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Abstract Maximizing the diversity of the obtained objec-
tive vectors and increasing the convergence speed to the
true Pareto front are two important issues in the design of
multi-objective evolutionary algorithms (MOEAs). To solve
complex multi-objective optimization problems (MOPs),
a multi-objective modified differential evolution algorithm
with archive-base mutation (MOMDE-AM) is proposed. In
MOMDE-AM, with the purpose of reducing the loss of pop-
ulation evolution information, a modified mutation strategy
with archive is introduced, which could utilize several useful
inferior solutions and provide promising direction infor-
mation toward the true Pareto front. The performance of
MOMDE-AMis comparedwithfiveotherMOEAsonfivebi-
objective and five tri-objective optimization problems. The
simulation and statistical analysis results indicate that the
overall performance of MOMDE-AM is better than those
of the compared algorithms on these test functions. Finally,
MOMDE-AM is used to optimize ten operation conditions
of the p-xylene oxidation reaction process; the results show
that MOMDE-AM is an effective and efficient optimization
tool for solving actual MOPs.
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Introduction

Purified terephthalic acid (PTA) is one of the most impor-
tant industrial raw materials because it is the base for the
production of audio films, polyester fibers, moulded resins,
polyethylene terephthalate bottles, and so on (Kleerebezem
and Lettinga 2000). The oxidation of p-xylene (PX) to crude
terephthalic acid (CTA) is an important step in manufactur-
ing process of PTA. Moreover, The Amoco-MC process is a
highly efficient method to produce CTA. In this process, PX
is catalyzed by using bromide (Br), manganese (Mn), and
cobalt (Co) and is oxidized by air or molecular oxygen in
acetic acid (HAc) at 190 to 200 ◦C (Cincotti et al. 1997; Chen
et al. 2005; Partenheimer 1995; Hong et al. 2010). Addi-
tionally, the PX oxidation reaction process involves many
burning side reactions (Kenigsberg et al. 1995) wherein the
consumption of HAc and PX is very considerable and the
quality of CTA is significantly affected by the concentra-
tion of 4-carboxybenzaldhyde (4-CBA) (Cincotti et al. 1999;
Mu et al. 2003). The operation conditions of the PX oxida-
tion reaction process can significantly impact the quality and
production costs of PTA. Therefore, obtaining the optimal
operation conditions to reduce the HAc and PX combustion
losses and control the concentration of 4-CBA in the suitable
level is an urgently issue to be solved.

In the real world, most of optimization problems involve
two or more objectives which usually conflict with each
other. For these problems, improvement of one objective
may lead to deterioration of another. Therefore, it is diffi-
cult to obtain a set of the Pareto objective vectors, which are
called as Pareto front. Over the past few decades, various
multi-objective evolutionary algorithms (MOEAs) (Coello
2006; Schaffer 1985; Fonseca and Fleming 1995, 1998; Zit-
zler et al. 2000; Zitzler and Thiele 1999; Zitzler et al. 2001;
Ray et al. 2001; Coello et al. 2004; Yang et al. 2013; Wang
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and Zeng 2013; Zhang and Li 2007; Suman et al. 2010;
Daneshyari and Yen 2011; Mandli and Modak 2012; Deb
et al. 2002a; Triki et al. 2014; Jamali et al. 2014) have
been successfully used to solve numerous multi-objective
optimization problems (MOPs) and have gained continuing
attention from researchers because MOEAs are less suscep-
tible to different characteristics of Pareto front (Coello 2006;
VanVeldhuizen andLamont 1998;Zitzler et al. 2000) and can
perform better than traditional multi-objective optimization
approaches (Deb 2001; Coello et al. 2002) in most cases.

In the current study, using differential evolution (Storn
and Price 1995) (DE) algorithm to solve MOPs is our study
focus. Abbass et al. (2001) proposed a Pareto differen-
tial evolution (PDE) to solve MOPs and then introduced a
self-adaptive Pareto differential evolution algorithm (Abbass
2002) wherein the mutation and crossover control parame-
ters could be automatically adjusted during the evolution
process. Their experimental results show that DE is a com-
petitive optimization tool to solve MOPs. Madavan (2002)
proposed a Pareto differential evolution approach (PDEA),
in which the fast nondominated sorting and crowding dis-
tance (Deb et al. 2002a) are used to select individuals for the
next generation. Kukkonen and Lampinen (2004) introduced
an improved Generalized DE to solve five multi-objective
optimization problems, and the obtained results indicate that
the proposed algorithm performs better than the compared
algorithms. Subsequently, an extension of generalized DE
(GDE3) Kukkonen and Lampinen (2004) is proposed to
solve a set of different characteristics of multi-objective opti-
mization problems. Santana-Quintero et al. (2010) proposed
a hybrid multi-objective optimization algorithm wherein a
fast DE algorithm and a local search approach based on
rough set theory are used. The experimental results show
that the performance of the proposed algorithm is better
than those of other compared algorithms on several diffi-
cult constrained multi-objective optimization test functions.
Ali et al. (2012) proposed a multi-objective differential evo-
lution algorithm wherein opposition-based learning strategy
is used to generate the initial population and the concept
of random localization is used in mutation strategy; more-
over, the proposed algorithmuses a new selectionmechanism
to check among the parent and trial solutions. Wang et al.
(2010) introduced a multi-objective self-adaptive differen-
tial evolution algorithm wherein an external elitist archive
is used to store the obtained nondominated solutions and a
crowding entropy strategy is used to preserve the diversity of
the obtained solutions. Wang and Tang (2013) introduced a
multi-objective parallel differential evolution with compet-
itive evolution strategies wherein the population is divided
into four parts and four mutation strategies are used. Sharma
and Rangaiah (2013) proposed an improved multi-objective
differential evolution for solving some benchmark test func-
tions and three chemical engineering applications, in which

a termination criterion is developed to stop the search and
taboo list is used to avoid repeated computations and enhance
exploration ability.

