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Abstract This study addresses a resource-constrained
unrelated parallelmachine scheduling problemwithmachine
eligibility restrictions. Majority of the traditional scheduling
problems in parallel machine environment deal withmachine
as the only resource.However, other resources such as labors,
tools, jigs, fixtures, pallets, dies, and industrial robots are not
only required for processing jobs but also are often restricted.
Considering other resources makes the scheduling problems
more realistic and practical to implement in manufacturing
environments. First, an integer mathematical programming
model with the objective of minimizing makespan is devel-
oped for this problem.Noteworthy, due toNP-hardness of the
considered problem, application of meta-heuristic is avoid-
able. Furthermore, two new genetic algorithms including a
pure genetic algorithm and a genetic algorithm along with a
heuristic procedure are proposed to tackle this problem.With
regard to the fact that appropriate design of the parameters
has a significant effect on the performance of algorithms,
hence, we calibrate the parameters of these algorithms by
using the response surface method. The performance of the
proposed algorithms is evaluated by a number of numerical
examples. The computational results demonstrated that the
proposed genetic algorithm is an effective and appropriate
approach for our investigated problem.
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Introduction

Scheduling is to simply assign a set of jobs to a set of
machines with respect to operational constraints such that
optimal usage of available resources is obtained. Because of
the growing cost of raw material, labor, energy and trans-
portation, scheduling plays an essential role in production
planning of manufacturing systems, and it is one of the
most important issues for survival in the modern compet-
itive market place. Unrelated parallel machine scheduling
problems appear in many manufacturing environments, such
as in semiconductor manufacturing (Kim et al. 2002; Wang
et al. 2013), the spinning of acrylic fibers for production in
the textile industry (Silva andMagalhaes 2006), in steel mak-
ing industry (Pan et al. 2013), in preheat treatment stage of
automobile gearmanufacturing process (Gokhale andMathi-
rajan 2012), block transportation in shipyards (Hu et al. 2010)
and scheduling jobs in a printed wiring board manufacturing
environment (Yu et al. 2002; Bilyk and Monch 2012).

Parallel machine scheduling problem has been one of
the topics of interest for many researchers in the past few
decades. Most of these studies considered the machines
as only resource which is restricted. However, in real life
manufacturing systems other resources such as machine
operators and tools are constrained and it is illogical to
consider that there are always enough resources for process-
ing a job. It is clear that the resource-constrained parallel
machine scheduling problem ismore difficult than the simple
parallel machine scheduling problem. In a resource con-
strained parallel machine scheduling problem (RCPMSP),
an operation can be performed when the machine and other
resources are available during the process of operation. In
these problems, besides the schedule of jobs on machines,
the schedule of jobs on other resources and their interactions
should be considered. In RCPMSP for a specific sequence
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of jobs on machines, there is an optimal sequence of jobs on
resources and conversely, for a specific sequence of jobs on
resources, there is an optimal sequence of jobs on machines
(Mehravaran and Logendran 2013). On the other hand, jobs
may often not be processed on any of the available machines
but rathermust be processed on amachine belonging to a spe-
cific subset of the machines (Pinedo 1995). This constraint
which is called under different names, such as machine eligi-
bility restrictions, processing set restrictions and scheduling
typed task systems is alsowidely encountered in real schedul-
ing environments.

There are some works done related to the unrelated or
identical parallel machine scheduling problem with machine
eligibility restrictions and other operational constraints. Cen-
teno and Armacost (1997) investigated the identical parallel
machine scheduling problem (PMSP) with release dates and
machine eligibility restrictions to minimize the maximum
lateness. They developed a heuristic algorithm that resulted
from combining the least flexible job first rule (LFJ) and the
least flexible machine first rule (LFM). Later, Centeno and
Armacost (2004) developed a heuristic algorithm that inte-
grated LFJ, LFM and the longest processing time (LPT) for
the aforementionedproblem tominimizemakespan.Liao and
Sheen (2008) considered the identical PMSP with machine
availability and eligibility constraints while minimizing the
makespan. Sheen et al. (2008) developed a branch and bound
algorithm applying several immediate selection rules for
solving the identical PMSPwithmachine availability and eli-
gibility constraints while minimizing the maximum lateness.
Gokhale and Mathirajan (2012) addressed identical paral-
lel machine scheduling problem with release dates, machine
eligibility restrictions and sequence dependent setup times
to minimize the total weighted flow time. They presented
a mathematical model and a few heuristic algorithms to
solve the considered problem.Amixed-integer programming
model and some local search heuristics have been proposed
by Wang et al. (2013), for unrelated PMSP incorporating
release dates, machine eligibility restrictions and sequence
dependent setup times. As indicated above, none of these
researchers taken into account the resource constraints. Only
Edis and Ozkarahan (2012) considered machine eligibility
and resource constraints for identical PMSP simultaneously,
however, they did not propose any meta-heuristic algorithm
for this problem. To the best of our knowledge, this research
is the first to propose a meta-heuristic algorithm for the men-
tioned problem.

