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Abstract This paper proposes a genetic algorithm GA_J S
for solving distributed and flexible job-shop scheduling
(DFJS) problems. A DFJS problem involves three schedul-
ing decisions: (1) job-to-cell assignment, (2) operation-
sequencing, and (3) operation-to-machine assignment.
Therefore, solving a DFJS problem is essentially a
3-dimensional solution space search problem; each dimen-
sion represents a type of decision. The GA_J S algorithm is
developed by proposing a new and concise chromosome rep-
resentation SJOB , whichmodels a 3-dimensional scheduling
solution by a 1-dimensional scheme (i.e., a sequence of all
jobs to be scheduled). That is, the chromosome space is
1-dimensional (1D) and the solution space is 3-dimensional
(3D). In GA_J S, we develop a 1D-to-3D decoding method
to convert a 1D chromosome into a 3D solution. In addi-
tion, given a 3D solution, we use a refinement method to
improve the scheduling performance and subsequently use a
3D-to-1D encoding method to convert the refined 3D solu-
tion into a 1D chromosome. The 1D-to-3D decoding method
is designed to obtain a “good” 3D solution which tends to
be load-balanced. In contrast, the refinement and 3D-to-1D
encoding methods of a 3D solution provides a novel way
(rather than by genetic operators) to generate new chro-
mosomes, which are herein called shadow chromosomes.
Numerical experiments indicate that GA_J S outperforms
the IGA developed by De Giovanni and Pezzella (Eur J
Oper Res 200:395–408, 2010), which is the up-to-date best-
performing genetic algorithm in solving DFJS problems.
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Introduction

This research examines the distributed and flexible job-shop
scheduling (DFJS) problems. The DFJS problem addresses a
manufacturing system comprising several sub-systems (also
called manufacturing cells); each cell is a flexible job-shop.
Each job shall be processed in one cell (i.e., cross-cell pro-
duction is prohibited). DFJS examples can be a multi-factory
network in which factories are geographically distributed,
and can be a multi-cell plant where several manufacturing
cells are located in the same plant. To reduce overall com-
pletion time, the assignment of jobs to cells is very important
because it shall affect cell loading profiles.

As stated, each cell in aDFJS system is a flexible job-shop,
which denotes that an operation of a job can be processed by
more than one machine. Therefore, assigning an operation
to a different machine yields a different process route. The
operation-to-machine assignment decision is very important
in scheduling because it shall affectmachine loading profiles.

In a flexible job-shop, after the operation-to-machine
assignment decision has been made, each machine may have
several operations to be processed. Operations assigned to
the same machine must be sequenced in using the machine
capacity. Therefore, operation-sequencing decision has an
effect on job completion time and is very important in
scheduling.

In summary, a DFJS problem involves three schedul-
ing decisions: (1) job-to-cell assignment, (2) operation-
sequencing, and (3) operation-to-machine assignment. Two
degenerated DFJS problems are studied in literature. One is
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called flexible job-shop scheduling (FJS) problem, in which
only one manufacturing cell exists in the DFJS system. The
other is called distributed job-shop scheduling (DJS) prob-
lem, in which each job has a fixed route. Therefore, the
job-to-cell assignment decision is not concerned in the FJS
problem while the operation-to-machine assignment deci-
sion is not concerned in the DJS problem.

DJS problems are more complicated than classical job-
shop scheduling (JS) problems which are NP-hard (Garey
et al. 1976).Many prior studies developed genetic algorithms
to solve DJS problems. For example, Jia et al. (2003) devel-
oped a genetic algorithm, which is further enhanced by Jia
et al. (2007). Chan et al. (2005) developed an adaptive genetic
algorithm with dominated genes. Some other prior studies
attempted to solve dynamic DJS problems which include
unexpected events. For example, Zhang et al. (2008) devel-
oped a multi-agent genetic algorithm and Chou and Cheng
(2010) developed an agent-based method.

FJS problems are strongly NP-hard (Garey et al. 1976).
Some studies developed mathematical programming
approach (Bruker and Schlie 1990; Jinyan et al. 1995; Kim
and Egbelu 1999; Choi and Choi 2002). Some other stud-
ies (e.g., Hmida et al. 2010) developed tree search method.
And many other studies developed meta-heuristic algo-
rithms in two approaches. One approach is making the two
scheduling decisions in a hierarchical manner. That is, the
operation-to-machine assignment decision is firstly made;
then the operation-sequencing decision is subsequentlymade
by meta-heuristic algorithms (Brandimarte 1993; Tung et al.
1999; Kacem et al. 2002a, b; Bożejko et al. 2010). The other
approach is making the two decisions simultaneously by
meta-heuristic algorithms, which include tabu search algo-
rithms (Hurink et al. 1994; Dauzère-Pérès and Paulli 1997;
Mastrolilli and Gambardella 2000; Jia and Hu 2014), genetic
algorithm (Ho and Tay 2004; Pezzella et al. 2008; Tay
and Wibowo 2004; Zhang et al. 2011), simulated anneal-
ing (Baykasoǧlu 2002), and hybridmeta-heuristic algorithms
(Xia and Wu 2005; Gao et al. 2008; González et al. 2013;
Xing et al. 2010; Yuan and Xu 2013; Gutiérrez and García-
Magariño 2011).

In solving DFJS problems, two studies (Chan et al.
2006; De Giovanni and Pezzella 2010) developed genetic
algorithms (GAs); and Ziaee (2014) developed a heuristic
algorithm. A mathematical formulation of DFJS problems
can be referred to Chan et al. (2006). The GA developed
by De Giovanni and Pezzella (2010) is called IGA, which is
the up-to-date best-performing algorithm for solving DFJS
problems and is taken as the benchmark of this research. To
facilitate comparison, the chromosome representations used
in Chan et al. (2006) is called SC and that used in De Gio-
vanni and Pezzella (2010) is called SG hereafter.

This paper proposes a genetic algorithmGA_J S for solv-
ing DFJS problems. The GA_J S algorithm is developed

by proposing a new and concise chromosome representa-
tion SJOB , which models a 3-dimensional DFJS scheduling
solution by a 1-dimensional scheme (i.e., a sequence of all
jobs to be scheduled). That is, the chromosome space is
1-dimensional (1D) and the solution space is 3-dimensional
(3D).