It is important to develop an efficient optimization tool
which has a good convergence speed aswell as good diversity
maintenance because balancing convergence and diversity
(two conflicting objectives) is a difficult task in multi-
objective optimization. Moreover, Pareto dominance is a
greedy strategy to select offspring. Therefore, to obtain a
better balance between the exploration and exploitation capa-
bilities in multi-objective DE algorithm, a multi-objective
modified differential evolution algorithm with archive-base
mutation (MOMDE-AM) is proposed. In MOMDE-AM,
some inferior solutions may be selected in mutation oper-
ation to enhance the exploration ability because they can
provide a promising direction to the true Pareto front and
increase population diversity. To demonstrate the perfor-
mance of MOMDE-AM, it is compared with five MOEAs
on a set of 10 benchmark MOPs out of which 5 test func-
tions are bi-objective while the remaining 5 problems are
tri-objective. Furthermore, MOMDE-AM is used to solve a
multi-objective operation conditions optimization of the PX
oxidation reaction process, the experimental results show that
confliction between the quality and production cost in PTA
production can be alleviated by a set of obtained Pareto opti-
mal solutions.

The remainder of this paper is organized in the follow-
ing way. “Background” section introduces the basic concept
of MOPs and the basic DE algorithm. “Multi-objective
modified differential evolution algorithm” section presents
the proposed MOMDE algorithm. “Performance analysis of
MOMDE-AMon ZDT andDTLZ test suites” section reports
the experimental results and sensitive analysis of parameters
of MOMDE. The industrial application using the proposed
algorithm is given in “PX oxidation process optimization
using MOMDE-AM” section. Finally, the conclusions are
summarized in “Conclusions” section.

Background

Multi-objective optimization problem

Without loss of generality, in this paper, a minimized MOP
can be described as follows:

min
x∈Ω

F(x) = ( f1(x), . . . , fm(x))T

x j ∈ (x lowj , xhighj ) j = 1, 2, . . . , D (1)

where x denotes a decision vector in feasible region Ω(
Ω ⊆ RD

)
, m is the number of objective functions and

fn(n = 1, 2, . . . , m) is the nth objective to be minimized.
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x lowj and xhighj are the lower and upper bounds of the j th
variable, respectively. D denotes the dimensionality of opti-
mization problem.

Contrary to single optimization problem, MOPs do not
exist a single global optimal solution. Thus some terminolo-
gies and concepts are introduced as follows (Miettinen 1999;
Deb 2001):

Definition 1 (Dominance relation) A feasible solution x1 is
said to dominate another feasible solution x2, denotes x1 �
x2, iff ∀n ∈ {n = 1, 2, . . . , m} , fn(x1) ≤ fn(x2), and ∃k ∈
{k = 1, 2, . . . , m} , fk(x1) < fk(x2), where k is the number
of objective functions.

Definition 2 (Pareto optimal set) a feasible solution x∗ is
said to be a Pareto optimal solution if there does not exist
another feasible solution x such that x � x∗. The set of all
the Pareto optimal solutions is called the Pareto set (PS),
denoted as X∗.
Definition 3 (Pareto front) The Pareto front (PF) is defined
as P F = {

F(x∗)
∣∣x∗ ∈ X∗ }

, i.e., the image of the PS in the
objective space.

Differential evolution algorithm

Differential evolution algorithm, introduced by Storn and
Price (1995, 1997) is one of the most powerful evolution-
ary optimization techniques (Das and Suganthan 2011). The
main steps of DE are described as follows (Storn et al. 2005):

1) Initialization operation: the mutation control parameter
F , crossover control parameter CR, population size NP,
and maximum number of generations Gmax are deter-
mined, and the current generation G = 0 is set. The
initial individuals x0t , t = 1, 2, . . . , N P is generated ran-
domly in Ω .

2) Mutation operation: for each xG
t in the parent population,

the mutant individual x̂G+1
t is generated as follows:

x̂G+1
t = xG

r1 + F · (xG
r2 − xG

r3), (2)

where r1, r2, and r3 are randomly chosen within the
range [1, NP] and are also different from the index t(i.e.
r1 
= r2 
= r3 
= t); F is a real constant scaling fac-
tor, which controls the amplification of the differential
variation (xG

r2 − xG
r3).

3) Crossover operation: for each xG
t , a trial individual x̄

G+1
t

is generated as follows:

x̄G+1
t j

=
⎧
⎨

⎩

x̂G+1
t j , R j ≤ C R or j = jrand

xG
t j , otherwise

j = 1, 2, . . . , D.,

(3)

where R j is a uniform random number in the range [0, 1],
and jrand is a randomly chosen integer within the range
[1, D].

4) Selection operation: the offspring x̄G+1
t competes one-

to-one with its parent xG
t . The evaluation operation is

expressed as follows:

xG+1
t =

{
x̄G+1

t , f (x̄G+1
t ) ≤ f (xG

t )

xG
t , otherwise

(4)

5) G = G + 1.
6) Steps 2 to 5 are repeated as long as the number of gen-

erations is smaller than the allowable maximum number
Gmax.

