
J Intell Manuf (2017) 28:1961–1972
DOI 10.1007/s10845-015-1082-0

A hybrid discrete particle swarm optimization for dual-resource
constrained job shop scheduling with resource flexibility

Jing Zhang1 · Wanliang Wang2 · Xinli Xu2

Received: 13 August 2014 / Accepted: 16 April 2015 / Published online: 29 April 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, a novel hybrid discrete particle
swarm optimization algorithm is proposed to solve the dual-
resource constrained job shop scheduling problem with
resource flexibility. Particles are represented based on a
three-dimension chromosome coding scheme of operation
sequence and resources allocation. Firstly, a mixed popu-
lation initialization method is used for the particles. Then a
discrete particle swarmoptimization is designed as the global
search process by taking the dual-resources feature into
account. Moreover, an improved simulated annealing with
variable neighborhoods structure is introduced to improve
the local searching ability for the proposed algorithm.Finally,
experimental results are given to show the effectiveness of
the proposed algorithm.

Keywords Particle swarm optimization ·
Simulated annealing · Dual-resource constraint · Resource
flexibility

Introduction

Job shop scheduling problem (JSSP) is a well-known com-
binational optimization problem which has found a lot of

B Jing Zhang
bay_229@163.com

Wanliang Wang
wangwanliang@zjut.edu.cn

1 Department of Computer and Information Technology,
Zhejiang Police College,
Hangzhou, People’s Republic of China

2 College of Computer Science and Technology, Zhejiang
University of Technology,
Hangzhou, People’s Republic of China

applications in realmanufacturing industry. In classical JSSP,
it is assumed that jobs are processed on pre-given machines
and that the constraints of worker resources are neglected.
Such assumptions reduced the problem complexity and fruit-
ful research results were obtained, see (Qiu and Lau 2014;
González et al. 2013; Adibi and Shahrabi 2014) for example
and references therein. However, worker resources need tak-
ing into consideration since the labor cost is becoming much
higher in manufactory fields nowadays. On the other hand,
an operation can always be processed on various machines
and with various workers, which means the resources are
flexible (Nie et al. 2013; Pérez and Raupp 2014). The main
advantage of resource flexibility is the increasing flexibility
of the whole scheduling process, which is potential to save
production time or cost. Thus amore general case which con-
siders dual-resources constrained (DRC) JSSP with resource
flexibility has been attracting increasing attention (Xu et al.
2011) and was presented in Gargeya and Deane (1996). In
what follows, DRC JSSP with resource flexibility is called
DRC-FJSSP for short.

The task of DRC-FJSSP is to determine both the oper-
ation sequence and the resources allocation by optimize
certain objectives with constraints. Clearly, DRC-FJSSP is
NP-hard and much more involved than classical JSSP. One
commonly used way is first to obtain the operation sequence
by intelligent algorithms such as Genetic algorithm (GA)
(ElMaraghy et al. 1999, 2000) and ant colony algorithms
(Li et al. 2011a, b), and then to allocate the machine and
worker resources via dispatching rules. The dispatching rules
include Earliest Finish Time, Shortest Process Time and so
on. It is easy for these methods to find a local optimal solu-
tion and cost less computational time. However, the global
optimal solution is difficult to find in this way. One effective
way to overcome this drawback is to determine the oper-
ation sequence and resources allocation simultaneously via

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-015-1082-0&domain=pdf

1962 J Intell Manuf (2017) 28:1961–1972

hybrid intelligent algorithms. In Li et al. (2010), an improved
inherited GA with ant colony algorithms was presented to
solve DRC-FJSSP. A four-dimensional chromosome coding
scheme was used, and the resource crossover and muta-
tion operator were designed to improve the global searching
ability. In Lei and Guo (2014), an improved variable neigh-
borhood search was proposed to for the DRC-FJSSP. This
method has the ability of exploring different neighborhoods
of the current solution and thus is easy for implementation.
However, the obtained solutions may contain infeasible ones
in these methods.