In GA_J S, we develop a 1D-to-3D decoding method
to convert a 1D chromosome into a 3D solution. In addi-
tion, given a 3D solution, we use a refinement method to
improve the scheduling performance and subsequently use a
3D-to-1D encoding method to convert the refined 3D solu-
tion into a 1D chromosome. The 1D-to-3D decoding method
is designed to obtain a “good” 3D solution which tends to
be load-balanced. In contrast, the refinement and 3D-to-1D
encoding methods of a 3D solution provides a novel way
(rather than by genetic operators) to generate new chro-
mosomes, which are herein called shadow chromosomes.
Numerical experiments indicate that GA_J S outperforms
the IGA developed by De Giovanni and Pezzella (2010).

The remainingof this paper is organized as follows. “Com-
parison of chromosome representations” section compares
the proposed chromosome representation SJOB against the
two prior ones SC and SG . “GA_J S algorithmic framework”
section describes the algorithmic framework of GA_J S.
“Decoding of SJOB chromosomes” section presents the
1D-to-3D decoding method for converting a 1D SJOB chro-
mosome into a 3D scheduling solution. “Refinement and
encoding of 3D solutions” section describes the refinement
and 3D-to-1D encoding methods for obtaining a shadow
chromosome from a 3D solution. “GA_J S algorithm” sec-
tion summarizes the proposed algorithm GA_J S. “Numer-
ical experiments” section reports experiments of comparing
GA_J S against IGA. Concluding remarks are in last section.

Comparison of chromosome representations

This section compares the proposed chromosome represen-
tation SJOB against two prior ones SC and SG , in which SC
is proposed by Chan et al. (2006) and SG is proposed by De
Giovanni and Pezzella (2010). The three chromosome rep-
resentations are explained by referring to a DFJS problem
shown in Table 1(a), in which there are 3 jobs and 2 cells
and each job has 3 operations. Then, the three chromosome
representations are examined in terms of eight encoding prin-
ciples (or properties) proposed in prior research (Gen et al.
2008; Gen and Cheng 1997; Raidl and Julstrom 2003; Lin
and Gen 2006).

SC chromosome representation

As shown in Fig. 1a, an SC chromosome (represented by a
sequence of genes) denotes a sequence of all operations. In
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the example DFJS problem, there are 9 operations in total;
thus an SC chromosome involves 9 genes. Each gene mod-
els an operation by a 5-tuple vector. See the figure, the first
gene is (2, 2, 3 , 1 , 1) in which the 3rd and 4th elements

Table 1 A DFJS example (a) Job-Cell-Op table, (b) Job-Cell table

U1 U2

d1i M11 M12 d2i M21 M22

(a)

J1

O11 1 6 2 2 – 2

O12 1 4 4 5

O13 2 – 3 4

J2

O21 1 2 3 2 6 7

O22 1 5 2 –

O23 5 3 4 5

J3

O31 1 – 1 2 – 2

O32 4 5 – 2

O33 3 – 1 3

U1 U2

(b)

J1 8.5 10

J2 9.5 13

J3 8.5 6

are used to identify the operation O31 (the 1st operation of
Job J3). Moreover in the vector ( 2 , 2 , 3, 1, 1), the 1st ele-
ment denotes the job-to-cell assignment decision, and the
2nd denotes the operation-to-machine assignment decision.
That is, job J3 is assigned to cell U 2, and operation O31

is assigned to machine M22. Finally, the 5th element in the
vector is a binary variable, in which 1 denotes that the gene
is a dominated gene and 0 denotes that the gene is a non-
dominated one.While applying genetic operators to generate
new chromosomes, only dominated genes can be changed
and non-dominated genes shall keep unchanged.

In summary, SC chromosome representation explicitly
models the three DFJS scheduling decisions: (1) job-to-cell
assignment, (2) operation-sequencing, and (3) operation-to-
machine assignment. As a result, the use of SC chromosomes
results in a 3D chromosome space while developing a GA.

SG chromosome representation

As shown in Fig. 1b, an SG chromosome also denotes a
sequence of all operations (i.e., each gene models an opera-
tion). Therefore, an SG chromosome also involves 9 genes in
the example DFJS problem. Each gene models an operation
by a 2-tuple vector. See the figure, the first gene is (2,3) in
which the 1st element denotes a cell (U 2), and the 2nd element
denotes a job (J3). This implies that job J3 is assigned to cell
U 2. Moreover, the first appearance of job J3 implies that this
gene denotes operation O31 (i.e., the 1st operation of job J3).
Operation O31 and the others can be identified accordingly.

Out of the three DFJS scheduling decisions, SG chromo-
some representation models only two ones: (1) job-to-cell

Fig. 1 a SC chromosome
representation, b SG
chromosome representation, and
c SJOB chromosome
representation
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Fig. 2 The decoding method for converting a SJOB chromosome into a 3D scheduling solution

assignment and (2) operation-sequencing.And the operation-
to-machine assignment decision is obtained by a heuristic
rule (De Giovanni and Pezzella 2010). As a result, the use of
SG chromosomes results in a 2D chromosome space while
developing a GA.

SJOB chromosome representation

As shown in Fig. 1c, an SJOB chromosome denotes a
sequence of all jobs (i.e., each gene models a job). Now
an SJOB chromosome involves only 3 genes in the exam-
ple DFJS problem. See the figure, the chromosome (3,2,1)
denotes that a job sequence J3 → J2 → J1. By develop-
ing a decoding method which involves three heuristic rules
(Fig. 2), we can convert an SJOB chromosome into a DFJS
scheduling solution. In the proposed GA_J S algorithm, the
use of SJOB chromosome representation results in a 1D
chromosome space.

In summary, solving a DFJS problem is a 3D solution
space search problem. In developing a GA, the use of SC
results in a 3D chromosome space; the use of SG results in a

2D chromosome space; and the use of SJOB results in a 1D
chromosome space.