Multi-objective modified differential evolution
algorithm

Although the selection operation based on fast nondomi-
nated sorting in NSGAII algorithm (Deb et al. 2002a) is
very effective, its greediness may lead to lose of some useful
inferior individuals during the evolution process. it can be
seen from Fig. 1 that dominated solutions may become non-
dominated solutions after a few generations because these
inferior solutions may carry direction information toward the
true Pareto front (Zhang and Sanderson 2008). Based on the
above observations, we proposed a MOMDE-AM algorithm
that can balance between exploration and exploitation capa-
bilities during the search process.

Overall implementation of the MOMDE-AM

The proposed algorithm is described as follows:

1) Initialization operation

Determine the values of parameters such as mutation control
parameter F , crossover control parameter CR, the maximum
generations Gmax, and a constant number Bset = 0.6. Gen-
erate the initial population P0

1 and set the current generation
G = 0. Let P0

2 = P0
1.

2) Population evolution

For each individual xG
t , t = 1, 2, . . . , N P , the mutation and

crossover operations are used to produce the trail vectors

Mutation operation: x̂G+1
t = xG

r1 + F · (xG
archive,t − xG

r2). (5)

where xG
archive,t is randomly chosen from PG

2 .
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Fig. 1 The evolution of nondominated and dominated solutions during a few generations

We can see from Eq. (5) that some useful inferior solu-
tions stored inPG

2 can participate in the population evolution.
Therefore, it can enhance the exploration ability of the pro-
posed algorithm.

Boundary operation: if rand>Bset, then x̂G+1
t j =⎧

⎨

⎩

xG
r1 j x̂G+1

t j < x lowj

xG
r1 j x̂G+1

t j > xhighj

, otherwise, infeasible variables are

randomly regenerated in feasible region Ω .
Crossover operation:

x̄G+1
t j =

{
x̂G+1

t j , R j ≤ C R or j = jrand

xG
t j , otherwise

j = 1, 2, . . . , D.

3) Selection operation

(1) if xG
t � x̄G+1

t , xG
t is reserved in the population PG

1 .
(2) if x̄G+1

t � xG
t ,x

G
t is replaced by x̄G+1

t in the popula-
tion PG

1 .
(3) if xG

t and x̄G+1
t are nondominated with each other,

x̄G+1
t is added in the population PG

1 .

4) Useful individuals store

NP individuals are randomly chosen from the populationPG
1 ,

and store them in population PG
2 .

5) Fast nondominated sorting (Deb et al. 2002a) and crowd-
ing distance sorting (Deb et al. 2002a) are used to select
NP individuals from the population PG

1 and store them
in population PG

1 .
6) G = G + 1.
7) Repeat steps 2) to 6) as long as the number of generations

is equal to the allowable maximum number Gmax.

Performance analysis of MOMDE-AM on ZDT
and DTLZ test suites

To demonstrate the average performance of MOMDE-AM,
the proposed algorithmwas comparedwith fiveMOEAs [i.e.,
GDE3 citeKL01, NSGAII-DE (Li and Zhang 2009), BB-
MOPSO (Zhang et al. 2009), MOEA/D-DE (Li and Zhang
2009), and MODE-RMO (Chen et al. 2014)] on five bi-
objective problems (i.e., ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT6) (Zitzler et al. 2000) andfiveproblemsofDTLZ family
(i.e., DTLZ1-DTLZ5) (Deb et al. 2002b).Note that functions
DTLZ1- DTLZ5 have three objective functions in the cur-
rent study. Moreover, the basic descriptions of these MOPs
are shown in Table 1. All these compared algorithms were
programmed in Matlab (R2012a) and were run on a win-
dows 7 operating system (64 bit). Furthermore, to effectively
analyze the experimental results obtained by the compared
algorithms, two non-parametric statistical tests with the sig-
nificance level of 0.05 were utilized in the experiments,
namely, Wilcoxon’s rank sum test (Wilcoxon 1945) and
Friedman’s test (Friedman 1937). For the Wilcoxon’s rank
sum test, the “+”, “-”, and “≈” marks denote that MOMDE-
AM performs significantly better than, worse than, and
almost the same as the compared algorithms, respectively.

Performance metric

Zitzler et al. (2000) stated that a multi-objective optimization
has two goals, i.e., fast convergence to the true PF and diver-
sity maintenance of the obtained PF, therefore, to validate
the quality of the final nondominated solutions for different
MOEAs, two performance metric (Deb et al. 2002a; Zitzler
et al. 2003; Van Veldhuizen and Lamont 1998) (i.e., the gen-
erational distance GD and the inverted generational distance
IGD) are used in the current study. GD can be defined as
follows:
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Table 1 ZDT and DTLZ test functions

Test function Objective functions Variable bounds D

ZDT1

f1(x) = x1
f2(x) = g(x)(1 − √

x1/g(x))

g(x) = 1 + 9
D−1

D∑

i=2
xi

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 30

ZDT2

f1(x) = x1
f2(x) = g(x)(1 − (x1/g(x))2)

g(x) = 1 + 9
D−1

D∑

i=2
xi

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 30

ZDT3

f1(x) = x1
f2(x) = g(x)(1 − √

x1/g(x) − x1
g(x) sin(10πx1))

g(x) = 1 + 9
D−1

D∑

i=2
xi

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 30

ZDT4

f1(x) = x1
f2(x) = g(x)(1 − √

x1/g(x))

g(x) = 1 + 10(D − 1) +
D∑

i=2
(x2i − 10 cos(4πxi ))