The first studies considered the use of meta-heuristics
for the PMSP have been conducted by Cheng et al. (1995)
and Cheng and Gen (1997). Recently, Joo and Kim (2012)
proposed two meta-heuristics, genetic algorithm (GA) and
a new population-based evolutionary meta-heuristic called
self-evolution algorithm (SEA) for unrelated PMSP with
sequence dependent setup times and ready times. Arnaout

et al. (2014) presented a two-stage ant colony optimization
algorithm tominimize themakespan onunrelatedPMSPwith
sequence dependent setup times.

On the other hand, there are only few papers that have con-
sidered the resource constraints in their scheduling problems.
Ventura and Kim (2000) addressed identical PMSP with
additional resource constraints and developed an integer pro-
gramming model to minimize the total absolute deviation of
job completion times about common due date. They proved
that the problem can be solved in polynomial timewhen there
exists one single type of additional resource and the resource
requirements per job are zero or one. Later, Ventura and
Kim (2003) considered an identical PMSPwith unit process-
ing times, non-common due dates and additional resource
constraints. They developed an integer programming model
and used lagrangian relaxation approach to obtain tight
lower bounds and near-optimal solutions. Chen (2005) pro-
posed a heuristic method to minimize makespan in unrelated
PMSP with different die types as a secondary resource con-
straint. Chen and Wu (2006) considered unrelated PMSP
with auxiliary equipment constraints as secondary resource
constraints. They proposed an effective heuristic based on
threshold-accepting methods, tabu lists and improvement
procedures to minimize total tardiness. Chaudhry and Drake
(2009) developed a search algorithm based on genetic algo-
rithm for identical PMSP with worker assignment. None of
these papers addressed resource constrained unrelated par-
allel machine scheduling problem with machine eligibility
restriction. On the other hand most of them considered a
partial resource constraint, meaning that, they supposed that
there is only one secondary resource which is restricted.
Torabi et al. (2013) addressed unrelated parallel machine
scheduling problem with non-zero ready times, sequence
dependent setup times, and secondary resource constraints.
They proposed a multi-objective practical swarm optimiza-
tion to tackle this problem.However, they supposed that there
is only one stock for each secondary resource and this sim-
plification reduces the complexity of resource constrained
unrelated parallel machine scheduling problem. A compre-
hensive survey on parallel machine scheduling problem with
additional resources has been presented by Edis et al. (2013).

The remainder of this paper is organized as follows.
The next section describes the problem under study and
derives a mathematical formulation for considered problem.
A new genetic algorithm and a hybrid genetic algorithm to
solve the proposed model are clearly elaborated in “Genetic
algorithm (GA)” and “Hybrid genetic algorithm (HGA)”,
respectively. In “Parameters tuning”, the parameters tuning
of the proposed algorithms is presented. In “Computational
results”, computational results are presented and finally
in “Conclusions and recommendations for future studies”
conclusions are provided along with some future research
directions.
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Problem description and mathematical modeling

In this study, we consider resource-constrained parallel
machine scheduling problem inwhich themachines are unre-
lated and all of them are available at the beginning of the
scheduling and each machine can process only one job at a
time. The processing time for each job on each machine is
specified. Jobs are available at the beginning of the schedul-
ing and the preemption is not allowed. We assume that each
job can only be processed on a specific subset of machines.
The setup times are assumed to be part of the processing time.
The goal is minimizing the makespan.

Indices

i = 1, 2, . . . , N Index for jobs
m = 1, 2, . . . , M Index for machines
t = 1, 2, . . . , T Index for time periods in the scheduling

horizon
v = 1, 2, . . . , R Index for resources

Parameters

Pim Processing time of job i on machine m
Egim 1 if machinem capable to process job i ;

0, otherwise
resiv Resource requirement of job i to renew-

able resource v

bv Available resource of type v

Decision variables

ximt = 1 if job i completes its processing on machine m at
time t ; otherwise 0

The mathematical model

The RCPMSP with machine eligibility restrictions will be
formulated as a 0–1 integer mathematical programming
model.

Min Z = Cmax (1)

Subject to:

N∑

i=1

t+Pim−1∑

s=t

xims ≤ 1 ∀m, t (2)

M∑

m=1

T∑

t=Pim

ximt = 1 ∀i (3)

T∑

t=Pim

ximt ≤ Egim ∀m, i (4)

N∑

i=1

M∑

m=1

t+Pim−1∑

s=t
resiv xims ≤ bv ∀v, t (5)

M∑

m=1

T∑

t=Pim

ximt .t ≤ Cmax ∀i (6)

ximt ε {0, 1} ∀m, t, i (7)

Relation (1) minimizes the makespan. Constraint (2) ensures
that on each machine and at each time period, at most one
job can be assigned. Constraint (3) imposes that each job
should certainly be processed on a machine. Constraint (4)
indicates the eligibility restrictions. Constraint (5) imposes
that for each resource type v, the total amount assigned to
jobs at any time period is less than or equal to the available
amount of each resource type bv . Constraint (6) is used to
compute the makespan. Finally, constraint (7) indicates that
the decision variables are binary.