Since searching mechanism is important in finding global
solutions of optimization problems, particle swarmoptimiza-
tion (PSO) algorithm is considered in this paper due to its
good feature on it. In PSO, particle can learn from the global
best and the personal best and thus the global and local
searching ability are balanced.

PSO was first proposed in Kennedy and Eberhart (1995)
for continuous optimization problems and the main advan-
tage is fewer control parameters in the continuous space
(Katherasan et al. 2014; Coello et al. 2004). However, PSO is
considerably limited to the combinatorial optimization prob-
lems because the updating process of particle position was
carried out in continuous domain. Thus PSO need modifying
to solve combinatorial optimization problems. For example,
PSO had been applied to the flow-shop scheduling problem
(VijayChakaravarthy et al. 2013;AitZai et al. 2014), the JSSP
(Zhang and Wu 2010; Lin et al. 2010), and the resource con-
straint project scheduling (Zhang et al. 2006), but there are
few results applying PSO to solve DRC-FJSSP. Hence solv-
ing DRC-FJSSP with Hybrid PSO is an interesting problem
to be investigated and has not been studied to be the best of
the authors’ knowledge.

In this paper, a hybrid discrete PSO (HDPSO) is presented
to solve the DRC-FJSSP with minimizing makespan being
the objective function. A three-dimension chromosome cod-
ing scheme is used for the particles, which are the operation
sequence, machine and worker allocation, respectively. The
particles are initialized in a mixed way. Then a discrete PSO
(DPSO) is designed as the global search process, in which
the position updating equations are modified to avoid infea-
sible solutions. Moreover, an improved simulated annealing
(ISA) with variable neighborhoods structure is introduced to
improve the local searching ability for the proposed algo-
rithm. Finally, experimental results show that the proposed
algorithm is feasible and effective.

The remainder of this paper is organized as follows. “Prob-
lem description” section formally defines the scheduling
model and presents amathematical formulation. TheHDPSO
algorithm is presented in “HDPSO for DRC-FJSSP” sec-
tion. In “Experiment results” section, experimental results
are given and discussed. Conclusions are made together with
future research direction in “Conclusions” section.

Problem description

Notations

p Job index
q Operation index
h Machine index
g Worker index
Opq qth operation of job p
J Set of jobs
M Set of machines
W Set of workers
Mpq Set of candidate machines for Opq

Wh Set of candidate workers for machine h

Parameters

n Total number of jobs
m Total number of machines
b Total number of workers
n p Total operation number of job p
tpqh Processing time of operation Opq on machine

h
U A large number

Decision variables

Spq Starting time of operation Opq

Khg Starting time of machine h processed by
worker g

Cpq Completing time of operation Opq

Cp Completing time of job p
Cmax Maximum completing time of all jobs

σpqh =
{
1, if machine h is selected for the operation Opq

0, otherwise

εhg =
{
1, if worker g is selected for themachine h
0, otherwise

χhg−h′g =
⎧⎨
⎩
1, if worker g is performed onmachine h

before h′
0, otherwise

ςpqh−p′q′h =
⎧⎨
⎩
1, if Opq is performed onmachine h

before Op′q ′
0, otherwise

Problem formulation

Before formulating theDRC-FJSSP, assumptionsA1–A4 are
made as follows.

A1 All jobs, machines and workers are available at time
zero.

123

J Intell Manuf (2017) 28:1961–1972 1963

A2 Each machine can process only one operation at one
time.

A3 Everyworker can operate only onemachine at one time.
A4 Preemption is not allowed, i.e., any operation cannot be

interrupted until its completion once it is started.

Under the assumptions and notations, the mathematical
model for the problem is defined as follows:

F = minCmax = min

{
n

max
p=1

{Cp}
}

; (1)

s.t.