0 ≤ x1 ≤ 1
−5 ≤ xi ≤ 5, i = 2, 3, . . . , D

10

ZDT6

f1(x) = 1 − e−4x1 sin6(6πx1)
f2(x) = g(x)(1 − (x1/g(x))2)

g(x) = 1 + 9((
D∑

i=2
xi /(D − 1))0.25)

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 10

DTLZ1

f1(x) = 1
2 x1x2(1 + g(x))

f2(x) = 1
2 x1(1 − x2)(1 + g(x))

f3(x) = 1
2 (1 − x1)(1 + g(x))

g(x) = 100

[
(D − 3 + 1) +

D∑

i=3
((xi − 0.5)2 − cos(20π(xi − 0.5)))

] 0 ≤ xi ≤ 1, i = 1, 2, . . . , D 7

DTLZ2

f1(x) = (1 + g(x)) cos(0.5πx1) cos(0.5πx2)
f2(x) = (1 + g(x)) cos(0.5πx1) sin(0.5πx2)
f3(x) = (1 + g(x)) sin(0.5πx2)

g(x) =
D∑

i=3
(xi − 0.5)2

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 12

DTLZ3

f1(x) = (1 + g(x)) cos(0.5πx1) cos(0.5πx2)
f2(x) = (1 + g(x)) cos(0.5πx1) sin(0.5πx2)
f3(x) = (1 + g(x)) sin(0.5πx2)

g(x) = 100

[
(D − 3 + 1) +

D∑

i=3
((xi − 0.5)2 − cos(20π(xi − 0.5)))

] 0 ≤ xi ≤ 1, i = 1, 2, . . . , D 12

DTLZ4

f1(x) = (1 + g(x)) cos(0.5πx1001 ) cos(0.5πx1002 )

f2(x) = (1 + g(x)) cos(0.5πx1001 ) sin(0.5πx1002 )

f3(x) = (1 + g(x)) sin(0.5πx1001 )

g(x) =
D∑

i=3
(xi − 0.5)2

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 12

DTLZ5

f1(x) = (1 + g(x)) cos(0.5πθ1) cos(0.5πθ2)

f2(x) = (1 + g(x)) cos(0.5πθ1) sin(0.5πθ2)

f3(x) = (1 + g(x)) sin(0.5πθ1)

g(x) =
D∑

i=3
(xi − 0.5)2, θ1 = x1, θ2 = (1+2x2g(x))

2(1+g(x))

0 ≤ xi ≤ 1, i = 1, 2, . . . , D 12

G D(P F, P F∗) =
√∑

v∈P F d(v, P F∗)2

|P F | (6)

wherePF is the set of obtained Pareto objective vectors, P F∗
is Pareto objective vectors in the true PF of multi-objective

optimization problem. d(v, P F∗)is the Euclidean distance
between v and the nearest point in P F∗, |P| denotes the
number of Pareto objective vectors found by evolutionary
algorithms in PF. A smaller value of GD indicates a better
convergence to the true PF.

IGD is defined as follows:
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I G D(P F, P F∗) =
√∑

v∈P F∗ d(v, P F)2

|P F∗| (7)

where |P F∗| is the number of points in P F∗, d(v, P F) is
the minimum Euclidean distance between v and the obtained
Pareto objective vectors. IGD could measure both the diver-
sity and convergence of obtained PF.

Comparison with five MOEAs on ten MOPs

In this experiment, the experimental results of 10MOPsusing
MOMDE-AM are compared with the results of other five
MOEAs using performance metrics GD and IGD. For all
compared algorithms, the population size NP is set to 100,
the maximum generations Gmax is set to be the same as in
the literatures (Deb et al. 2002a, b), namely, 250 for 5 bi-
objective test functions, 300 for DTLZ1 and DTLZ2, 500
for DTLZ3, 200 for DTLZ4 and DTLZ5, and the times of
experimental runs are set to be 20. Several control parameter
settings of GDE3 and MODE-RMO are suggested in litera-
ture (Robič and Filipič 2005), i.e., F = 0.5,C R = 0.3, some
of control parameter settings of NSGAII-DE are maintained
as reported in (Li and Zhang 2009), i.e., F = 1, C R = 0.5.
Additionally, based on the studies in Robič and Filipič (2005)
and Abbass et al. (2001), MOMDE-AM algorithm uses the
following parameter settings: F = 0.5, CR is chosen in the
range [0.15 to 0.35] and is generated by a normal distribution
function (i.e., N (0.25,0.03)). The best results are shown in
bold in Tables 3, 5, 7, and 8.