Genetic algorithm (GA)

Genetic algorithm (GA) introduced by Holland (1975), is
a well-known meta-heuristic approach attempts to mimic
the natural evolution process. It has been widely used to
solve various optimization problems such as time depen-
dent inventory routing problem (Cho et al. 2014), yard crane
scheduling (Liang et al. 2014), optimization for international
logistics (Takeyasu and Kainosho 2014), scheduling of JIT
cross-docking systems (Fazel Zarandi et al. 2014), straight
and U-shaped assembly line balancing (Alavidoost et al.
2014), hybrid flow shop scheduling with single and batch
processing machines (Li et al. 2014), etc. In addition many
researchers have applied genetic algorithms to solve the par-
allel machine scheduling problems. Table 1 introduces some
of these papers, where the classification scheme of Graham
et al. (1979) is used to indicate the problem properties. The
comprehensive studies on how to implement the genetic algo-
rithm to solve various single or multi-objective optimization
problems have been provided by Gen and Cheng (2000) and
Gen et al. (2008).

The GA generally starts with an initial population of
individuals (chromosomes), which can either be generated
randomly or based on some other algorithms. In each gener-
ation, the population goes through the processes of crossover,
mutation, fitness evaluation and selection. Crossover is the
process in which the chromosomes are exchanged in order
to create two entirely new chromosomes in a specific pat-
tern. Mutation consists of making unexpected changes in
the values of one or more genes in a chromosome. A fit-
ness function calculates the fitness of each individual. The
selection process is that a chromosome with higher fitness
value should have a higher chance of selecting into the next
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Table 1 The papers which have applied genetic algorithms to solve
PMSP

References Problem

Cheng et al. (1995) Pm || (w j
∣∣c j − dD

∣∣)Max

Sivrikaya-Şerifoglu and
Ulusoy (1999)

Pm
∣∣ri , si j

∣∣WE
∑

j E j + WT
∑

j Tj

Cochran et al. (2003) Pm ||CMax ,WT
∑

j Tj

Yi and Wang (2003) Pm
∣∣si j , batch

∣∣WE
∑

j E j + WT
∑

j Tj

Rajakumar et al. (2006) Pm |prec|Work f low balancing

Malve and Uzsoy (2007) Pm |ri , batch, f mls| LMax

Husseinzadeh Kashan
et al. (2008)

Pm |batch|CMax

Çakar et al. (2008) Pm |prec| T
Damodaran et al. (2009) Pm |batch|CMax

Chaudhry and Drake
(2009)

Pm |worker assignment |CMax

Tavakkoli-Moghaddam
et al. (2009)

Rm
∣∣ri , si jk , prec

∣∣∑
j U j ,

∑
j C j

Vallada and Ruiz (2011) Rm
∣∣si jk

∣∣CMax

Li et al. (2011) Pm
∣∣∣p j = p j − x j ,

∑n
j=1 x j ≤ X̂

∣∣∣CMax

Chang and Cheng (2011) Rm
∣∣si jk

∣∣CMax

Alcan andBaşLıGil (2012) Rm | f uzzy processing time|CMax

Joo and Kim (2012) Rm
∣∣ri , si jk

∣∣CMax

YilmazEroglu et al. (2014) Rm
∣∣si jk

∣∣CMax

generation. The new population created in the above manner
constitutes the next generation and this process is repeated
until a specific stopping criterion is reached. The selection
process,mutation and crossover havemanymodels. The pop-
ulation size, the number of generations and the probabilities
of mutation and crossover are some other parameters that
can be varied to obtain a different genetic algorithm. The
overall procedure of the proposed GA is described in follow-
ing five subsections. First of all an appropriate chromosome
representation for considered problem should be illustrated
(“Chromosome representation”). Then the GA can be started
by generating a set of feasible chromosomes as initial pop-
ulation (“Create initial population”) and then all generated
chromosomes are evaluatedby calculating the objective func-
tion value (makespan). Then a pair of chromosomes selected
through the parent selection strategy from the current popula-
tion for crossing that will create a pair of off-springs (“Parent
selection strategy”). The proposed crossover mechanism is
illustrated clearly in “Design of crossover operator”. In cross-
ing procedure �Cr ∗ Npop/2� pair of off-springs should be
made and evaluatedwhereCr is the crossover probability and
Npop is the number of population. After that a chromosome
is selected completely at random for mutating that will cre-
ate a mutated off-spring. The proposed mutation mechanism
is illustrated in “Design of mutation operator”. In mutating

Fig. 1 Chromosome encoding

procedure � Mr ∗ Npop� off-springs should be created and
evaluated where Mr is the mutation rate. At the end the cur-
rent population and the off-springs population are merged
and the Npop best of them are transferred to the next gener-
ation.

Chromosome representation

The first step in the GA technique is to represent a chromo-
some to encode the solution of the problem.The chromosome
representation has a great influence on the performance
of the algorithm. In resource-constrained unrelated parallel
machine scheduling problem, a chromosome should simulta-
neously represent the sequence of jobs on machines and the
priority of jobs on other resources. A typical chromosome
used in this study is depicted in Fig. 1. The first string is a
permutation of the N jobs while the second includes their
assigned machine which can process the corresponding job
and the third string is the priority of jobs for assigning to
the other resources. An example with (N = 10, M = 3) to
illustrate this definition is provided in Fig. 1.

