantt

20 40 60 80 100 120 140 160 180 200
940

960

980

1000

1020

1040

1060

1080

1100

Iterations

B
es

t s
co

re
 s

o
fa

r

Comparison of three methods: PBA, PSO and BA for a 10x10 JSSP

PBA-Optimal
PSO-Optimal
BA -Optimal

Fig. 8 Convergence comparison of BA, PSO and PBA methods for a 10 × 10 JSSP

JSSP by applying the SA algorithm (Kirkpatrick 1983). The
SA algorithm has been successfully applied to many combi-
natorial optimization problems (Koulamas et al. 1994). The
key function of SA is to allow occasional alternations to
accept worsened solutions in order to increase the probability
of jumping away from a local optimum and obtaining a better
solution. In an SA algorithm, a new state s′ is accepted with
a given probability min {1, exp
/T } if
 is greater than or
equal to zero, where T is a control parameter referred as tem-
perature,
 = f (s′) − f (s), and f () is objective function.
The temperature T is defined by the user, and T is decreased
iteration by iteration according to a referred cooling schedule
from high to low. The SA algorithm is executed from high

temperature until T is lower than a user-defined final tem-
perature T f which is a value near to zero. The individual’s
position can be accepted as a new position of the individual
if one random probability is greater than min {1, exp
/T }.
It means the makespan can be made improvement; other-
wise, the previous position for the individual could be kept.
Figure 5 shows the pseudo code for evaluating the object
function namely the CMX method.

Discrete PBA for JSSP

Discrete PBA for JSSP is based on the integration of the
RES, communication strategy scheme (COM) andmakespan