The GD metric in terms of the mean and standard devi-
ation values using six compared algorithms and statistical
test results obtained by Wilcoxon’s rank sum test are shown
in Table 2, it can be seen from Table 2 that the conver-
gence performance of MOMDE-AM is significantly better
than GDE3, NSGAII-DE, MODE-RMO, BB-MOPSO, and
MOEA/D-DEon7, 10, 6, 7, and10 test functions.At the same
time, MOMDE-AM performs the best on all bi-objective test
functionswhen comparedwithGDE3,NSGAII-DE,MODE-
RMO, and MOEA/D-DE. However, BB-MOPSO performs
better than MOMDE-AM on three functions, i.e., ZDT1,
ZDT2, and ZDT3. GDE3 performs better than MOMDE-
AM on one test function DTLZ4. However, NSGAII-DE,
MOEA/D-DE, andMODE-RMO cannot perform better than
MOMDE-AM on any test functions in term of GD metric.
Based on the above observations, it is clearly that the obtained
Pareto fronts fromMOMDE-AMare closer to the true Pareto
fronts than those computed by GDE3, NSGAII-DE, MODE-
RMO,BB-MOPSO, andMOEA/D-DEon almost all selected
MOPs. Furthermore, The Friedman’s test is also employed to
evaluate the convergence performances of all compared algo-
rithms; the rankings obtained by Friedman’s test are shown
in Table 3. It is clearly that the overall convergence perfor- Ta
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Table 3 Ranking obtained by
Friedman’s test on GD

Algorithms Ranking

GDE3 3.3

NSGAII-DE 3.9

MODE-RMO 2.8

BB-MOPSO 4.5

MOEA/D-DE 4.6

MOMDE-AM 1.9

mance of MOMDE-AM is the best among these compared
algorithms.

The mean and standard deviation values of IGD and
the corresponding statistical analysis results are shown in
Table 4. The experimental results indicate that MOMDE-
AM outperforms GDE3 on all test functions in term of
IGDmetric. The optimization performances of NSGAII-DE,
MODE-RMO, andMOEA/D-DE cannot perform better than
that of MOMDE-AM on any test functions. From Table 4,
it is clearly that the overall performance of MOMDE-AM
is better than those of GDE3, NSGAII-DE, MOEA/D-DE,
MODE-RMO, and BB-MOPSO on these test functions. Fur-
thermore, it can be observed from the statistical analysis
results shown in Table 5 that the proposed algorithm per-
forms the best among all compared algorithms in term of
IGD performance metric.

Based on the above comparisons and analyses, MOMDE-
AM significantly performs better than GDE3,MOEA/D-DE,
and NSGAII-DE and outperforms MODE-RMO and BB-
MOPSO on these test functions in term of GD and IGD. It
means that MOMDE-AM can balance between convergence
to the Pareto front and population diversity during the search
process.

Effect of modified mutation strategy

In this experiment, to demonstrate the effectiveness of
the modified mutation strategy in the proposed algorithm,
MOMDE-AM is compared with MOMDE-AM without
modified mutation strategy (denoted by MOMDE-AM1) on
10 selected test functions. Moreover, some of parameter set-
tings are the same as in “Comparison with five MOEAs on
ten MOPs” section. The experimental results are shown in
Table 6. For all bi-objective test functions, MOMDE-AM1
outperforms MOMDE-AM in term of GD and IGD metric
because the exploitation ability of MOMDE-AM1 is bet-
ter than that of MOMDE-AM. However, for 5 tri-objective
optimization problems, MOMDE-AM1 cannot perform bet-
ter than MOMDE-AM on any test functions in term of GD
and IGD metric. Clearly, the convergence and diversity per-
formances of MOMDE-AM1 decreases with the number of
objectives increasing due to its greedy nature. However, the
overall performance of MOMDE-AM is better than that of Ta
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Table 5 Ranking obtained by
Friedman’s test on IGD

Algorithms Ranking

GDE3 4.25

NSGAII-DE 3.55

MODE-RMO 2.15

BB-MOPSO 4.5

MOEA/D-DE 4.9

MOMDE-AM 1.65

MOMDE-AM1 with the number of objectives increasing
becauseMOMDE-AMcan reduce the loss of population evo-
lution information (i.e., population diversity).

Study of parameter

In this section, to obtain a suitable parameter setting for users,
the effect of different parameter setting in MOMDE-AM is
analyzed with Bset selected from the set (0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1). For the boundary operation, If infea-
sible variables are randomly regenerated in the feasible space,
it means that MOMDE-AM has good exploration ability. On
the other hand, if infeasible variables are randomly chosen

from the parent vectors, it helps MOMDE-AM to speed up
convergence. To save space, the experimental results are not
shown in the paper, but the statistical analysis results are
shown in Tables 7 and 8. For GD metric, it can be seen
from Table 7 that the local search ability of MOMDE-AM
is the best when Bset = 1 because all infeasible variables
are randomly selected from the parents can help to improve
the convergence speed. For IGD metric, Table 8 indicates
that overall performance (i.e., convergence and diversity) of
MOMDE-AM is the best when Bset = 0.9 and is the second
best when Bset = 0.6. Moreover, to provide a visualiza-
tion of these results, three changing curves of rankings are
shown in Fig. 2. In Fig. 2, green andmagenta lines denote the
changing trends of IGD and GD under different parameter
settings, respectively. Blue line denotes changing trend of the
sum of GD and IGD rankings. From Fig. 2, it is observed that
Bset = 0.9 provides the best overall performance (see blue
line); however, the conclusionsmaybe unreliable because the
experimental results of bi-objective test functions (the sim-
plest problems in MOPs) may significantly affect the final
statistical results. To further study the parameter Bset, the
experimental results (IGD metric) of 5 bi-objective and 5
tri-objective test functions are analyzed separately. Figure 3