Create initial population

The initial population includes Npop chromosomes. Each
chromosome is produced completely at random. However,
the third string cannot be produced completely at random.
The third string should be generated according to the prece-
dence constraints which are implied by the jobs scheduled
to the same machine. The used pseudo code of initialization
is indicated in Fig. 2. To generate random solutions for the
initial population, the procedure is as follows:

1. To create first string, randomly generate a permutation of
N jobs.

2. To create second string, randomly assign an eligible
machine to each job of the first string, sequentially.

3. To create third string, first, randomly generate a permu-
tation of N jobs. Then, this string should be repaired
according to the precedence constrains which are drawn
from the location of jobs in the sequence on each
machine.
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procedure: initialization

while do
for the first string, generate a permutation of jobs, randomly;
for the second string, assign an eligible machine to each job;
for the third string, generate a permutation of jobs, randomly;
% Start repair procedure

create an empty set in the size of  and named it as ;
for all machine do

for all job on machine do
if job is located on the first position on machine then

else
find job which is located on previous position of job ;

end if
end for

end for
consider the third string and named it as set , consider the and generate an  empty set in 
the size of and named it as set ;
while do

for  job do
if  then

break ;
end if

end for
add job to set ;
remove job from set ;

end while                                       
% End repair procedure                          % the feasible third string will be obtained

replace the current third string with the obtained first string ;

end while

Fig. 2 The pseudo code of the initialization procedure

Parent selection strategy

The selection process of GA involves how to choose chro-
mosomes (parents) in the current population for crossing that
will create off-springs for the next generation. The tourna-
ment selection with tour-size = 3 is applied for selecting
parents. Tournament selection works by selecting a number
of chromosomes (tour-size) from the population at random.
Then, through the tournament, only the chromosome with
the best fitness of those individuals is selected for attending
in crossover operation.

Design of crossover operator

The new crossover operator which is employed in this
research is similar to Double-point crossover. In this opera-
tor, firstly choose two chromosomes through parent selection

strategy from population and call them parents 1 and 2. After
that consider the first string of them and randomly choose two
crossover points from a discrete uniform distribution in (1,
N-1). Then all genes between the crossover points will be
copied from parent 1 to the same position of child 2 and sim-
ilarly from parent 2 to child 1. Parents 1 and 2 elements that
will not create any duplication are copied to their exact posi-
tions in children 1 and 2, respectively. Then, the remaining
empty positions in children 1 and 2 are sequentially filled
by the unassigned elements in the order that they appear in
the parents 1 and 2, respectively. Similarly, this procedure is
applied for the third string of parents. But for each gen of sec-
ond string of each child, initially generate a random number
between [0 1], if it is greater than 0.5 (50% chance for inher-
iting from each parent), copy the corresponding machine for
that job from parent 1 to child 2 and similarly from the parent
2 to the child 1 otherwise copy the corresponding machine
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Parent 1 Parent 2

Child 1 Child 2

Child 1 Child 2

1 4 6 2 5 3
3 2 1 3 1 2
1 6 4 3 5 2

5 3 2 1 4 6
1 2 2 1 3 3
4 6 3 5 2 1

6 4 2 1 5 3
1 3 2 3 1 2
1 6 3 5 4 2

5 3 6 2 4 1
1 2 3 2 3 1
5 6 4 3 2 1

6 4 2 1 5 3
1 3 2 3 1 2
6 5 4 1 2 3

5 3 6 2 4 1
1 2 3 2 3 1
5 6 4 3 2 1

The typical off-springs could be as follows.

Crossover point Crossover point

Child 1 is not feasible, and then it should be corrected.

(a)

(b)

(c)

Fig. 3 An illustration of proposed crossover

procedure: Crossover

while
select two chromosomes by selection strategy and call them P1 and P2;
consider the first and third strings of P1 and P2;
choose two crossover points;
copy all genes between crossover points in the same position from P1 to C2 and  P2 to C1;
directly copy the genes of P1 and P2 that will not create any duplication to the same position in C1 and 
C2, respectively ;
sequentially fill the remaining empty positions in C1 and C2 by the unassigned elements  in the order 
that they appear in the P1 and P2, respectively;

for job [the first string of C1] do              % Construct the second string of C1

if then
copy the corresponding machine for job from P2 to C1;

else
copy the corresponding machine for job from P1 to C1;

end if
end for
for job [the first string of C2] do              % Construct the second string of C2

if then
copy the corresponding machine for job from P1 to C2;

else
copy the corresponding machine for job from P2 to C2;

end if
end for

do repair procedure for the third string of C1;
do repair procedure for the third string of C2;

end while

Fig. 4 The pseudo code of the proposed crossover procedure
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Parent

Assume that the random number for jobs 5 and 2 are 0.43, 0.83 respectively.

Child

Child

1 2 3 4 5 6
3 2 2 1 2 3
1 4 2 3 6 5

1 5 3 4 2 6
3 2 2 1 3 3
1 3 2 4 6 5

1 5 3 4 2 6
3 2 2 1 3 3
1 2 4 6 5 3

Mutation points

Child is not feasible, and then it should be corrected.

(a)

(b)

(c)

Fig. 5 An illustration of proposed mutation

from parent 1 to child 1 and similarly from parent 2 to child
2. Finally the third string of children 1 and 2 should be
repaired based on the obtained first and second strings. Fig-
ure 3 demonstrates an example for the crossover operator. For

this, consider an example with six jobs and three machines
and assume that machine eligibility restrictions are as fol-
lows, where Mi is a set of machines which can process job i .
Figure 4 indicates the pseudo code of the proposed crossover.