Sp(q+1) ≥ Spq + tpqhσpqhεhg, p ∈ J ; h ∈ Mpq;
g ∈ Wh; q = 1, 2, . . . , n p − 1; (2)

Sp′q ′ + (1 − ςpqh−p′q′h)U ≥ Spq + tpqh, p,

p′ ∈ J ; h ∈ Mpq; q, q ′ = 1, 2, . . . , n p; (3)

Kh′g + (1 − χhg−h′g)U ≥ Khg, h, h′ ∈ Mpq; g ∈ Wh; (4)

Khg + (1 − σpqh)(1 − εhg)U ≤ Spq,

p ∈ J ; h ∈ Mpq; g ∈ Wh; q = 1, 2, . . . , n p; (5)

Sp(q+1) + (1 − ςp(q+1)h−p′q ′h)U ≥ Cpq, p,

p′ ∈ J ; h ∈ Mpq; q, q ′ = 1, 2, . . . , n p − 1; (6)
Mpq∑
h=1

σpqh = 1, p ∈ J ; q = 1, 2, . . . n p; (7)

Wh∑
g=1

εhg = 1, h = 1, 2, . . .m; (8)

Cp ≤ Cmax, p ∈ J ; (9)

Spq, tpqh ≥ 0, p ∈ J ; q = 1, 2, . . . n p;
h = 1, 2, . . . ,m; (10)

σpqh, ςpqh−p′q′h ∈ {0, 1}, p, p′ ∈ J ; h ∈ Mpq;
q, q ′ = 1, 2, . . . , n p; (11)

εhg, χhg−h′g ∈ {0, 1}, h, h′ ∈ Mpq; g ∈ Wh; (12)

where the objective function F is the minimization of the
maximal makespan. Constraint (2) ensures that the prece-
dence relationships between the operations of a job are not
violated. Constraint (3) implies that each machine cannot
process more than one operation at the same time. Constraint
(4) implies that each worker cannot process more than one
machine in the same time. Constraint (5) makes sure that
each operation can be started after the worker selected for
the processing machine is available. Constraint (6) makes
sure that each operation can be started after the previous is
completed. Constraint (7) makes sure that each operation is
assigned to only one machine from its candidate machines
set. Constraint (8) makes sure that each machine is assigned
to only one worker from its candidate workers set. Constraint

(9) implies the maximum completion time. Constraint (10)
implies the start time and the processing time of each oper-
ation. Constraints (11) and (12) state the range of decision
variables.

HDPSO for DRC-FJSSP

The HDPSO algorithm is presented in this section. A cod-
ing scheme and a mixed population initialization way are
given first. Then aDPSO is presented for global searchwhich
updates particles in discrete domain directly. Finally, an ISA
with variable neighborhood is introduced to improve the local
search ability.

Coding scheme

The solution of DRC-FJSSP is a combination of operation
sequences and resources allocation. Inspired by the chro-
mosome coding scheme of GA (Lei 2010), we integrate
the operation sequence vector and the resources allocation
vectors as the particle coding scheme of HDPSO. Thus
each particle has three vectors denoted by (OS, MA, WA),
where OS represents the operation sequence, MA and WA
represents the machine allocation and worker allocation,
respectively. The length of each vector is L = ∑n

p=1 n p.
For OS, the number p, p = 1, 2, . . . , n, appears n p times

and the qth appearance of p means the operation Opq. Thus
an element in OS stands for an operation. An element in MA
and WA refers to the index of the machine and the worker,
respectively. Obviously, they are subject to constraints (7)
and (8), respectively. The three vectors compose a matrix
and each column of the matrix stands for job in which a
worker makes an operation in a machine and the correspond-
ing costing time is tpqh. Take Tables 1 and 2 for example, in
which n = 3,m = 4, b = 3, n1 = 4, n2 = 3 and n3 = 3,
then it follows that L = 10. Table 3 shows a code of a parti-
cle and the second column (2,1,1) means that worker 1 take
operation O21 on machine 1 and the corresponding costing
time is 15.

Population initialization

To guarantee an initial population with certain quality and
diversity, some strategies are utilized in a mixed way. The
initialization process includes the ones of OS, MA and WA,
respectively.