Chromosome properties examinations

According to prior research (Gen et al. 2008; Gen and Cheng
1997; Raidl and Julstrom 2003; Lin and Gen 2006), eight
principles (or properties) have been proposed to evaluate an
encoding scheme. In the following, the three chromosome
representations (SC , SG , and SJOB) are examined in terms
of the eight properties, in which m denotes the total num-
ber of all job operations and n denotes the total number of
jobs; therefore m > n substantially because a job has many
operations.

Property 1 (Space): Chromosomes should not require
extravagant amounts of memory. The SC chromosome rep-
resents a solution by 5m integers (m genes and each gene
involves 5 integers). The SG chromosome represents a solu-
tion by 2m integers (m genes and each gene involves 2
integers). The SJOB chromosome represents a solution by n
integers (n genes and each gene involves 1 integer). In terms
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of memory requirement, the proposed SJOB chromosome is
the most concise.

Property 2 (Time): The time complexity of executing evalu-
ation, recombination and mutation on chromosomes should
be small. In terms of chromosome evaluation, SC requires
less computation time than SG ; and SG requires less time
than SJOB . This is due to that SC requires no decod-
ing, while SJOB requires three decoding rules and SG

requires only one decoding rule. Yet, in terms of recombi-
nation and mutation on chromosomes, SJOB requires the
least in computation time because its gene length is the
shortest.

Property 3 (Feasibility): A chromosome corresponds to a
feasible solution. The SC chromosome may yield an infeasi-
ble solution; for example if operation O32 precedes O31. The
SG chromosome may also yield an infeasible solution; for
example, if one job (J3) is assigned to two different cells (U 1

andU 2); that is genes (1, 3) and (2, 3) appear simultaneously.
In contrast, the proposed SJOB chromosome always yields
feasible solutions.

Property 4 (Legality): Any permutation of a chromosome
corresponds to a solution. In SC chromosomes, a permuta-
tion may results in an infeasible solution; while in SG and
SJOB chromosomes, any permutation always results in a
feasible solution.

Property 5 (Completeness):Any solution has a correspond-
ing chromosome. In SC chromosomes, any solution indeed
has a corresponding chromosome. In SG and SJOB chromo-
somes, not all solution has a corresponding chromosome due
to the use of decoding rules. For example, decoding the SG

chromosome in Fig. 1b by a heuristic rule shall yield only
one operation-to-machine assignment decision; yet there are
many other alternatives.

Property 6 (Uniqueness): The mapping from chromosomes
to solution may belong one of the following three cases:

1-to-1 mapping, n-to-1 mapping, and 1-to-n mapping. We
consider the solution space as the set of all the decision port-
folios, each portfolio represents an alternative of the three
scheduling decisions. Then, SC is 1-to-1, SG and SJOB are
both n-to-1.

Property 7 (Heritability): Offspring of simple crossover
(i.e., one-cut point crossover) should correspond to solutions
which combine the basic feature of their parents. The three
chromosomes SC , SG , and SJOB have different degrees of
heritability. SG has the highest degree of heritability by com-
pletely keeping job-to-cell assignment and partially keeping
operation-sequencing, SJOB ranks 2 by partially keeping job
sequence, and SC ranks the last because a simple crossover
will very likely yield an infeasible solution.

Property 8 (Locality): A mutated chromosome should usu-
ally represent a solution similar to that of its parent. SC has
the highest degree of locality due to substantially keeping
operation-to-machine assignment and operation-sequencing;
SG ranks 2 due to substantially keeping operation sequence,
and SJOB ranks the last due to substantially keeping job
sequence.

GA_J S algorithmic framework

The proposed GA_J S algorithmic framework is shown in
Fig. 3. As stated, the chromosome space is 1D and the
solution space is 3D. To justify the “goodness” of a 1D chro-
mosome, we have to develop a 1D-to-3D decoding method
for converting a 1D chromosome into a 3D scheduling solu-
tion. Details of the decoding method shall be presented in
“Decoding of SJOB chromosomes” section.

The GA_J S attempts to find out a best-ever solution
by an evolutionary search process. That is, GA_J S firstly
generates a finite set of chromosomes (called chromosome
population) and iteratively updates the chromosome popula-
tion in order to find a best-ever 3D scheduling solution. The

Fig. 3 The algorithmic
framework of GA_J S

1D Chromosome  Space

1D-to-3D 
Decoding Rules

Shadow 
Chromosomes

Genetic 
Operators

Solution 
Refinement

3D Solution  Space

3D-to-1D
Encoding Rules
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GA_J S is distinguished in proposing a new way of generat-
ing new chromosomes (called shadow chromosomes).

See Fig. 3, the chromosome population in GA_J S is
updated by two ways: (1) genetic operators and (2) shadow
chromosomes. The basic idea of genetic operators is a 1D-to-
1D chromosome generation; that is, a new 1D chromosome
is generated from one or two existing 1D chromosome. The
genetic operators in theGA_J S include crossover andmuta-
tion operators, which are essentially adapted from prior GA
studies.

In contrast, the basic idea of shadow chromosomes is
a 3D-to-1D chromosome generation. That is, given a 3D
scheduling solution, we firstly use a refinement method to
improve the scheduling performance; the outcome is called
the refined 3D solution. Secondly, we use a 3D-to-1D encod-
ing method to generate a new chromosome from the refined
3D solution. Such a newly generated chromosome is called
a shadow chromosome. Notice that shadow chromosomes
are generated by a novel way rather than genetic operators.
Details of the refinement and 3D-to-1D encoding methods
shall be presented in “Refinement and encoding of 3D solu-
tions” section; and the GA_J S procedure is summarized in
“GA_J S algorithm” section.

Decoding of SJOB chromosomes

In the proposed GA_J S, the use of SJOB chromosome
results in a 1D chromosome space; yet a DFJS prob-
lem is concerned with a 3D solution space. We develop
a decoding method to convert an SJOB chromosome
into a DFJS scheduling solution. The 1D-to-3D decoding
method involves three heuristic rules (H1, H2, and H3)
as shown in Fig. 2. Each heuristic rule is respectively
explained below by referring to the example DFJS prob-
lem in Table 1(a) and the example SJOB chromosome
(J3 → J2 → J1) in Fig. 1c. Notation used for explain-
ing GA_J S and the three heuristic rules and are listed
below.