M1 = {1, 2, 3} M2 = {2, 3} M3 = {1, 2}
M4 = {1, 2, 3} M5 = {1, 2} M6 = {1, 2, 3}

Design of mutation operator

In this study, an adaptive mutation operator, called swap
is employed. The proposed mutation mechanism is accom-
plished through the following steps;

1. Randomly select a chromosome from population and
consider first string of it.

2. Randomly choose two gens in the parent.
3. Replace two selected gens.
4. For constructing second string, for all gens (jobs) except

replaced gens, copy the correspondingmachine frompar-
ent to child. But for each replaced gens generate a random
number between [0 1], if it is lower than 0.5 (50% chance
for inheriting from his parent) copy the corresponding
machine for that job from parent to child, otherwise, ran-

procedure: Mutation

while
select a chromosome randomly and call it P;
consider the first string of P;
pick up two genes randomly;
replace two selected gens;

for job [ [the first string of C]-[the selected gens] ] do  % Construct the second string of Child (C)

copy the corresponding machine for job from P to C;
end for
for job [the selected gens] do 

if then
randomly select a machine from eligible machine set where the selected machine should 
differ from previous machine;

else
copy the corresponding machine for job from P to C;

end if
end for

consider the third string of P;
pick up two genes randomly;
replace two selected gens;

do repair procedure for the third string of C;

end while

Fig. 6 The pseudo code of the proposed mutation procedure
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domly select a machine from the eligible machines set
where the selected machine should differ from previous
one.

5. Do the steps 1–3 for the third string and then it should be
repaired based on the obtained first and second strings.

Figure 5 illustrates an instance for the proposed mutation
operator with regard to the pervious example. Moreover, the
used pseudo code for the proposed mutation is indicated in
Fig. 6.

Hybrid genetic algorithm (HGA)

As stated before, the problem considered in this study is
the combination of two optimization problems including
scheduling and resource allocation. In GA to tackle this
combinatorial optimization problem a three level solution
encoding scheme is proposed. In order to find how effec-
tive our proposed GA and their operators work and besides,
because no benchmark problems are available in the litera-
ture to confirm and compare the results obtained by GA, a
new genetic algorithm HGA is suggested to solve the exper-
imental problems. In HGA, instead of employing a three
level chromosome, we developed a genetic algorithm along
with a heuristic procedure which performs the search proce-
dure by a two level solution encoding scheme (ignoring the
third string). For calculating the objective function value of
each chromosome in HGA, at first according to the acquired
sequence of jobs on machines the start and completion times
of jobs are computed by considering the machine as only
resource which is restricted. In the second step, to obtain a
feasible order of jobs for allocating to the other resources,
jobs are sorted based on their start times. In using this proce-
dure, for the jobswhich have the same start times, the jobwith
longer processing time is scheduled first. After assigning the
jobs to the other resources based on acquired order, the final
objective function value can be calculated. The overall pro-
cedure for HGA is the same as the overall procedure for GA
and the mutation and the crossover operators which are used
for GA are adopted for HGA. Now, we give an instance with
six jobs, two machines and two additional resources to help

Table 2 Sample problem data

Number of jobs = 6; number of machines = 2; number of resources = 2

Job 1 2 3 4 5 6

Pi1 11 – 10 6 14 8

Pi2 8 13 16 2 – 16

Ri1 1 2 1 1 2 1 b1 = 2

Ri2 1 1 1 0 1 0 b2 = 1

Table 3 A typical chromosome
for HGA 1 2 4 6 5 3

1 2 1 2 1 2

Table 4 The start and finish times of jobs in step 1

Jobs 1 2 3 4 5 6

ST i 0 0 29 11 17 13

FT i 11 13 45 17 31 29

The bold value shows the maximum completion time

Table 5 The start and finish times of jobs in last step

Jobs 1 2 3 4 5 6

ST i 13 0 44 24 30 13

FT i 24 13 60 30 44 29

The bold value shows the maximum completion time

Table 6 Parameters and their
ranges

Parameter Level

It (100–300)

Npop (40–60)

Cr (0.6–0.9)

Mr (0.1–0.4)

in illustrating how our proposed HGA works. The process-
ing times and the resource requirements of jobs are shown in
Table 2. The machine eligibility constraints are as follows:

M1 = {1, 2} M2 = {2} M3 = {1, 2}
M4 = {1, 2} M5 = {1} M6 = {1, 2}

In order to find the objective function value of the chromo-
some depicted in Table 3, at first the start and completion
times of each job are evaluated without considering the
resource constraints. Table 4 shows the start time (ST) and
the finish time (FT) of each job after the first step with
Cmax = 45.