For the initialization of OS, two rules are commonly used
in the existing literature. The first one is random rule, the ben-
efit of which is simplicity. The other one is the most number
of operations remaining rule (Pezzella et al. 2008), which
means the unprocessed job with more remaining operations

123

1964 J Intell Manuf (2017) 28:1961–1972

Table 1 Processing time table

Operations M1 M2 M3 M4

J1

O11 10 7 6 13

O12 4 5 8 12

O13 9 5 6 12

O14 7 8 4 10

J2

O21 15 12 8 6

O22 9 5 7 13

O23 14 13 14 20

J3

O31 7 16 5 11

O32 9 16 8 11

O33 6 14 8 18

Table 2 Worker machine
informatino matrix

M1 M2 M3 M4

W1 1 1 – –

W2 – 1 1 –

W3 – – 1 1

*“1” and “–” mean the worker
is able or unable to use the
machine respectively

Table 3 Coding scheme of a particle

OS 1 2 1 1 2 3 2 1 3 3

MA 4 1 3 2 1 4 3 2 1 2

WA 3 1 2 2 1 3 1 1 1 2

have higher priority. The benefit of the most number of oper-
ations remaining rule is the speed of convergence.

For the initialization of MA, the modified Approach by
Localization and Earliest Finish Time rule are presented.

Approach by Localization is proposed by Kacem in
(Kacem and Hammadi 2002), which allocates operations to
themachine withminimal workload. However, this approach
is strongly dependent on the order of operations. Here we
slightlymodify it to bemoreflexible. TheModifiedApproach
by Localization is carried out as follows: firstly, rearrange the
processing time table according to the mixed initialized OS,
then theMA can be determined by using Approach by Local-
ization. For example, with Table 1 and the OS in Table 3, we
can obtain the rearranged operation sequence, shown as the
first column of Table 4. The corresponding processing time
of these operations on machine M1–M4 can be obtained in
the Part1 of Table 4. Based onApproach byLocalization, O11

should be processed on M3 since 6 is the minimal processing
time. Then update the processing time of other operations

on M3 we obtain Part2. It can be seen that O21 should be
processed on M4 because 6 is the minimal value. Repeat the
process until the last operation finished, then we can obtain
the corresponding MA vector (3, 4, 1, 2, 2, 1, 3, 4, 1, 2).

The key idea of Earliest Finish Time is taking into account
the processing time and the earliest started time of resources
on basis of assigned operations.

For the initialization ofWA, random rule and Earliest Fin-
ish Time are used. The rules are just the same as the ones in
OS and MA, respectively.

In this paper, the proportions of each rule for all the three
chromosomes are 50 and 50%, respectively.

Global search structure

The global search is carried out by updating the position
of particles. The position updating method of DPSO was
presented to deal with flow job shop in (Pan et al. 2008).
DPSO updates the particles directly in discrete domain,
which enhance the search efficiency. We now further extend
the method to DRC-FJSSP. The position of the particle is
updated as follows:

Xk+1
i = c2 ⊗ f3

{[
c1 ⊗ f2

(
w ⊗ f1

(
Xk
i

)
, pBk

i

)]
, gBk

}
(13)

where Xk
i is the i th particle at kth generation, w is the inertia

weight, c1 and c2 are acceleration coefficients between [0, 1];
pBk

i and gBk are the personal best and global best position
in the swarm population at kth generation; f1, f2 and f3 are
operators. The updating process contains Ek

i , F
k
i and Xk

i , and
they are formulated as follows:

Ek
i = w ⊗ f1

(
Xk
i

)
=

{
f1

(
Xk
i

) ; r < w

Xk
i ; otherwise

(14)

where r is a uniform random number between [0,1]. If
r < w, then f1(Xk

i) is carried out. First, randomly choose
two different operations and exchange them.MA andWAare
adjusted correspondingly to keep the allocations of machine
and worker unchanged. Second, randomly generate two inte-
gers i and j between 1 and L , then replace the i th machine
of MA and the j th worker of WA with another machine and
worker randomly chosen from the candidate machine and
worker set, respectively.