Table 6 Comparison of MOMDE-AM and MOMDE-AM without modified mutation strategy

GD IGD

MOMDE-AM MOMDE-AM1 MOMDE-AM MOMDE-AM1

ZDT1 1.06E−03 (3.89E−04) 8.56E−04 (4.80E−05)− 4.82E−04 (2.75E−05) 4.45E−04 (2.19E−05) −
ZDT2 1.45E−03 (1.36E−04) 1.33E−03 (1.02E−04)− 7.01E−04 (5.44E−05) 6.57E−04 (4.31E−05) −
ZDT3 8.37E−04 (7.32E−05) 7.59E−04 (7.38E−05)− 6.48E−04 (3.07E−05) 5.75E−04 (4.37E−05) −
ZDT4 8.21E−04 (2.81E−03) 2.19E−04 (4.75E−05)≈ 5.17E−04 (1.20E−03) 2.47E−04 (1.54E−05)≈
ZDT6 1.29E−02 (9.61E−04) 1.17E−02 (7.36E−04)− 5.71E−03 (4.38E−04) 5.17E−03 (3.44E−04) −
DTLZ1 2.58E−04 (8.22E−06) 4.09E−03 (1.04E−02)+ 3.98E−04 (1.48E−05) 8.17E−04 (1.14E−03)+
DTLZ2 7.32E−04 (2.27E−05) 7.24E−04 (2.36E−05)≈ 1.01E−03 (3.27E−05) 1.03E−04 (4.79E−05)+
DTLZ3 1.56E−02 (3.64E−02) 1.07E−02 (3.05E−02)≈ 2.98E−03 (4.81E−03) 2.33E−03 (4.04E−03)≈
DTLZ4 7.29E−04 (2.27E−05) 7.34E−04 (2.48E−05)+ 1.02E−03 (2.94E−05) 1.02E−03 (2.97E−05)≈
DTLZ5 9.26E−06 (4.72E−07) 9.14E−04 (4.69E−05)≈ 9.91E−05 (6.89E−06) 9.97E−04 (6.87E−06)≈
+ 2 2

− 4 4

≈ 4 4

Table 7 Ranking obtained by Friedman’s test under different Bset for GD

Bset = 0 Bset = 0.1 Bset = 0.2 Bset = 0.3 Bset = 0.4 Bset = 0.5 Bset = 0.6 Bset = 0.7 Bset = 0.8 Bset = 0.9 Bset = 1

Ranking 8.0 7.4 7.2 6.5 5.8 6.6 5.8 5.5 5.6 4.1 3.5

Table 8 Ranking obtained by Friedman’s test under different Bset for IGD

Bset = 0 Bset = 0.1 Bset = 0.2 Bset = 0.3 Bset = 0.4 Bset = 0.5 Bset = 0.6 Bset = 0.7 Bset = 0.8 Bset = 0.9 Bset = 1

Ranking 8.1 7.2 7.3 5.2 5.7 6.8 4.8 5.6 5.2 4.1 6
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Fig. 2 The curves of ranking under different Bset values

Fig. 3 The curves of ranking for different number of objectives

illustrates that the large Bset value can provide better perfor-
mance on 5 bi-objective test functions while it gives worse
performance on 5 tri-objective test functions. The reason is
that a low value of Bset can increase the population diversity
and is beneficial to solve high-dimensional MOPs. Based on
the above analyses, to balance the exploration and exploita-
tion abilities, Bset = 0.6 is used in MOMDE-AM.

PX oxidation process optimization using
MOMDE-AM

Modeling of the PX oxidation reaction process and HAc
and PX combustion loss

Over the past two decades, numerous lumped kinetic model
of PX oxidation reaction process (Cao et al. 1994a, b; Sun
et al. 2008; Yan et al. 2004) have been presented. In the cur-
rent study, the lumped kinetic model (Yan et al. 2004), which
includes a set of equations, are used. Moreover, considering
that the rate constants are difficult to model with reaction fac-
tors, therefore, the values of the rate constants are solved by
the radical basis functions (RBF) coupled with partial least-
squares (PLS). The more detailed descriptions of the lumped
kinetic model of PX oxidation reaction process can be found
in (Yan et al. 2004).

Generally, the PX oxidation reaction process is accompa-
nied by a large number of side reactions, wherein HAc and

PXcombustion are twomajor side reactions (Yan et al. 2005).
Although various kinetic models of side reactions (Kenigs-
berg et al. 1995; Cheng et al. 2006; Cincotti et al. 1997) have
been proposed, the consumption of HAc and PX in the indus-
trial PX oxidation reactions is difficult to obtain because the
reaction mechanism is very complex. In the current study,
the artificial neural network is used to constructed the model
of HAc and PX combustion loss under different operation
conditions (Yan et al. 2005). The amount of acetic acid com-
bustion loss mconsume

HAc (kg/T CTA) and PX combustion loss
mconsume

PX (kg/T CTA) in reactor can be calculated as follows:

⎧
⎪⎨

⎪⎩

xcox = f (x1, x2, x3, x4, x5, τ )

mconsume
HAc = mgas×xcox× xHAc

100 × 60
1000

2× mcox
HAc
100 ×mCTA

(8)

and
⎧
⎪⎨

⎪⎩

xcox = f (x1, x2, x3, x4, x5, τ )

mconsume
PX = mgas×xcox× xPX

100 × 106
1000

8× mcox
PX
100 ×mCTA

(9)

where xcox is the carbon dioxide and carbon monoxide con-
tents in the wastegas of the reactor (denoted as D1−301 in
Fig. 4) and represents the degree of side reactions; f (•) is the
content model of the carbon dioxide and carbon monoxide in
the wastegas of the reactor developed by artificial neural net-
works; x1 (◦C) is the reaction temperature; x2 (mol/kg acetic
acid) is the concentration of PX in acetic acid solvent; x3 (%),
x4 (%), and x5 (%) are the weight percentage of cobalt, man-
ganese, and bromine in the feed, respectively; xHAc andmcox

HAc
are 61 and 75% in the industrial oxidation process; mgasand
mCTA are obtained from industrial production data. xPX and
mcox

P X are 39 and 60% of the industrial oxidation process.