In step 2, jobs are sorted based on their start times. There is
a tie between job1 (J1) and job2 (J2), and tie is broken in favor
of a job with longer processing time. As a result the feasible
order of jobs for allocating to the other resources is J2–J1–
J4–J6–J5–J3. With this sequence, jobs will be assigned to
their resources. Finally, the start and finish times of jobs are
recalculated by considering both machines and additional
resources. The first job in the sequence is J2 on machine 2
(M2). This job needs two units of resource 1 (R1) and one
unit of resource 2 (R2). Both resources are available at time
zero so J2 can be started at time zero and the finish time of
J2 is 0 + 13 = 13. The second job in the sequence is J1 on
M1. J1 needs one unit of R1 and one unit of R2. Both R1 and
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R2 are unavailable until at time 13. So the earliest start time
for J1 is 13 and the finish time of J1 is 13 + 11 = 24. This
procedure is continued until all jobs are scheduled. The final
start and finish times of jobs are shown in Table 5. As can
be seen in Table 5 the objective function value is increased
considerably from 45 to 60.

Parameters tuning

In this section, design of experiment (DOE) approach is
employed to investigate the effect of different levels of
factors on the performance of the proposed algorithms.
Hence, in order to calibrate the parameters, Response Surface
Methodology (RSM) is applied in DOE approach. RSM is
a technique for determining and representing the cause-and-
effect relationship between true mean responses and input
control variables influencing the responses as a two-or three-
dimensional hyper surface (Montgomery 1991). The GA
factors are: number of iterations (It), the number of popu-
lation (Npop), the crossover rate (Cr) and the mutation rate
(Mr). The search ranges and the different levels of the para-
meters are shown in Table 6.

In proposedGA algorithms because four parameters exist,
we use a fractional factorial central composite face-centered
designwith 24−1 factorial points, 2×4 axial points and 4 cen-
ter points, totally 20 experiments. For each experiment five
problems with various sizes are implemented. The results are
normalized by relative percentage deviation (RPD) method
and the average value of RPDs is reported for each test as
a final response and a quadratic model will be fitted on the
acquired responses. The obtained regression model is opti-
mized within the range of the parameters by using LINGO
9.0 software and the optimum combinations of the parame-
ters are shown in Table 7 for each algorithm.

Computational results

To solve the presented model and evaluate the performance
of the proposed GAs, computational experiments are con-
ducted using randomly generated test problems. To generate
random processing times, number of resources and the
available amount of each resource, we use integer uniform
distribution (IUD) [1,20], [1,5] and [1,5], respectively. To
produce the eligible constraints, initially generate an (N , M)-
dimensional binary matrix, namely (Eg), in which in any
row of this matrix, at least, there are

[M
2

]
elements 1. When

Eg (i,m) = 1, it means that machine m capable to process
job i . To validate the proposed mathematical model and
evaluate the optimality of the proposed meta-heuristics, a
numerical example with eight jobs, three machines and a
single additional resource is provided as a benchmark prob-

Table 7 Exact values of parameters

Method Parameters Optimum value

GA It 250

Npop 50

Cr 0.75

Mr 0.25

HGA It 300

Npop 60

Cr 0.75

Mr 0.25

Table 8 Input parameters of example

Job 1 2 3 4 5 6 7 8

Pi1 10 12 8 4 – 12 11 –

Pi2 15 8 10 6 7 14 – 12

Pi3 8 10 12 – 12 17 9 14

Ri1 2 1 2 1 1 2 2 1 b1 = 2

lem. The input parameters related to this example is given
in Table 8. This example is solved optimally by LINGO
9.0 software and the proposed GAs with makespan 55.
The Gantt chart for the optimal solution is provided in
Fig. 7.

The proposed model is applied for 25 test problems
including 10 small and 15 large problems. We solve the
small problems with two approaches: the optimal solu-
tion approach under LINGO 9.0 software and the proposed
genetic algorithms. However, it is impossible to obtain an
optimal solution for all of the problems in a reasonable CPU
time, therefore the problems are optimally solved by the
branch-and-bound approach (B&B) under the LINGO 9.0
software with 3h run time limitation. Thus, the best solu-
tion obtained after 3h is reported for the small size problems
that cannot be optimally solved by the B&B in a reasonable
CPU time. All examples are also solved by the proposed
GAs and each algorithm is run five times for each problem
and the obtained results comparedwith each other in terms of
the average relative percentage deviation (ARPD) and CPU
times. RPD is computed by the following formula;

RPD = Calg
max − Cmin

max

Cmin
max

× 100 (8)

whereCalg
max is themakespan obtained by each algorithm for a

given problem and Cmin
max is the best value of total makespans

obtained by through algorithms for the related problem. The
proposed algorithms were coded in MATLAB R2012a and
run on a personal computer including Intel(R) Core(TM) i5
CPU with 2.27 GHz speed and 3 GB of RAM.
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Fig. 7 The Gantt chart of optimal schedule

Table 9 Comparison between
the exact approach and GAs for
small-size problems

No. Problem information ARPD CPU time(s)

N × M Lingo GA HGA Lingo GA HGA

1 4 × 2 0 0 0 1 6 4

2 6 × 2 0 0 0 5 7 5

3 6 × 3 0 0 0 8 6 5

4 8 × 2 0 0 0 18 7 5

5 8 × 3 0 0 0 267 9 6

6 8 × 4 0 0 0 1535 12 8

7 10 × 2 0 0 0 5537 8 6

8 10 × 3 0 0 0 8632 10 8

9 10 × 4 0 0 0 10,800 16 10

10 12 × 4 11.5 0 0 10,800 20 12

The value of superior algorithm are shown in bold value
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Fig. 8 CPU times reported by B&B method and GAs for small prob-
lems

Table 9 shows the obtained results from B&B, GA and
HGA for 10 small size problems. As it can be seen from
Table 9, for these problems the proposed GAs are able to
get exact solutions for all of problems in reasonable CPU
times. However, the LINGO 9.0 software could not achieve
best solution as well as GAs for problem 10 in 3 h run time
limitation. Figure 8 shows a polynomial behavior of CPU
times by the proposed GAs against an exponential behavior
of B&Bmethod by the increase of the problem size for small
problems. As you can see in Fig. 8, the GAs spend less CPU
times than B&B for achieving to an optimal solution.