123

J Intell Manuf (2018) 29:451–462 459

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

8

9

10

P
ro

ce
ss

in
g

M
ac

hi
ne

Processing Time

PBA-Optimal for a 10x10 JSSP

0 29
1

29 72
2

7278
5

149 186
7

186 262
9

262275
10

283 354
4

354 440
8

474 559
3

678 725
6

0 81
4

81 103
5

103 149
7

149 234
10

234236
6
236 314

1
314 383

9
383 474

3
474 502

2
502 548

8

0 14
5

14 98
6

98 188
2

188 283
4

283 314
8

314323
1
323 384

10
384397

7
510 595

9
598 672

3

164 190
5

190 251
7

274 343
2

343 379
1

383 459
9

459 554
6

559 598
3

613 711
4

711 763
10

928 1007
8

188 263
2

263 332
5

354 453
4

453 502
1

622 654
8

758 784
9

807813
6
813 868

7
868 958

10
958 991

3

103 164
5

236 288
6

429 450
7

459 510
9

510521
1

548 622
8

622 669
10

669 715
2

781791
3

791 834
4

384391
10

397 429
7

453462
4

502 548
2

548 610
1

610 650
9

654 742
8

742 807
6

807 896
3

896 949
5

476 525
5

528 613
4

613 669
1

669 758
9

758 788
7

791803
3

803 875
2

892 928
8

928 953
6

958 1003
10

391 455
10

455 476
5

476 528
4

554 602
6

602 691
7

691
3

781 825
1

825 844
8

844 918
9

918 948
2

263274
2

450 482
7

482 558
10

595606
9

606 678
6

711 733
4

733 805
5

844 892
8

892 913
1

913 958
3

Fig. 9 The Gantt of PBA method for a 10 × 10 JSSP

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

6

7

8

9

10

P
ro

ce
ss

in
g

M
ac

hi
ne

Processing Time

PSO-Optimal for a 10x10 JSSP

0 29

1

29 72

2

7278

5

78 164

8

164 240

9

240253

10

257 328

4

328 365

7

470 555

3

701 748

6

0 81

4
81 103

5
103 188

10
188 234

8
234 280

7
280 349

9
349 377

2
377379

6
379 470

3
470 548

1

0 14

5
14 45

8
72 162

2
162 257

4
257 341

6
341 402

10
486499

7
499 584

9
584593

1
620 694

3

248 317

2

317 343

5

349 425

9

425 486

7

486 581

6

581 620

3

620 656

1

841 893

10

893 991

4

991 1070

8

162 237

2

328 427

4

427 459

8

459 528

5
656 705

1

843849

6

849 875

9

893 983

10

983 1016

3

1016 1071

7

103 164

5
234 308

8
379 431

6
431 482

9
489 535

2
705716

1
716 737

7
784794

3
794 841

10
1020 1063

4

427

4

436443

10

443 489

2

499 531

7

531 619

8

619 659

9

716 778

1

778 843

6

843 932

3

932 985

5

488 573

4

573 645

2

650 699

5

699 788

9

794806

3

806 862

1

862 887

6

898 928

7

928 964

8

983 1028

10

436 488

4
488 552

10
581 629

6
629 650

5
650 669

8
694 784

3
809 898

7
898 942

1
942 972

2
972 1046

9

237248

2
584595

9
629 701

6
701 777

10
777 809

7
809 857

8
857 929

5
932 977

3
977 998

1
998 1020

4

Fig. 10 The Gantt of PSO method for a 10 × 10 JSSP

(CMX) into the BA. In this method, an artificial bat is repre-
sented by a real vector as shown in row 1 of Fig. 3. Every bat
flies its location in the RES space by Eqs. (6) and (7), and
the objective function of one bat corresponding to the solu-
tion space of JSSP can be evaluated by the transformation
from RES space to a solution space of JSSP by Eqs. (1–4).
For the communication strategy of parallel processing, bad
areas of the solution space are eliminated and exploration of
promising regions is carried out. The RES encoding scheme
provides a search space for the continuous PBA and an easy
way to encode the representation of artificial bat in PBA. The
weight distribution in COM communication strategy scheme
provides a selected bat, which can be in a better location than

the previous one. Then, each bat can fly to a new location
according to Eqs. (6), (7) and (8). The process of objective
function CMX scheme and PBA are executed until it obtains
the optimal solution or the maximum iteration number is
reached (Fig. 6).

Experimental results

The performance of the proposed method of the PBA for the
JSSP is examined by using some test problems taken from
the OR- Library (Beasley 1990) as the test benchmarks. Four
three instances from two classes of standard JSSP test prob-