Notation

Ji : job i, i = 1, . . . , n
Oi j : j th operation of job i, j = 1, . . . , ni
Ul : cell l, l = 1, . . . , q
Mlk: kth machine in cell l, k = 1, . . . , Hl

dli : transportation time required tomove job i in and out
cell l

plki j : processing time of operation Oi j on machine Mlk

J: set of all jobs
U: set of all cells
M: set of all machines

Decoding rule H1: job-to-cell assignment

See Fig. 2, given a SJOB chromosome, heuristic rule H1 is
developed to determine the job-to-cell assignment decision.
The idea of rule H1 is to balance the workload of each cell.
The H1 procedure involves two steps with its pseudo codes
listed below followed by an example.

We now use an example to explain theH1 procedure. Step
1 is designed to estimate the average processing time pli for
each job (Ji ) in each cell (Ul) to obtain a Job-Cell table
(Table 1(b)). Each element (pli ) in Table 1(b) is obtained by

the formula: pli = ∑
j pıj l , where pıj l =

∑
k p

lk
i j

Hl
denotes

the average processing time of operation Oi j in cell Ul . See
Table 1(a), p111 = (6 + 2)/2 = 4 indicates that the average
processing time of operation O11 in cellU 1 is 4.Accordingly,
we can obtain p121 = 2.5 and p131 = 2. As a result, p11 =
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Fig. 4 An example of
implementing heuristic rule H1

∑
j p1j1 = (p111 + p121 + p131) = (4 + 2.5 + 2) = 8.5.

Each element
(
pli

)
in Table 1(b) can be accordingly obtained.

Step 2 is designed to assign each job to a particular cell.
Firstly, SJOB is used to determine the sequence of assigning
jobs; for example, the three jobs in Fig. 4 shall be assigned
to cells by following the sequence J3 → J2 → J1. Then, the
Job-Cell table (Table 1(b)) is used to assign each job to a cell
by a try-and-select approach. That is, a job is assigned to each
possible cell, and we shall select the cell whose “expected
makespan” is the minimum one. The “expected makespan”
is the sum of the cell workloads and the job transportation
time. For example, in Fig. 4a, job J3 is tried to be assigned to
cellsU 1 andU 2 which shows that the expected makespan of
U 1 is longer than that ofU 2; as a result, J3 is assigned to cell
U 2. Accordingly, the job assignment result can be obtained
in Fig. 4. Notice that minimizing “expected makespan” in
making job-to-cell assignment decision tends to balance the
workload of each cell.

See Fig. 2, decoding the example SJOB chromosome
(J3 → J2 → J1) by applying heuristic rule H1 results in a
job-to-cell assignment decision, in which {J2} is assigned to
cell U 1 and {J3 → J1} is assigned to cell U 2.

Decoding rule H2: operation-sequencing

See Fig. 2, heuristic rule H2 is used to determine the
operation-sequencing decision for each cell. The idea of rule
H2 is to give higher priority to the job with longer remaining
processing time with its pseudo codes listed below followed
by an example.

We now explain heuristic ruleH2 by referring to Table 2,
in which job J1 and J3 both have been assigned to cellU 2 by
applying ruleH1. In Step 1, we sequence the first operations
(O31 and O11) of all jobs in the cell (U 2) by following the job
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Table 2 An example of implementing heuristic rule H2

sequence J3 → J1 in Fig. 1c. See Table 2(a), the resulting
operation sequence is O31 → O11.

In Step 2, we attempt to sequence the remaining opera-
tions. See Table 2(b), of all remaining operations, now only
the leading operations (O32 and O12) of each job can be
selected as the next one of the present operation sequence
(O31 → O11). This implies that we need to select one
job in the cell; once a job is selected, its leading opera-
tion is selected. For all jobs in the cell, we select the one
whose remaining load is the longest. See Table 2(b), the
remaining load of J3 is 4.0 and that of J1 is 8.0. There-
fore, J1 (its leading operation O12) shall be selected; and
the operation sequence becomes O31 → O11 → O12.
Herein, the remaining load of a job denotes the sum of the
average processing time (APT) of all its remaining opera-
tions. For example, for job J3 in Table 1(a), the APT of
O32 is p2232 = 2 and that of O33 is (p2133 + p2233)/2 =
(1 + 3)/2 = 2; as a result, the remaining load of job J3
is 2+ 2 = 4. Accordingly, we can obtain that the remaining
load of job J1 is 8.0. See Table 2(e), repeatedly following the
above step, we can obtain the ultimate operation sequence
O31 → O11 → O12 → O32 → O13 → O33.

The idea of rule H2 is intended to give higher dispatch-
ing priorities to those jobs which have longer remaining
processing times. The reason is that jobs with longer remain-
ing processing times tend to be completed later. To reduce
total completion time, operations of these jobs are thus given
higher priorities while allocating machine capacity to oper-
ations.

See Fig. 2, decoding the example SJOB chromosome
(J3 → J2 → J1)by successively applying heuristic rulesH1

andH2 results in the following outcomes. Jobs {J3 → J1} is
assigned to cell U 2, and the operation-sequencing decision
in cell U 2 is O31 → O11 → O12 → O32 → O13 → O33.

Decoding rule H3: operation-to-machine assignment

Heuristic rule H3 is used to make the operation-to-machine
assignment decision for each cell. The idea of rule H3 is to
balance the workload of eachmachine by adopting a try-and-
select approach. That is, we try to assign an operation (Oi j )

to each possible machine in the cell; and the machine which
has the lowest cumulative load is selected. The cumulative
load of a machine is the total processing times of all assigned
operations and the presently tried operation Oi j . Based on the
idea, the pseudo code of H3 is presented below followed by
an example.