Modeling of the PX oxidation reaction process by using
Aspen Plus

Based on the lumped kinetic model of PX oxidation reaction
process, HAc and PX combustion loss models are introduced
in “Modeling of the PX oxidation reaction process and HAc
and PX combustion loss” section, the industrial PX oxidation
reactionmodel is built by using Aspen Plus 11.1. At the same
time, some of property data (Renon and Prausnitz 1968) pro-
vided by Aspen Plus are used as part of the PX oxidation
reaction model. The flow diagram of PX oxidation reaction
process is shown in Fig. 4 (Fan and Yan 2015). MIX-FLOW
is the mixed feed of the reactor; FIA2052 is the air feed of
the reactor; FIA20602 is the air feed of the first crystallizer;
WASTEGAS is the waste gas of the reactor; FIC20577 is
the drainage flowrate of the reactor; D1−301 is the reac-
tor; D1−401, D1−402, and D1−403 are the crystallizers;
E1−304, E1−305, E1−306, and E1−307 are the heaters.
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Fig. 4 Flow diagram of the PX oxidation reaction process in Aspen Plus

Construction of the MOP in the PX oxidation reaction
process

During the production process of PTA, the yield and quality
of PTA is directly affected by operation conditions of PX
oxidation reaction process. For example, with the rise of the
concentrations ofCo,Br, andMn in the feed, the consumption
of HAc and PX will increase and the content of 4-CBA will
decrease. Therefore, reduce HAc and PX combustion loss to
achieve greater economic benefits and control the content of
4-CBA at a lower level to ensure the quality of PTA are two
conflicting objectives in the PTA production. In this paper,
this problem can be regarded as a tri-objective optimization
problem and is described as follows:

F(x)=[
min

{
mconsume

HAc

}
,min

{
mconsume

PX

}
,min {x4−C B A}]T

s.t.⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1,max ≤ x1 ≤ x1,max

x2,min ≤ x2 ≤ x2,max

x3,min ≤ x3 ≤ x3,max

x4,min ≤ x4 ≤ x4,max

x5,min ≤ x5 ≤ x5,max

x6,min ≤ x6 ≤ x6,max

x7,min ≤ x7 ≤ x7,max

x8,min ≤ x8 ≤ x8,max

x9,min ≤ x9 ≤ x9,max

x10,min ≤ x10 ≤ x10,max

lmin ≤ l ≤ lmax

xmin
4−C B A ≤ x4−C B A ≤ xmax

4−C B A

(10)

where x1 (◦C) is the reaction temperature; x2 (mol/kg acetic
acid) is the concentration of PX in an acetic acid solvent;

x3 (%), x4 (%), and x5 (%) are the weight percentages of
Co, Mn, and Br in the feed, respectively; x6(T/Hr) is the
drainage flowrate of the reactor; x7 (◦C) , x8 (◦C) , x9 (◦C) ,

and x10 (◦C) are the first, second, third, and fourth heater
temperatures, namely, E1−304, E1−305, E1−306, and
E1−307, respectively; l(%) is the liquid level of the reactor
D1−301, i.e., the residence time under a given mixed feed;
x4−C B A(ppm) is the 4-CBA content in CTA. mconsume

HAc (kg/T
CTA) is the amount of acetic acid combustion loss in a reac-
tor; mconsume

PX (kg/T CTA) is the amount of PX combustion
loss in a reactor. The lower and upper boundaries of these
optimized parameters are shown in Table 9. Furthermore,
Note that the lower and upper limits of the concentration of
PX in an acetic acid solvent are equal to actual industrial
values because it is obtained from long-term optimization.
And the content of 4-CBA should be within an appropri-
ate level because it must comply with the actual industrial
production.

Operation conditions optimization of PX oxidation
reaction process

In the current study, PX oxidation reaction process model
is established by using Aspen Plus 11.1 and the proposed
algorithm is programmed in Matlab (R2012a). However,
data between Matlab and Aspen Plus cannot be directly
exchanged. Fortunately, a MAP interface toolbox based on
COMtechnology that can exchange data betweenMatlab and
Aspen Plus is developed by Geng et al. (Geng et al. 2006).
The framework of the optimization system is presented in
Fig. 5. Furthermore, The optimization function of PX oxida-
tion reaction process can be seen in Formula 10.
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Table 9 Lower and upper boundaries of optimized parameters

x1 (◦C) x3 (PPM) x4 (PPM) x5 (PPM) x6 (T/Hr) x7 (◦C) x8 (◦C) x9 (◦C) x10 (◦C) l (%)

Lower 194 300 50 50 50 155 130 75 20 45

Upper 200 500 400 400 70 165 140 85 30 90

Content of 4-CBA

Constant parameters  Optimized parameters,

Consumption of HAc and PX, 

Optimization

MATLAB

MAP 
interface 
toolbox

Model

Aspen Plus

MOMDE-AM Algorithm PX oxidation reaction 
process

Fig. 5 Framework of the optimization system for the PX oxidation reaction process