Fk
i = c1 ⊗ f2

(
Ek
i , pB

k
i

)
=

{
f2

(
Ek
i , pB

k
i

) ; r < c1
Ek
i ; otherwise

(15)

f2 is the crossover operation for Ek
i and pBk

i , which has a
Precedence Preserving Order based Crossover (POX) oper-

123

J Intell Manuf (2017) 28:1961–1972 1965

Table 4 Modified approach by localization

Part1 Part2 Part3 … Part10

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 … M1 M2 M3 M4

O11 10 7 6 13 10 7 6 13 10 7 6 13 … 10 7 6 13

O21 15 12 8 6 15 12 14 6 15 12 14 6 … 15 12 8 6

O12 4 5 8 12 4 5 14 12 4 5 14 18 … 4 5 8 12

O13 9 5 6 12 9 5 12 12 9 5 12 18 … 9 5 6 12

O22 9 5 7 13 9 5 13 13 9 5 13 19 … 9 5 7 13

O31 7 16 5 11 7 16 11 11 7 16 11 17 … 7 16 5 11

O23 14 13 14 20 14 13 20 20 14 13 20 26 … 14 13 14 20

O14 7 8 4 10 7 8 10 10 7 8 10 16 … 7 8 4 10

O32 9 16 8 11 9 16 14 11 9 16 14 17 … 9 16 8 11

O33 6 14 8 18 6 14 14 18 6 14 14 24 … 6 14 8 18

Italic values indicate the chosen machines for the corresponding operations

ation for OS, and two Rand-point Preservation Crossover
(RPX) operations for MA and WA, respectively.

If r < c1, then POX is carried out for OS. Randomly
generate two nonempty job set J1 and J2, where J1∪ J2 = J .
Set i = 1 and check whether the i th operation in Ek

i belongs
to J1 or not. If yes, then copy it to Fk

i . If no, then check
whether the i th operation in pBk

i belongs to J2 or not. If
yes, then copy to Fk

i . If no, repeat the above procedure by
setting i = i+1. After repeating L times, Fk

i is obtained. An
example is illustrated in Fig. 1, where J1 = {2} , J2 = {1, 3}.

For the RPX of MA, first generate a vector R =
[r1, r2, . . . , rL], where ri ∈ (0, 1) are random scalars for
i = 1, 2, . . . , L . Record the indexes of ri if ri ≤ p f , then
find the corresponding operations in pBk

i and copy the cor-
responding elements ofMA in pBk

i to the elements ofMA in
Fk
i . The self-adaption probabilities p f is chosen as follows

p f = p fmax − p fmax − p fmin

iter
× gen (16)

where iter is length of iteration,gen is the running time, p fmax

and p fmin are the maximal and minimal self-adaption prob-
abilities. The RPX of WA is the same as MA. An example is
shown in Fig. 2, where p f = 0.6 is calculated by (16).

Xk
i = c2 ⊗ f3

(
Fk
i , gBk

)
=

{
f3

(
Fk
i , gBk

) ; r < c2
Fk
i ; otherwise

(17)

f3 is a crossover operation for Fk
i and gBk , which has two

RPX forMAandWA, respectively, and keepsOSunchanged.

Local search for HDPSO algorithm

SA is an effective local search algorithm which allows occa-
sional alterations that worsen the solution in an attempt to

FMA 433213421 1
FOS 233213121 1

EMA 312343221 4
EOS 312313211 2

pBOS 332123112 1
pBMA 332143412 1

H2

=

={1, 3}

H1 {2}

pBWA 232132111 1

FWA 323112111 1

EWA 311233121 3

Fig. 1 POX crossover procedure

R 0.20.70.40.1

FOS

0.30.60.90.50.10.7

312313211 2
FMA 314343241 2

EMA 312343221 4

EOS 312313211 2

pBOS 332123112 1

pBMA 332143412 1

Fig. 2 RPX crossover procedure

increase the probability of leaving local optimum (Kirk-
patrick et al. 1983). In SA, the choice of neighborhood can
significantly influences algorithm performance.