We now explain procedureH3 by the example DFJS prob-
lem shown in Table 1(a). By applying rules H1 and H2, job
J1 and J3 now have been assigned to cellU 2; and the opera-
tion sequence in cell U 2 is O31 → O11 → O12 → O32 →
O13 → O33. Detail steps of applying rule H3 to assign the
six operations in cell U 2 are shown in Table 3.
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Table 3 An example of implementing heuristic rule H3

M21 M22 Job assignment

p21i j C_Load p22i j C_Load

Initial 0 0

O31

Try and Select – – 2 2 M22

Update C_Load 0 2

O11

Try and Select – – 2 4 M22

Update C_Load 0 4

O12

Try and Select 4 4 5 9 M21

Update C_Load 4 4

O32

Try and Select – – 2 6 M22

Update C_Load 4 6

O13

Try and Select 3 7 4 10 M21

Update C_Load 7 6

O33

Try and Select 1 8 3 9 M21

Update C_Load 8 6

In Table 3, the operation sequence (O31 → O11 →
O12 → O32 → O13 → O33) forms the first column. The
1st row indicates that the cumulative loads (C_Load) for the
two machines are initially both 0. The 2nd row indicates that
operation O31 is assigned to machine M22 because machine
M21 cannot process O31. The 3rd row updates theC_Load of
each machine after assigning O31 to M22. The 4th row indi-
cates that operation O11 is assigned to machine M22 because
machine M21 cannot process O11. The 5th row updates the
C_Load of each machine after assigning O11 to M22. The
6th row indicates that operation O12 is assigned to machine
M12 due to having lower C_Load. Repeatedly applying the
above procedure, each row in Table 3 can be obtained. Notice
that in the procedure a random selection method is used for
resolving the tie-breaking issue. The resulting operation-to-
machine assignment decision is shown in the last column of
the table.

See Fig. 2, by successively applying heuristic rules H1,
H2, and H3 to decode the example SJOB chromosome
(J3 → J2 → J1). Its three DFJS scheduling decisions
(job-to-cell assignment, operation-to-machine assignment,
and operation-sequencing) can be revealed. Based on three
DFJS scheduling decisions, we can generate its Gantt chart
(i.e., the exact scheduling solution) as shown in Fig. 5a.

Fig. 5 Gantt chart of SJOB chromosome a before applying refinement method b after applying refinement method
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Fig. 6 Define the sequence of operation swapping in the refinement method

The ideas underlying the above three heuristic rules are
summarized below. Rule H1 attempts to balance the work-
load of each cell. Rule H3 attempts to balance the workload
of each machine. Rule H2 attempts to give higher priority
to the operations which tend to have a higher impact on the
overall completion time.

Refinement and encoding of 3D solutions

This section presents the cell refinement method and 3D-to-
1D encoding method shown in Fig. 3. Given a 3D scheduling
solution as input, the cell refinement method is used to gen-
erate a refined 3D solution for obtaining better scheduling
performance. In turn, the 3D refined solution is encoded to
obtain a new chromosome (i.e., shadow chromosome). The
pseudo code for each of the two methods is presented below
and followed by examples.

Cell refinement method

Adapted from De Giovanni and Pezzella (2010), the cell
refinement method is designed to improve the scheduling
performance of the critical cell by changing the operation-
sequencing as well as the operation-to-machine assignment
in the cell. Notice that the critical cell is the cell with max-
imum makespan; for example, cell U 2 is the critical cell in
Fig. 5a.
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Notice that the Gantt chart of cell U 2 is implicitly deter-
mined by the operation sequence within the cell. See Fig. 2,
the application of rule H2 yields the operation sequence
within cell U 2(O31 → O11 → O12 → O32 → O13 →
O33); in turn, the application of ruleH3 yields the operation-
to-machine assignment decision. These two decisions result
in the Gantt chart of Fig. 5a. That is, changing the operation
sequence within the cell shall change the Gantt chart (i.e.,
scheduling performance).

The refinement method is designed to exhaustively swap
any two operations on the operation sequence (O31 →
O11 → O12 → O32 → O13 → O33) within critical cell
U 2 in order to obtain better scheduling performance. To
avoid infeasible swapping, we model the operation sequence
by replacing each operation by its associated job. Accord-
ingly, operation sequence O31 → O11 → O12 → O32 →
O13 → O33 is represented by J3 → J1 → J1 →
J3 → J1 → J3. Notice that each job appears several
times in the sequence, in which the nth appearance of a
job denotes its nth operation. Now, assume the first two
operations are swapped; this yields a new sequence J1 →
J3 → J1 → J3 → J1 → J3 which can be inter-
preted as O11 → O31 → O12 → O32 → O13 →
O33.

With sequence representation O31 → O11 → O12 →
O32 → O13 → O33, the swapping of O31 and O32 is infeasi-
ble and shall be prohibited. Yet, with sequence representation
J3 → J1 → J1 → J3 → J1 → J3, the swapping ofO31 and
O32 shall be interpreted as the swapping of J3 and J3, which
is an unchanged swapping (i.e., not meaningful swapping)
and needs not to be carried out.

The operation swapping is carried out in an exhaus-
tive and dynamic-updating manner. Consider the operation
sequence J3 → J1 → J1 → J3 → J1 → J3
which is a 6-element array (i.e., the value of each ele-
ment denotes an operation). A swap denotes a pair of two
elements. An exhaustive swapping theoretically involves
C(6,2) = 15 swaps in total. See Fig. 6, each of these
15 swaps is indexed in a predefined sequence and car-
ried out accordingly. In performing these swaps, if a
swap is not meaningful, we just skip it. While a swap
is meaningful, we compute the resulting makespan. If the
makespan improves, the swap is regarded as “dominant”;
and the operation sequence must be updated; then the
remaining swaps are carried out on the updated operation
sequence.

Example input and output of the refinement methods are
illustrated below. See Fig. 5a, the input is an operation
sequence J3 → J1 → J1 → J3 → J1 → J3 whose result-
ing makespan is 14. See Fig. 5b, after exhaustively carrying
out the 15 swaps, we find that the output of the refinement
method yields an operation sequence J1 → J3 → J1 →
J3 → J1 → J3 whose resulting makespan is 12.

Noticeably, after carrying out the refinement method, the
makespan of the critical cell may be reduced. As a result,
another cell may turn out to be the new critical cell. Then,
the refinement method must be accordingly performed on
the new critical cell. This refinement procedure is iteratively
carried out until the ultimate critical cell is determined and
its minimum makespan is obtained.

Encoding method for generating shadow chromosomes

The 3D-to-1D encoding method attempts to convert a 3D
scheduling solution obtained by the aforementioned refine-
mentmethod into a 1D chromosome (called shadow chromo-
some). The pseudo code of the 3D-to-1D encoding method
is listed below and followed by an example.