123

460 J Intell Manuf (2018) 29:451–462

0 200 400 600 800 1000 1200

1

2

3

4

5

6

7

8

9

10
P

ro
ce

ss
in

g
M

ac
hi

ne

Processing Time

BA-Optimal for a 10x10 JSSP

0 43
2

43 119
9

119125
5

279 364
3

364 393
1

393 464
4

464477
10
477 563

8
563 600

7
783 830

6

0 81
4

119 188
9

188 279
3

279 364
10

364366
6
366 412

7
412 490

1
490 518

2
518 540

5
563 609

8

0 14
5
14 45

8
45 135

2
135 230

4
230 314

6
490499
1
499 573

3
573 634

10
652 737

9
737750
7

188 264
9

364 403
3

403 472
2

472 567
6

567 603
1

603 629
5

629 690
7

848 946
4

983 1035
10

1299 1378
8

135 210
2

464 563
4

603 652
1

652 721
5

747 779
8

10431069
9

1069 1159
10

1159 1214
7

12141220
6
1220 1253

3

366 418
6

540 601
5

601 652
9

663673
3
673 747

8
747758
1

782803
7

890 936
2

936 983
10

983 1026
4

563572
4

634641
10

750 782
7

782 844
1

844 890
2

914 954
9

954 1043
3

1043 1108
6

1108 1196
8

1335 1388
5

763 848
4

848860
3
860 909

5
954 1043

9
1043 1115

2
1115 1145

7
1145 1201

1
1263 1299

8
12991324

6
1324 1369

10

573 663
3

663 711
6

711 763
4

763 827
10

827848
5

1000 1089
7

1115 1145
2

11961215
8

1215 1289
9

1289 1333
1

210221
2

711 783
6

827 903
10

903914
9

946 968
4

968 1000
7

1043 1088
3

1215 1263
8

1263 1335
5

13351356
1

Fig. 11 The Gantt of BA method for a 10 × 10 JSSP

Table 5 Average experimental
result comparison of PBA, PSO
and BA methods

Instances BKS PBA PSO BA

Best Avg ARD Best Avg ARD Best Avg ARD

FT06.06 × 06 55 55 55.0 0.00 55 55.0 0.00 55 55.0 0.00

FT10.10 × 10 930 930 930.0 0.00 930 937.0 0.75 951 951.0 2.26

FT20.20 × 05 1165 1165 1165.0 0.00 1165 1173.0 0.69 1177 1177.0 1.03

LA01.10 × 05 666 666 666.2 0.03 666 666.0 0.00 666 666.8 0.12

LA06.15 × 05 926 926 926.6 0.06 926 926.6 0.06 926 926.0 0.00

LA11.20 × 05 1222 1222 1222.1 0.01 1222 1222.3 0.02 1232 1234.0 0.98

LA16.10 × 10 945 945 945.2 0.02 945 945.2 0.02 965 966.0 2.22

LA21.15 × 10 1046 1046 1046.8 0.08 1046 1053.8 0.75 1066 1069.0 2.20

LA26.20 × 10 1218 1218 1223.0 0.41 1218 1222.0 0.33 1228 1228.0 0.82

LA31.30 × 10 1784 1784 1790.2 0.35 1784 1786.0 0.11 1794 1810.8 1.50

LA36.15 × 15 1268 1279 1280.0 0.95 1281 1288.0 1.58 1291 1289.4 1.69

lems included Fisher and Thompson (Fisher and Thompson
1963) with instances FT06, FT10, and FT20, and Lawerence
(Lawler et al. 1993) with instances LA01–LA40.

The parameters setting for both PBA and BA as referring
to (Tsai et al. 2014); the maximum of location is limited to
n × m and the population size of the swarm is set to 30.
The initial weight for COM scheme for the entire procedure
of the PBA for the JSSP algorithm is set to be 0.01. The
initial temperature T is set to be the difference between the
makespan of the selected bat and the best known solution,
T f is set to be 0.1 and β is set to be 0.97. Each instance
contains the full 200 iterations. The evaluated experimental
results compared with the obtained using the BA and PSO
(Ge et al. 2008) methods are listed in Table 4. The Gantts
chart and convergences curves of the first two instances are
illustrated in Figs. 7, 8, 9, 10 and 11.

Figure 7 shows the convergence rate of the first instances
FT06 with size 6× 6 and their plot Gantts of the three meth-
ods, namely PBA, PSO and BA for JSSP. Figures 8, 9, 10 and
11 show the convergence rate of the second instances FT10
with size 10×10 JSSP and their plot Gantts of the PBA, PSO
and BA methods. It is clear that the proposed PBA method
converges faster than the of BA and PSO methods.

In Table 4, instancemeans the problem name, sizemeans
the problem size n jobs on m machines, BKS means the best
known solution for the instance (Muth and Thompson 1963),
Best means the best solution found by each algorithm, and
RD means the percentage of the deviation with respect to
the best known solution for the proposed method and PSO
method, namelyHIA (Ge et al. 2008). The boldface inTable 4
represents the better solution for one instance between PBA
and PSO methods. According to the best known solutions

123

J Intell Manuf (2018) 29:451–462 461

presented in Table 4, the PBA method outperforms the BA
method in 36 instances and outperforms PSO method in 10
instances. However, the PBA method performs slightly an
inferior the PSO method in three other instances. In general,
the PBA method can obtain the optimal area in the search
space with diversity, and can get better solution than the PSO
and BA methods for the JSSP scheduling problems.

The comparisons of the PBA, PSO and BA methods for
testing the stable and diversity by averaging experimental
results of five runs was shown in Table 5. Each run is exe-
cuted 200 iterations. Instances FT06, FT10, FT20 and thefirst
instance of other type instance set are selected as test bench-
mark.BKSandBest are the samemeaning as those inTable 4.
ARDmeans the relative deviation of the average solution and
Avg the average of results for 5 runs, respectively. The bold-
face in Table 5 represents the obtained solutions for instances
of the used methods PBA, PSO and BA could have been
reached the BKS. Observing Table 5, the difference between
theBest and theBKS, and the difference between theAvg and
the BKS are within 1% and 2% for PBA and PSO methods
respectively. However, this figure is higher than 2% for BA
method. Because of the BAmethod is easy to be trapped in a
local optimal and cannot find a better solution. Above exper-
imental results show that the proposed method can obtain
the better solutions than those obtained of the PSO and BA
methods by providing the diversity-enhanced bats to speed
up solutions.

Conclusion

In this paper, a solution to the NP-hard job shop scheduling
problems (JSSP) based on parallel versions of bat algorithm
(PBA), RES, communicating strategy schemes (COM) and
makespan scheme (CMX) was presented. The aim at the
parallel BA with communication strategies is to correlate
individuals in swarms and to share the computation load
amongnumerous processors. In this situation, the entire prob-
lem has several partitions that could be run in parallel and
then merged. After running specified time intervals, the child
processes are halted and their results compared in the main
process. A good solution for the child process is selected to
continue with. A good solution might be the one with the
best fitness. After triggering communication schemes, bad
areas within the solution space are eliminated and the explo-
ration of promising region is carried out. In the proposed
method, a location of a bat composed of n ×m real numbers
can be represented in the discrete solution space of JSSP by
the encoding RES scheme. A speed up of selection solutions
under the constraint is figured out by the COM schemes.
The objective function of the bat corresponding to the solu-
tion space of JSSP could be evaluated by the application
the SA algorithm to minimize the makespan. In the exper-

iments, variety of sizes in instances of job shop scheduling
benchmarks in the literature were used to test the behavior of
convergence, the accuracy, and the speed of the proposed
method. The results were compared with those obtained
using the BA and PSO methods. The comparison indicates
that the proposed method provides competitive results.