In this subsection an ISA technique which has vari-
able neighborhood structures is used as the local search of

123

1966 J Intell Manuf (2017) 28:1961–1972

Start

Set T0, Tend, B

Generate two random decimal pr1 and pr2 between (0, 1)

NS1

End

0<pr1<pl1

pl1<pr1<pl2

Yes

No

Yes

NS2

No

Yes

Calculate fitness F1 and F1'

D=F1 - F1'>0 No

X = X '

T0<Tend

pr2<exp(-D/T0)
Yes

No

Yes

No

T0=B*T0

NS3

Fig. 3 Flow chart of the local search ISA

HDPSO. The flow chart of the local search ISA is given in
Fig. 3, where T0, Tend and B are initial temperature, final
temperature, and annealing rate, respectively. Generate two
random variables pr1 and pr2, where pr1, pr2 ∈ (0, 1).
pr1 determines which neighborhood structure is used. pr2
is the probability whether to accept a worse solution or
not. pl1, pl2 ∈ (0, 1) are parameters to be chosen. The
main feature of ISA is to randomly choose a neighbor-
hood from NS1,NS2 and NS3 when carrying out simulating
annealing.

NS1 for OS

If pr1 < pl1, then neighborhood structure NS1 is carried
out to change OS based on the critical path. The neighbor-
hood structure based on critical path has been introduced
to scheduling problem successfully (Li et al. 2011a, b). This
method always finds the feasible solution and refined neigh-

borhoods by interchanging under given regulations, but is
sensitivity to local convergence (Li et al. 2011a, b). So a
global neighborhood structure is used in the paper: ran-
domly choose a critical pathCP = {cp1, cp2 . . . cpe}, where
cpe is a critical operation, e is the total operation number
of CP. Randomly generate two integers x and y, where
x, y ∈ [1, e] , x �= y, then inserting an critical operation
cpx to the front of the critical operation cpy .

NS2 for MA

If pl1 ≤ pr1 < pl2, then neighborhood structure NS2 is
carried out. To generate neighboring solution, NS2 changes
the assignment of the operations to the machines (Yazdani
et al. 2010), which only adjust MA of the particle. NS2 is
applied as follows:

Step 1 Calculate the workload of each machine and
sequence them by theworkload. Denote themachine
sets by M̄1, M̄2, . . . , M̄max, respectively, where M̄1

and M̄max are the sets with minimal and maximal
workload, respectively. Set i = 1.

Step 2 Randomly choose a machine Ma from M̄max, then
check whether there are operations that can be oper-
ated on either any machine of M̄i or Ma .

Step 3 If yes, then denote the operations set by Ōa , ran-
domly choose an operation Oc from Ōa and the
operating machine is denoted by Mb. Assign Oc

from Ma to Mb. If not, then set i = i + 1 and go
back to step2 until i = max−1.

NS3 for WA

If pr1 ≥ pl2, then neighborhood structure NS3 is carried out.
NS3 follows the idea of NS2 and changes WA of the particle.
The procedure of NS3 is similar to NS2 and thus is omitted
here for simplicity.

Procedure of HDPSO

Step 1 Set parameters swarm size P , maximum of genera-
tion G, w, c1, c2, T0, Tend, B, pl1 and pl2.

Step 2 Set k = 0. Generate initial particle swarm X0 =
{X0

1, X
0
2, . . . , X

0
P }, initialize gBk and pBk

i .
Step 3 Let k = k+1, then update the current particle swarm

Xk = {Xk
1, X

k
2, . . . , X

k
P } byDPSO.Update gBk and

pBk
i .

Step 4 Choose r ∈ [1, P/2] particles in the current popu-
lation, executing local search based on ISA. Update
gBk and pBk

i .
Step 5 If k ≤ G, then turn to Step 3, otherwise stop the loop

and output the solutions.