Table 10 ARPD for the
problems in large scale

No. N × M ARPD

GA HGA

1 20 × 2 0 0

2 20 × 4 0 0

3 20 × 6 0 0

4 30 × 2 0 0

5 30 × 4 0 0

6 30 × 6 0. 44 0. 59

7 40 × 4 0 0

8 40 × 6 0 0

9 40 × 8 0. 97 2.06

10 50 × 6 0 0.38

11 50 × 8 0. 59 0.84

12 50 × 10 0. 53 0.26

13 60 × 6 0.19 0.45

14 60 × 8 0.18 0.36

15 60 × 10 0 1.39

The value of superior algorithm
are shown in bold value

In order to create more challenging comparison among
GAs, we generated 15 large test problems and solved them
five times by each proposed algorithm. The computational
results compared with each other in terms of ARPD. The
average values of RPDs (ARPD) for large problems are
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Fig. 9 Means plot and LSD intervals for algorithms in large test prob-
lems
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Fig. 10 Interaction plot between the performance of algorithms and
number of jobs in terms of ARPD

reported in Table 10. In order to create significant statisti-
cal analysis of the comparison among algorithms, the means
plot and least significant difference (LSD) intervals (at the
95% confidence level) for ARPD values of the algorithms
for large size problems is shown in Fig. 9.

According to Naderi and Ruiz (2010) which noticed that
overlapping confidence intervals between any two means
indicate that there is no statistically significant difference
between them. With regard to this fact and as can be seen in
Fig. 9, there is no statistically significant difference between
GA and HGA. However, as you can see from Fig. 9, GA
has more central tendency and lower variability of ARPD.
As a result, for selecting only one algorithm, GA is more
reliable than HGA to finding more accurate makespan. It is
worth noting that GA spends approximately double run times
against HGA for large scale problems.

In this section, some sensitive analyses are performed for
assessing the behaviour of algorithms versus different condi-
tions. Figures 10 and 11 indicate the interaction plot between
the algorithms performance and number of jobs, number
of machines in terms of ARDP, respectively. As it can be
observed in Figs. 10 and 11, the GA has better performance
in all conditions for large size problems; however, this tran-
scendence is not tangible.
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Fig. 11 Interaction plot between the performances of algorithms and
number of machines in terms of ARPD

Conclusions and recommendations for future
studies

In this study we considered an unrelated parallel machine
scheduling problem with machine eligibility and resource
constraints. To solve this problem, two different approaches
were proposed. The first approach was based on an inte-
ger programming model; however the mathematical model
is not tractable for large size problems. As a result, in order
to find proper schedules that minimize makespan, for second
approach, we studied two structures of genetic algorithm, a
pure genetic algorithm (GA) and a genetic algorithm along
with a heuristic procedure (HGA). To assess the effective-
ness of the proposed algorithms some random test problems
in two scales were generated and the obtained results were
analyzed and compared with each other. The comparisons
have revealed that the proposed GA had better performance
against HGA for solving the considered test problems, but
this priority was not noticeable. On the other hand, the results
demonstrated that our proposed heuristic algorithm is effec-
tive in both small and large size problems. For the sake of
completeness, it should be noted that the proposed HGA
could make desirable solutions, not as well as GA, for the
considered test problems by spending less CPU times. As
an interesting future research, it is worthwhile to develop
the problem by adding some practical assumptions including
machine breakdown, parallel batch processing and sequence
dependent setup time. Furthermore, it is recommended to
apply other efficient heuristics or meta-heuristic algorithms
for solving the problem.

Appendix

The data set and the computational results of the large prob-
lem 15 which contains 60 jobs and 10 machines are as
follows:
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See Tables 11 and 12, Fig. 12.