References

Abramson, D., &Abela, J. (1991). A parallel genetic algorithm for solv-
ing the school timetabling problem. InProceedings of the appeared
in 15 Australian computer ccience conference, (p. 10). Hobart,
Australia.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing
and optimization. ORSA Journal on Computing, 6(2), 154–160.

Beasley, J. E. (1990). OR-Library: Distributing test problems by
electronic mail. Journal of the Operational Research Society,
1069–1072.

Behnamian, J., & Fatemi Ghomi, S. M. T. (2014). A survey of multi-
factory scheduling. Journal of Intelligent Manufacturing. doi:10.
1007/s10845-014-0890-y.

Błażewicz, J., Domschke,W.,&Pesch, E. (1996). The job shop schedul-
ing problem:Conventional and new solution techniques.European
Journal of Operational Research, 93(1), 1–33.

Çakar, T. (2011). Single machine scheduling with unequal release date
using neuro-dominance rule. Journal of IntelligentManufacturing,
22(4), 481–490. doi:10.1007/s10845-009-0309-3.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of
job-shop scheduling problems using genetic algorithms—I.Repre-
sentation.Computers and Industrial Engineering, 30(4), 983–997.
doi:10.1016/0360-8352(96)00047-2.

Chu, S. C., Roddick, J. F., & Pan, J.-S. (2004). Ant colony system
with communication strategies. Information Sciences, 167(1–4),
63–76. doi:10.1016/j.ins.2003.10.013.

Chu, S. C., Roddick, J. F., & Pan, J.-S. (2005). A parallel particle swarm
optimization algorithm with communication strategies. Journal of
Information Science and Engineering, 21(4), 9.

Coello, C. A. C., Rivera, D. C., & Cortes, N. C. (2003). Use of an artifi-
cial immune system for job shop scheduling. In Artificial immune
systems (pp. 1–10). Springer.

Davis, L. (1985). Job shop scheduling with genetic algorithms. In Pro-
ceedings of an international conference on genetic algorithms and
their applications, (Vol. 140). Pittsburgh, PA: Carnegie-Mellon
University.

Dell’Amico,M.,&Trubian,M. (1993). Applying tabu search to the job-
shop scheduling problem. Annals of Operations Research, 41(3),
231–252.

Fisher, H., & Thompson, G. L. (1963). Probabilistic learning combina-
tions of local job-shop scheduling rules. In Industrial Scheduling,
(Vol. 3). New Jersey: Prentice-Hall.

Garey, M. R., & Johnson, D. S. (1990). Computers and intractability;
A guide to the theory of NP-completeness. New York, NY: W. H.
Freeman & Co.

Ge, H.-W., Sun, L., Liang, Y.-C., & Qian, F. (2008). An effective
PSO and AIS-based hybrid intelligent algorithm for Job-shop
scheduling. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 38(2), 358–368. doi:10.1109/
TSMCA.2007.914753.

Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for
manufacturing scheduling problems: State-of-the-art survey. Jour-
nal of Intelligent Manufacturing, 25(5), 849–866. doi:10.1007/
s10845-013-0804-4.

123

http://dx.doi.org/10.1007/s10845-014-0890-y
http://dx.doi.org/10.1007/s10845-014-0890-y
http://dx.doi.org/10.1007/s10845-009-0309-3
http://dx.doi.org/10.1016/0360-8352(96)00047-2
http://dx.doi.org/10.1016/j.ins.2003.10.013
http://dx.doi.org/10.1109/TSMCA.2007.914753
http://dx.doi.org/10.1109/TSMCA.2007.914753
http://dx.doi.org/10.1007/s10845-013-0804-4
http://dx.doi.org/10.1007/s10845-013-0804-4

462 J Intell Manuf (2018) 29:451–462

Geyik, F., &Cedimoglu, I. (2004). The strategies and parameters of tabu
search for job-shop scheduling. Journal of Intelligent Manufactur-
ing, 15(4), 439–448. doi:10.1023/B:JIMS.0000034106.86434.46.