We now use an example to explain the 3D-to-1D encoding
method by considering the 3D scheduling solution in Fig. 5b,
which is the output of the refinement method. Its operation
sequence within cell U 2 is O11 → O31 → O12 → O32 →
O13 → O33; and its operation sequence within cell U 1 is
O21 → O22 → O23.
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Firstly, we form an “aggregated” operation sequence
by placing the operation sequence of the critical cell
(U 2) in the first block and successively place the oper-
ation sequences of the other cells (U 1) in the remain-
ing blocks. This yields an aggregated operation sequence
O11 → O31 → O12 → O32 → O13 → O33 →
O21 → O22 → O23 . Secondly, we keep only the first oper-

ation of each job and yield a concise sequence O11 → O31

→ O21 ; in turn each operation is replaced by its associated
job. As a result, this yields a job sequence J1 → J3 → J2
which is called a shadow chromosome.

The reason why we generate shadow chromosomes in
such a way is explained below. Remind that the shadow
chromosome J1 → J3 → J2 indirectly derives from the
chromosome J3 → J2 → J1 in Fig. 1c by the following
steps. Firstly, the chromosome J3 → J2 → J1 is decoded
and yields a 3D scheduling solution in Fig. 2, whose job-
to-cell assignment decisions are U 1 ← {J2} and U 2 ←
{J3, J1}. Secondly, given the job-to-cell assignment decision,
the refinement method attempts to improve the schedul-
ing performance by changing the operation-sequencing and
the operation-to-machine assignment decisions. Namely, the
refinement method is designed to obtain a near-optimum
schedule for the job-to-cell assignment decision.

Now to further improve the scheduling performance, we
need to change the job-to-cell assignment decision. And the
wayof generating a shadowchromosome (J1 → J3 → J2) is
for providing a new job-to-cell assignment decision. Apply-
ing heuristic rule H1 to decode the shadow chromosome
(J1 → J3 → J2), we tend to place {J1, J3} which are
originally in the critical cell U 2 to different cells. That is,
following the job sequence J1 → J3 → J2, job J1 tends
to be the first allocated job of one cell; and job J3 tends
to be the first allocated job of another cell. This implies
that we attempt to “break” the critical cell and generate a
new job-to-cell assignment decision; as a result, we may
come out a new critical cell with better scheduling perfor-
mance.

Herein we explain why such a new chromosome is named
as a shadow chromosome. The term “shadow” is adopted
from the “shadow cabinet” in British political system. As
known, a shadow cabinet intends to criticize the policies of
the government and offer alternative policies. Likewise, the
shadow chromosome is designed to offer an alternative job-
to-cell allocation policy by “breaking” the critical cell.

GA_J S algorithm

In this section, we present the procedure of the proposed
algorithmGA_J S, in which N , ρc, ρm, kb, φ f , and φmax are
given parameters and a job in a chromosome is called a gene.

The crossover operator, designed to generate two new
chromosomes from two existing chromosomes (i.e. parent
chromosomes), is a one-point crossover (Gen and Cheng
1997).As shown inFig. 7a, it randomlydivides the twoparent
chromosomes (A, B) into two substrings (A1, A2, B1, B2)
and two new chromosomes are generated by two steps. Con-
sider parent chromosome A as an example. In step 1, the

Fig. 7 a Crossover operator, b mutation operator
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first substring (A1) is maintained (J2 → J3 → J1). In step
2, the gene value sequence (J4 → J5) in the second sub-
string (A2) is modified into a new sequence (J5 → J4),
which is obtained by following the gene value sequence
(J5 → J4 → J3 → J1 → J2) of the other parent
chromosome (B). As a result, a new chromosome A′ (i.e.,
J2 → J3 → J1 → J5 → J4) is generated. Accordingly, the
other new chromosome B ′ can be generated by the crossover
operation.

The mutation operator is designed to generate one new
chromosome from one existing chromosome (i.e. parent
chromosome). It randomly chooses two genes and exchanges
their gene values. As shown in Fig. 7b, two genes are ran-
domly selected from the parent chromosome (J2 → J3 →
J1 → J4 → J5) and their gene values are exchanged to

generate a new chromosome (J2 → J4 → J1 → J3 →
J5).

Numerical experiments

This section compares the empirical performance of the pro-
posed algorithm GA_J S against IGA which is proposed by
De Giovanni and Pezzella (2010). Notice that the comple-
tion time of all jobs (called makepan) in the DFJS problems
is taken as the performance measure.

Experiment design

Tomake a compatible comparison,we repeat the 2-cell, 3-cell
and 4-cell experiments reported in De Giovanni and Pezzella
(2010). Each of these three experiments includes 23 DFJS
instances; 15 replicates are carried out for eachDFJS instance
in the GA_J S. Genetic parameters of GA_J S are set the
same as that of IGA in each experiment (Table 4).

Algorithm GA_J S is implemented in C++ and run
on a personal computer equipped with a 3.0 GHz AMD
Athlon(tm) II*4640 processor and 4GB RAM. In contrast,
IGA is implemented in C++ and run on a personal com-
puter equipped with 2.0 GHz Intel Core2 processor and 2
GB RAM.

Table 4 Genetic parameters

Type DFJS 2-cell DFJS 3(4)-cell

N 50 50

ρc 0.9 0.9

ρm 0.9 0.9

kb 3 3

φ f 225 188

φmax 300 250

The three experiment results are shown in Table 5. Each
column in the table is explained below. See Table 5, the first
three columns respectively give (1) the name of instance, (2)
the number of jobs, and (3) the number of operations per job.
The 4th column LB reports a lower bound proposed by De
Giovanni and Pezzella (2010). The formula for determining
the LB is as shown below.

LB = max
i∈J

⎧
⎨

⎩
min
l∈U

⎧
⎨

⎩

ni∑

j=1

min
k∈M

{
plki j

}
+ dli

⎫
⎬

⎭

⎫
⎬

⎭

The 5th column MK denotes the best makespan of all repli-
cates in an instance. The 6th column Av. denotes the average
makespan of all replicates in an instance. The 7th column
T (s) denotes the average computation time in seconds. The
8th column Gap% = MK−LB

LB reports the gap between MK
and LB, and the remaining columns in the table are defined
accordingly.