Fig. 6 Interactions between PX and HAc combustion losses

Fig. 7 Interactions between 4-CBA content and HAc combustion loss

Case study

In this experiment, the proposed algorithm is used to optimize
the common state of the PX oxidation reaction process from
the PTA industry at 10a.m. on 16 July 2009. In MOMDE-
AM, the population sizeNP andmaximum generations Gmax

is set to 40 and 100, respectively. The other operation condi-
tions of PX oxidation reaction process, which are used as the
parameter settings of the model in Aspen Plus, are shown in
the Appendix. Moreover, the content of 4-CBA is within the
range [0.225, 0.235]. Three typical Pareto front are shown

Fig. 8 Interactions among 4-CBA content, and PX and HAc combus-
tion losses

in Figs. 6, 7, and 8. It can be seen from Fig. 6 that PX com-
bustion losses is proportional to the consumption of HAc.
Figure 7 indicates that the content of 4-CBA decreases with
increasing HAC combustion loss. Therefore, based on the
above observations, it is can be clearly seen that the con-
tent of 4-CAB (i.e., PTA quality) and the consumption of PX
andHAc (i.e., production cost) are two conflicting objectives.
To further investigate the relationship among the mentioned
three objectives in Formula 10, the obtained Pareto front is
illustrated in Fig. 8. Clearly, it is observed thatMOMDE-AM
can help decision makers to obtain a tradeoff solution in the
decision making process. Table 10 shows that the detailed
information of two selected nondominated solutions (i.e.,
two boundary points S1 and S2 shown in Fig. 8) from the
obtained Pareto front. For S1, it denotes that the content of
4-CBA is maximal while the consumption of PX and HAc is
minimal. For S2, it means that the quality of PTA is the best,
but production cost is the highest among all obtained solu-
tions. It can be observed from Table 10 that MOMDE-AM
can reduce PX combustion loss of S1 by 1.04 Kg/T.PTA,
HAc combustion loss of S1 by 3.21 Kg/T.PTA, PX com-
bustion loss of S2 by 1.02 Kg/T.PTA, HAc combustion loss
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Table 10 Experimental results

Operating conditions Results of Aspen
Plus

Industrial actual
value

Results of
MOMDE-AM
(S1)

Results of
MOMDE-AM
(S2)

Concentration of Co (PPM) 288.26 167.1 335.59 366.93

Concentration of Mn (PPM) 295.25 164.9 318.23 327.02

Concentration of Br (PPM) 407.53 352.2 300.11 302.20

Reactor temperature (◦C) 194.00 196.3 194.00 194.01

Reactor level (%) 45.00 61.5 45.01 45.00

The first heater temperature (◦C) 157.99 158 159.55 157.87

The second heater temperature (◦C) 135.94 136 131.16 130.30

The third heater temperature (◦C) 79.76 80 77.59 76.45

The fourth heater temperature (◦C) 25.02 24 29.81 29.73

Drainage flowrate of reactor (T/Hr) 57.90 58 55.43 53.98

Content of 4-CBA (%) 0.2343 0.23 0.2350 0.2250

Consumption of PX Kg/T.PTA 653.72 654.7 653.66 653.68

Consumption of HAC Kg/T.PTA 44.89 47.9 44.69 44.77

of S2 by 3.13 Kg/T.PTA, and that the results of MOMDE-
AM are better than the results obtained by Aspen Plus. Note
that a single run of Aspen Plus is only able to obtain a
single solution. From the above analyses, clearly, MOMDE-
AM can obtain the optimal operation conditions for the PX
oxidation reaction process when compared with the indus-
trial operation conditions and Aspen Plus, and can provide a
wider range of candidate solutions for the decision makers to
choose suitable operation conditions based on the production
planning.

Conclusions

In the current study, a multi-objective modified differential
evolution algorithm with archive-base mutation (MOMDE-
AM) is proposed to solve MOPs. In MOMDE-AM, several
inferior solutions are used to balance between the explo-
ration and exploitation capabilities and provide direction
information about the true Pareto front. The performance of
MOMDE-AMwas compared with those of GDE3, NSGAII-
DE, MODE-RMO, BB-MOPSO, and MOEA/D-DE on five
bi-objective and five tri-objective benchmark test functions.
The simulation and statistical analysis results demonstrate
that MOMDE-AM outperforms the compared MOEAs in
term of GD and IGD performance metric. To reduce man-

ual tuning DE parameters that need to be set by users,
some parameters of the proposed algorithm were chosen
based on the statistical analysis results obtained by non-
parametric statistical tests. At the same time, the performance
of MOMDE-AM was compared with that of MOMDE-
AM without modified mutation strategy (i.e., MOMDE-
AM1). Although the performance of MOMDE-AM is worse
than that of MOMDE-AM1 on five bi-objective test func-
tions, MOMDE-AM can perform better than or similar to
MOMDE-AM1 on five tri-objective problems. The results
indicate that the performanceofMOMDE-AMismore robust
than MOMDE-AM1 with the number of objectives increas-
ing. Additionally, MOMDE-AM was used to solve an actual
MOP which contains three conflicting objective functions.
The experimental results show thatMOMDE-AM is an effec-
tive optimization tool for solving real-worldMOPs because it
can provide a set of nondominated solutions to help decision
makers choose a trade-off solution.
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Appendix

See Table 11.
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