Gonçalves, J. F., Mendes, J. J. d. M., & Resende, M. G. C. (2005).
A hybrid genetic algorithm for the job shop scheduling problem.
European Journal of Operational Research, 167(1), 77–95.

Hosseini, S., & Al Khaled, A. (2014). A survey on the imperialist com-
petitive algorithm metaheuristic: Implementation in engineering
domain and directions for future research. Applied Soft Comput-
ing, 24, 1078–1094.

Hosseini, S., Khaled, A., & Vadlamani, S. (2014). Hybrid imperi-
alist competitive algorithm, variable neighborhood search, and
simulated annealing for dynamic facility layout problem. Neural
Computing and Applications, 25(7–8), 1871–1885. doi:10.1007/
s00521-014-1678-x.

Kirkpatrick, S. (1983). Optimization by simmulated annealing. Science,
220(4598), 671–680.

Koulamas, C., Antony, S., & Jaen, R. (1994). A survey of simulated
annealing applications to operations research problems. Omega,
22(1), 41–56.

Kuck, D. J. (1977). A survey of parallel machine organization and pro-
gramming. ACM Computing Surveys (CSUR), 9(1), 29–59.

Lawler, E. L., Lenstra, J. K., Kan, A. H. R., & Shmoys, D. B.
(1993). Sequencing and scheduling: Algorithms and complexity.
Handbooks in Operations Research and Management Science, 4,
445–522.

Lian, Z., Jiao, B., & Gu, X. (2006). A similar particle swarm optimiza-
tion algorithm for job-shop scheduling to minimize makespan.
Applied Mathematics and Computation, 183(2), 1008–1017.
doi:10.1016/j.amc.2006.05.168.

Lin, T.-L., Horng, S.-J., Kao, T.-W., Chen, Y.-H., Run, R.-S., Chen, R.-
J., et al. (2010). An efficient job-shop scheduling algorithm based
on particle swarm optimization. Expert Systems with Applications,
37(3), 2629–2636. doi:10.1016/j.eswa.2009.08.015.

Luh, G.-C., & Chueh, C.-H. (2009). A multi-modal immune algo-
rithm for the job-shop scheduling problem. Information Sciences,
179(10), 1516–1532. doi:10.1016/j.ins.2008.11.029.

Meeran, S., & Morshed, M. S. (2012). A hybrid genetic tabu search
algorithm for solving job shop scheduling problems: A case study.
Journal of Intelligent Manufacturing, 23(4), 1063–1078. doi:10.
1007/s10845-011-0520-x.

Mirabi, M., Ghomi, S. M. T. F., & Jolai, F. (2013). A two-stage hybrid
flowshop scheduling problem in machine breakdown condition.
Journal of Intelligent Manufacturing, 24(1), 193–199. doi:10.
1007/s10845-011-0553-1.

Moin, N. H., Chung Sin, O., & Omar, M. (2015). Hybrid genetic
algorithm with multiparents crossover for job shop scheduling
problems. Mathematical Problems in Engineering, 2015, 12.
doi:10.1155/2015/210680.

Muth, J. F., & Thompson, G. L. (1963). Industrial scheduling. New
Jersey: Prentice-Hall.

Qiu, X., & Lau, H. K. (2014). An AIS-based hybrid algorithm for static
job shop scheduling problem. Journal of Intelligent Manufactur-
ing, 25(3), 489–503. doi:10.1007/s10845-012-0701-2.

Rodrigues, D., Pereira, L. A. M., Nakamura, R. Y. M., Costa, K. A. P.,
Yang, X.-S., Souza, A. N., et al. (2014). A wrapper approach for
feature selection based on bat algorithm and optimum-path forest.
Expert Systemswith Applications, 41(5), 2250–2258. doi:10.1016/
j.eswa.2013.09.023.

Song, S.Z.,Ren, J. J.,&Fan, J.X. (2012). Improved simulated annealing
algorithm used for job shop scheduling problems. In Advances in
electrical engineering and automation (pp. 17–25). Springer.

Tsai, C.-F., Dao, T.-K., Yang, W.-J., Nguyen, T.-T., & Pan, T.-S.
(2014). Parallelized bat algorithm with a communication strategy.
In M. Ali, J.-S. Pan, S.-M. Chen, & M.-F. Horng (Eds.), Modern
advances in applied intelligence, Lecture Notes in Computer Sci-
ence. (Vol. 8481, pp. 87–95). Springer International Publishing.