Performance comparison

We first compare GA_J S against IGA in terms of Gap%.
See Table 5, GA_J S outperforms IGA in each of the three
experiments. In 2-cell experiment, theGap%of ofGA_J S is
10.1% better than that of IGA (12.4%). In 3-cell experiment,
theGap%ofGA_J S is 0.9% better than that of IGA (2.0%).
In 4-cell experiment, the Gap% of GA_J S is 0.0% better
than that of IGA (0.2%).

We then compareGA_J S against IGA in terms of average
solution quality (Av.). To statistically justify the performance
difference, we useWilcoxon signed rank test. In 2-cell exper-
iment, GA_J S outperforms IGA with p-value = 0.002 <

0.05. In 3-cell experiment, GA_J S outperforms IGA with
p-value = 0.018 < 0.05. In 4-cell experiment, the differ-
ence between GA_J S and IGA is not statistically significant
with p-value = 0.091 > 0.05.

We further compare GA_J S against IGA in terms of
computation time. Such a comparison is for reference only
because these two algorithms as stated above are run on
different computers. See Table 5, GA_J S requires less com-
putation time than IGA in each of the three experiments. In
2-cell experiment, the average computation time of GA_J S
is 38.4 s, faster than that of IGA (79.6 s). In 3-cell exper-
iment, the average computation time of GA_J S is 15.1 s,
faster than that of IGA (27.9 s). In 4-cell experiment, the aver-
age computation time of GA_J S is 9.9 s, faster than that of
IGA (16.2 s).

Analysis of experiment results

According to experiment results, GA_J S appears to out-
perform IGA. Yet, their performance differences become
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smaller when we increase the number of cells. In 2-cell
experiment, the difference of Gap% is 2.3% = 12.4%–
10.1%. In 3-cell experiment, the difference of Gap% is
1.1% = 2.0%–0.9%. In 4-cell experiment, the difference
of Gap% is 0.2% = 0.2%–0.0%.

The reason why the performance differences between
GA_J S and IGA monotonically decrease against the num-
ber of cells is explained below. As stated, we have 23 DFJS
instances in the experiments. In eachDFJS instance, the num-
ber of jobs and the number of operations are always kept
the same, even in different cell environment. This implies
that the cell loading becomes lower while we increase the
number of cells. That is, in 4-cell environment, the capacity
supply may become much higher than the capacity demand.
As a result, GA_J S can find out the lower bound (LB) solu-
tion in 23 instances; and IGA can find out LB solutions in 22
instances. Therefore, the reported comparison in 3-cell/4-cell
is concerned with light-loading cases. To make a compari-
son in high-loading cases for 3-cell/4-cell environments, we
need to increase the number of jobs and operations. However,
the high-loading experiment results of IGA for 3-cell/4-cell
environments are not reported in literature and cannot be
compared.

Concluding remarks

This paper proposes a genetic algorithm GA_J S for solving
distributed and flexible job-shop scheduling (DFJS) prob-
lems. A DFJS problem involves three scheduling decisions:
(1) job-to-cell assignment, (2) operation-sequencing, and (3)
operation-to-machine assignment. Therefore, solving aDFJS
problem is essentially a 3D solution space search problem,
in which each dimension represents a type of decision.

The GA_JS algorithm is developed by proposing a new
and concise chromosome representation SJOB , which mod-
els a 3D scheduling solution by a 1-dimensional scheme (i.e.,
a sequence of all jobs to be scheduled). That is, the chromo-
some space is 1D and the solution space is 3D. InGA_J S, we
develop a 1D-to-3D decoding method to convert a 1D chro-
mosome into a 3D solution. In addition, given a 3D solution,
we use a refinement method to improve the scheduling per-
formance and subsequently develop a 3D-to-1D encoding
method to convert the refined 3D solution into a 1D chromo-
some.

The 1D-to-3D decoding method is designed to obtain
a “good” 3D solution which tends to be load-balanced in
terms of job-to-cell assignment and operation-to-machine
assignment decisions. The refinement method is designed to
find a near-optimum schedule for a given job-to-cell assign-
ment decision. In contrast, the 3D-to-1D encoding method
is deigned to change the job-to-cell assignment decision by

“breaking” the critical cell for generating a new chromosome
(called shadow chromosomes).

Numerical experiments reveal that GA_J S outperforms
IGA (the up-to-date best-performing genetic algorithm in
solving DFJS problems) in 2-cell and 3-cell environments.
However,GA_J S and IGA appear to perform equally well in
4-cell environment. This is due to that the 4-cell experiments
reported in prior studies are concerned with light-loading
cases.

In future research, we attempt to develop a brand-new
chromosome representation or extend the SJOB representa-
tion to solve a DFJS problem which includes the decision
of when to carry out preventive maintenance (PM). Such a
scheduling problem is in essence a 4-dimensional solution
space search problem. How to model the PM decision as
well as the three DFJS scheduling decisions makes room for
further study.
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Bożejko, W., Uchroński, M., & Wodecki, M. (2010). Parallel hybrid
metaheuristics for the flexible job shop problem. Computers &
Industrial Engineering, 59, 323–333.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop
by tabu search. Annals of Operations Research, 41, 157–183.

Bruker, P., & Schlie, R. (1990). Job-shop schedulingwithmulti-purpose
machines. Computing, 45, 369–375.

Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2005). An adaptive
genetic algorithmwith dominated genes for distributed scheduling
problems. Expert Systems with Applications, 29, 364–371.

Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of
genetic algorithmswith dominant genes in a distributed scheduling
problem in flexible manufacturing systems. International Journal
of Production Research, 44(3), 523–543.

Choi, I. C., & Choi, D. S. (2002). A local search algorithm for
jobshop scheduling problems with alternative operations and
sequence-dependent setups.Computers & Industrial Engineering,
42, 43–58.

Chou, Y. C., & Cheng, H. H. (2010). An autonomic mobile agent-
based system for distributed job shop scheduling. IEEE/ASME
international conference on mechatronics and embedded systems
and applications (pp. 113–118).

Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach for mod-
eling and solving the general multiprocessor job-shop scheduling
problem using tabu search. Annals of Operations Research, 70,
281–306.