Table 11 The data set of
problem 15

Jobs Processing times Resources

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 R1 R2

1 4 2 14 6 3 9 11 8 10 12 2 1

2 – – 9 8 6 8 13 7 8 8 3 1

3 20 16 8 12 14 17 9 17 10 5 3 1

4 19 10 17 – 18 7 10 – 12 13 2 3

5 5 16 – 18 7 – – 5 11 10 3 2

6 20 9 19 11 7 13 7 5 17 11 3 2

7 13 17 4 8 7 13 10 – 13 11 3 2

8 – 7 20 3 4 15 6 20 9 4 2 3

9 13 – 15 9 12 15 15 11 18 12 2 3

10 10 18 – 5 16 – 12 9 6 12 3 3

11 18 12 5 2 13 10 6 12 14 20 3 3

12 5 – 6 12 8 – 14 16 10 12 2 3

13 16 – 17 10 – 14 12 13 11 18 3 3

14 – 17 13 16 12 17 11 – 13 10 3 3

15 8 12 – 7 13 12 12 9 14 8 1 2

16 6 4 11 3 4 8 – 4 8 9 1 2

17 14 20 16 20 9 17 15 – 11 – 2 3

18 – 9 12 8 11 6 10 4 17 19 1 2

19 15 12 6 9 18 10 10 15 10 16 2 2

20 9 9 19 15 – 6 19 11 5 6 1 3

21 17 9 – – 15 17 11 – 13 16 2 1

22 17 12 17 9 11 – 18 14 – 10 3 2

23 6 12 11 6 12 6 13 19 9 18 1 2

24 5 10 11 6 9 20 17 14 15 15 2 2

25 11 5 7 16 17 6 – 2 19 – 3 2

26 11 9 12 6 18 8 20 17 11 13 2 3

27 16 14 10 17 16 3 15 11 4 12 3 3

28 18 18 17 5 9 11 6 14 8 11 2 1

29 9 12 11 6 3 7 11 10 5 – 3 1

30 13 18 13 17 17 9 – 6 – 11 3 3

31 – 8 – 12 11 4 19 8 18 3 2 2

32 18 5 17 – 20 10 – 5 14 – 2 1

33 15 – – 20 11 18 6 15 15 17 2 2

34 10 14 5 8 12 9 – 3 – 17 1 3

35 6 2 18 17 18 15 13 7 18 16 1 1

36 – 5 14 – – 20 9 18 14 8 3 2

37 9 4 12 20 – 9 4 4 13 20 2 3

38 9 2 10 7 16 – 7 19 12 12 1 1

39 15 4 6 4 5 18 20 2 – 18 2 2

40 15 19 20 9 3 11 6 6 10 19 3 3

41 19 11 10 10 9 3 2 16 9 9 2 3

42 – 19 10 11 13 14 – 9 1 12 3 3

43 3 19 – 5 16 2 20 4 5 20 2 3

44 – 7 3 8 1 2 6 8 1 2 1 2
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Table 11 continued
Jobs Processing times Resources

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 R1 R2

45 – 13 15 17 11 5 12 15 15 – 2 1

46 5 19 10 6 14 19 19 10 16 10 2 3

47 9 1 7 2 4 9 7 2 – 6 2 1

48 2 8 11 – 7 13 6 8 4 – 2 2

49 – – 7 10 14 16 9 13 14 10 2 1

50 5 4 3 13 14 9 – 12 13 18 3 1

51 – 11 15 7 10 17 7 17 8 10 3 3

52 2 18 14 10 5 17 4 18 10 8 1 1

53 11 4 6 7 – 9 11 2 7 19 3 3

54 11 15 – 12 12 10 14 – 17 3 2 3

55 8 11 8 12 – 8 3 16 12 20 3 2

56 6 12 10 5 7 – 6 18 8 9 1 2

57 19 14 9 13 10 17 12 15 – 6 1 1

58 13 7 14 13 10 3 13 5 2 12 2 1

59 10 8 7 14 10 17 9 9 20 9 3 2

60 – 1 7 7 5 2 – 1 9 2 3 2

Available number of each resource 3 3

Table 12 The computational result of the best solution obtained by GA with Cmax = 234

Job Start time Finish time Job Start time Finish time Job Start time Finish time Job Start time Finish time

1 141 143 16 39 42 31 212 215 46 182 187

2 27 33 17 18 27 32 136 141 47 232 233

3 54 62 18 87 93 33 215 221 48 0 2

4 80 87 19 176 182 34 44 47 49 62 69

5 4 9 20 168 173 35 67 69 50 173 176

6 154 159 21 35 44 36 223 228 51 109 116

7 50 54 22 121 130 37 228 232 52 2 4

8 106 109 23 33 39 38 176 178 53 159 161

9 145 154 24 187 192 39 2 4 54 9 12

10 116 121 25 76 78 40 15 18 55 93 96

11 143 145 26 130 136 41 221 223 56 62 67

12 192 197 27 47 50 42 167 168 57 215 221

13 96 106 28 87 93 43 78 80 58 33 35

14 202 212 29 12 15 44 42 44 59 69 76

15 136 143 30 161 167 45 197 202 60 233 234

27 23 21 58 7 48 54 35 52 3 29 44 1 39 38 49 59 42 50 36
6 4 2 9 3 1 10 2 1 3 5 10 2 8 2 3 3 9 3 2
48 39 5 54 29 40 17 2 58 21 34 27 7 3 49 59 25 43 4 28

12 25 37 55 20 40 10 4 19 24 34 51 8 13 28 5 56 43 46 16
1 8 2 7 9 5 4 6 3 1 8 4 4 4 7 8 4 6 1 4
50 20 42 30 53 6 32 9 11 15 26 22 10 51 8 13 56 16 23 55

17 47 32 22 26 15 11 33 14 31 60 41 18 6 53 2 9 30 57 45
5 2 8 4 4 4 4 7 10 10 2 7 6 8 8 5 4 8 10 6
19 35 1 52 46 24 12 18 45 44 14 31 33 41 57 38 36 37 47 60

Fig. 12 The chromosome of the best solution obtained by GA
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