Tsai, P.-W., Pan, J.-S., Chen, S.-M., Liao, B.-Y., & Hao, S.-P. (12-15
July 2008). Parallel cat swarm optimization. InMachine learning
and cybernetics, 2008 international conference on, (Vol. 6, pp.
3328–3333). doi:10.1109/ICMLC.2008.4620980.

Van Laarhoven, P. J., Aarts, E. H., & Lenstra, J. K. (1992). Job shop
scheduling by simulated annealing. Operations Research, 40(1),
113–125.

Wang, H., Sun, H., Li, C., Rahnamayan, S., & Pan, J.-S. (2013).
Diversity enhanced particle swarm optimization with neighbor-
hood search. Information Sciences, 223, 119–135. doi:10.1016/j.
ins.2012.10.012.

Whitley, D., Rana, S., & Heckendorn, R. B. (1998). The island
model genetic algorithm: On separability, population size and
convergence. Journal of Computing and Information Technology,
1305(1997), 6.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for
optimization. Evolutionary Computation, IEEE Transactions on,
1(1), 67–82. doi:10.1109/4235.585893.

Wolpert,D.H.,&Macready,W.G. (2005).Coevolutionary free lunches.
Evolutionary Computation, IEEE Transactions on, 9(6), 721–735.
doi:10.1109/TEVC.2005.856205.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In J.
González, D. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor (Eds.),
Nature inspired cooperative strategies for optimization (NICSO
2010), Studies in Computational Intelligence. (Vol. 284, pp. 65–
74). Berlin Heidelberg: Springer.

Yang, X.-S., & He, X. (2013). Bat algorithm: Literature review and
applications. International Journal of Bio-Inspired Computation,
5(3), 141–149.

Yin, M., Li, X., & Zhou, J. (2011). An efficient job shop scheduling
algorithm based on artificial bee colony. Scientific Research and
Essays, 6(12), 2578–2596.

Ying, K.-C., Lee, Z.-J., & Lin, S.-W. (2012). Makespan minimization
for scheduling unrelated parallel machines with setup times. Jour-
nal of Intelligent Manufacturing, 23(5), 1795–1803. doi:10.1007/
s10845-010-0483-3.

Zhang, C., Li, P., Guan, Z., & Rao, Y. (2007). A tabu search algorithm
with a new neighborhood structure for the job shop scheduling
problem. Computers and Operations Research, 34(11), 3229–
3242.

Zhang, R., & Wu, C. (2010). A hybrid immune simulated annealing
algorithm for the job shop scheduling problem. Applied Soft Com-
puting, 10(1), 79–89. doi:10.1016/j.asoc.2009.06.008.

123

http://dx.doi.org/10.1023/B:JIMS.0000034106.86434.46
http://dx.doi.org/10.1007/s00521-014-1678-x
http://dx.doi.org/10.1007/s00521-014-1678-x
http://dx.doi.org/10.1016/j.amc.2006.05.168
http://dx.doi.org/10.1016/j.eswa.2009.08.015
http://dx.doi.org/10.1016/j.ins.2008.11.029
http://dx.doi.org/10.1007/s10845-011-0520-x
http://dx.doi.org/10.1007/s10845-011-0520-x
http://dx.doi.org/10.1007/s10845-011-0553-1
http://dx.doi.org/10.1007/s10845-011-0553-1
http://dx.doi.org/10.1155/2015/210680
http://dx.doi.org/10.1007/s10845-012-0701-2
http://dx.doi.org/10.1016/j.eswa.2013.09.023
http://dx.doi.org/10.1016/j.eswa.2013.09.023
http://dx.doi.org/10.1109/ICMLC.2008.4620980
http://dx.doi.org/10.1016/j.ins.2012.10.012
http://dx.doi.org/10.1016/j.ins.2012.10.012
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1007/s10845-010-0483-3
http://dx.doi.org/10.1007/s10845-010-0483-3
http://dx.doi.org/10.1016/j.asoc.2009.06.008

	Parallel bat algorithm for optimizing makespan in job shop scheduling problems
	Abstract
	Introduction
	The job shop scheduling problem
	Parallelized bat algorithm with a communication strategy
	Bat-inspired algorithm
	Communication strategy

	Parallel bat algorithm for JSSP
	Representation of individuals in PBA for JSSP
	Neighborhood operators
	Communication strategies
	Objective function
	Discrete PBA for JSSP

	Experimental results
	Conclusion
	References