De Giovanni, L., & Pezzella, F. (2010). An improved genetic algorithm
for the distributed and flexible job-shop scheduling problem.Euro-
pean Journal of Operational Research, 200, 395–408.

Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic and variable
neighborhood descent algorithm for flexible job shop scheduling
problems. Computers & Operations Research, 35, 2892–2907.

123



34 J Intell Manuf (2018) 29:19–34

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity
of flowshop and jobshop scheduling. Mathematics of Operations
Research, 1(2), 117–129.

Gen, M., & Cheng, R. (1997). Genetic algorithms and engineering
design. New York: Wiley.

Gen, M., Cheng, R., & Lin, L. (2008). Network models and opti-
mization: Multiobjective genetic algorithm approach. London:
Springer.

González, M. A., Vela, C. R., &Varela, R. (2013). An efficient memetic
algorithm for the flexible job shop with setup times. In: Proceed-
ings of the 23th international conference on automated planning
and scheduling (pp. 91–99).

Gutiérrez, C., & García-Magariño, I. (2011). Modular design of a
hybrid genetic algorithm for a flexible job-shop scheduling prob-
lem. Knowledge-Based Systems, 24, 102–112.

Hmida, A. B., Haouari, M., Huguet, M. J., & Lopez, P. (2010). Dis-
crepancy search for the flexible job shop scheduling problem.
Computers & Operations Research, 37, 2192–2201.

Ho,N.B.,&Tay, J. C. (2004). GENACE:An efficient cultural algorithm
for solving the flexible job-shop problem.Proceedings of the IEEE
congress on evolutionary computation (pp. 1759–1766).

Hurink, J., Jurisch, B., &Thole,M. (1994). Tabu search for the job-shop
scheduling problem with multi-purpose machines. OR Spektrum,
15, 205–215.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., &Zhang, Y. F. (2003). Amodified
genetic algorithm for distributed scheduling problems. Journal of
Intelligent Manufacturing, 14, 351–362.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2007). Integra-
tion of genetic algorithm andGantt chart for job shop scheduling in
distributed manufacturing systems. Computer & Industrial Engi-
neering, 53, 313–320.

Jia, S., & Hu, Z. H. (2014). Path-relinking tabu search for the multi-
objective flexible job shop scheduling problem. Computers &
Operations Research, 47, 11–26.

Jinyan, M., Chai, S. Y., & Youyi, W. (1995). FMS jobshop scheduling
using lagrangian relaxation method. Proceedings of IEEE interna-
tional conference on robotics and automation (pp. 490–495).

Kacem, I., Hammadi, S., & Borne, P. (2002a). Approach by localization
and multiobjective evolutionary optimization for flexible job-shop
scheduling problems. IEEE Transactions on Systems, Man and
Cybernetics, Part C: Applications and Reviews, 32(1), 1–13.

Kacem, I., Hammadi, S., & Borne, P. (2002b). Pareto-optimality
approach for flexible job-shop scheduling problems: Hybridiza-
tion of evolutionary algorithms and fuzzy logic.Mathematics and
Computers in Simulation, 60, 245–276.

Kim, K.-H., & Egbelu, P. J. (1999). Scheduling in a production environ-
ment with multiple process plans per job. International Journal of
Production Research, 37(12), 2725–2753.

Lin, L., & Gen, M. (2006). Node-based genetic algorithm for commu-
nication spanning tree problem. IEICE Transactions on Commu-
nications, E89–B(4), 1091–1098.

Mastrolilli, M., &Gambardella, L.M. (2000). Effective neighbourhood
functions for the flexible job shop problem. Journal of Scheduling,
3, 3–20.

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algo-
rithm for the flexible job-shop scheduling problem. Computers &
Operations Research, 35, 3202–3212.

Raidl, G. R., & Julstrom, B.A. (2003). Edge sets: an effective evolution-
ary coding of spanning trees. IEEE Transactions on Evolutionary
Computation, 7(3), 225–239.

Tay, J. C., & Wibowo, D. (2004). An effective chromosome repre-
sentation for evolving flexible job shop schedules. Genetic and
Evolutionary Computation, 3103, 210–221.

Tung, L. F., Lin, L., & Nagi, R. (1999). Multi-objective scheduling
for the hierarchical control of flexible manufacturing systems. The
International Journal of FlexibleManufacturing Systems,11, 379–
409.

Xia,W.,&Wu,Z. (2005).An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems.Computers
& Industrial Engineering, 48, 409–425.

Xing, L. N., Chen, Y. W., Wang, P., Zhao, Q. S., & Xiong, J. (2010).
A knowledge-based ant colony optimization for flexible job shop
scheduling problems. Applied Soft Computing, 10, 888–896.

Yuan, Y., &Xu, H. (2013). An integrated search heuristic for large-scale
flexible job shop scheduling problems. Computers & Operations
Research, 40, 2864–2877.

Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm
for the flexible job-shop scheduling problem. Expert Systems with
Applications, 38, 3563–3573.

Zhang, Y. X., Li, L., Wang, H., Zhao, Y. Y., Guo, X., & Meng, C. H.
(2008). Approach to the distributed job shop scheduling based on
multi-agent. In Proceedings of the IEEE international conference
on automation and logistics (pp. 2031–2034).

Ziaee, M. (2014). A heuristic algorithm for the distributed and flexible
job-shop scheduling problem. J Supercomput, 67, 69–83.

123


	A genetic algorithm embedded with a concise chromosome representation for distributed and flexible job-shop scheduling problems
	Abstract
	Introduction
	Comparison of chromosome representations
	SC chromosome representation
	SG chromosome representation
	SJOB chromosome representation
	Chromosome properties examinations

	GA_JS algorithmic framework
	Decoding of SJOB chromosomes
	Decoding rule H1: job-to-cell assignment
	Decoding rule H2: operation-sequencing
	Decoding rule H3: operation-to-machine assignment

	Refinement and encoding of 3D solutions
	Cell refinement method
	Encoding method for generating shadow chromosomes

	GA_JS algorithm
	Numerical experiments
	Experiment design
	Performance comparison
	Analysis of experiment results

	Concluding remarks
	Acknowledgements
	References