123

J Intell Manuf (2017) 28:1961–1972 1967

Experiment results

In this section, several experiments are designed to test the
performance of the proposed HDPSO. The experiments are

Table 5 Descriptions of instances R1–R10

Instances n m b nob sumop

R1 5 8 5 [7, 9] 40

R2 6 8 5 [3, 8] 31

R3 8 10 7 [2, 8] 48

R4 9 7 4 [2, 10] 64

R5 10 5 3 [2, 9] 65

R6 10 6 4 [4, 10] 71

R7 14 5 3 [5, 9] 88

R8 14 8 5 [2, 10] 98

R9 15 7 4 [3, 10] 103

R10 15 9 6 [2, 10] 40

nob is the value range of operation number per job, sumop is the sum
of all operations

Table 6 The experimental results of parameter combination

Parameters evaluation w c

Sw
i S̄w

i Scj S̄cj

Level 1 155,018 172.24 159,562 177.29

Level 2 155,658 172.95 159,167 176.85

Level 3 156,210 173.57 158,246 175.83

Level 4 156,903 174.34 157,817 175.35

Level 5 157,754 175.28 157,376 174.86

Level 6 158,040 175.60 156,637 174.04

Level 7 158,479 176.09 156,265 173.63

Level 8 158,613 176.24 155,784 173.09

Level 9 159,012 176.68 155,569 172.85

Range value S′
w 4.44 S′

c 4.44

implemented on a PC with VC++ 6.0, 2.0GB RAM and
2.0GHz CPU.

Preparation

First, instances R1–R10 are randomly generated with para-
meters shown in Table 5 and they are also subject to the
following constraints: (a) the processing time of each job is
tpqh, where tpqh is a random integer between [2,20]. (b) every
operation can be processed on two different machines. (c)
each worker is able to operate i machines, where i is a ran-
dom integer between [1,3]. Then, these instances R1–R10
are used to analyze the parameters and test the validity of
ISA.

Finally, two collections of benchmark instances are used
to compare the proposed HDPSOwith other algorithms. One
collection is four classic FJSSP n × m benchmark instances
(Kacem and Hammadi 2002) with only machine resource
constraint, where the dimension of Q1, Q2, Q3 and Q4 are
4 × 5, 8 × 8, 10 × 7 and 10 × 10, respectively. The other
collection is n ×m × b instances C1 (Ju and Zhu 2006), C2
(ElMaraghy et al. 2000), C3 (Cao and Yang 2011) and C4
(Liang and Tao 2011) for DRC-FJSSP where the dimension
of C1, C2, C3 and C4 are 4 × 6 × 4, 4 × 10 × 7, 6 × 6 × 4
and 10 × 6 × 4, respectively.

Since the parameters to be tested are the inertia weightsw

and learning factors c, thus the other parameters are chosen
according to theway in (Xia andWu 2005; Zhang et al. 2012)
and then through various experimental tests. The parameters
are chosen as follows:

T0 = 3, Tend = 0.01, B = 0.9, pl1 = 0.6, pl2 = 0.8,

p fmax = 0.9, p fmin = 0.2, P = 100,G = 100.

Table 7 The results of HDPSO
and DPSO with the same
iterations G = 100

Instances HDPSO DPSO

ARE BF AF WF AT ARE BF AF WF AT

R1 0.02 97 99.1 102 3.9 0.09 101 106.1 112 0.3

R2 0.09 71 77.6 84 3.8 0.23 80 87.6 95 0.3

R3 0.07 94 100.7 109 4.1 0.12 98 105.5 115 0.5

R4 0.04 148 154.4 162 6.6 0.09 152 161.7 171 0.7

R5 0.07 200 213 225 7.1 0.12 211 223.3 236 1.1

R6 0.06 179 189.1 199 6.6 0.09 185 194.9 203 1

R7 0.04 259 269.7 281 7.4 0.06 268 275.8 290 1.6

R8 0.08 190 204.9 214 5.9 0.09 202 207.3 215 1.7

R9 0.05 236 247 258 6.6 0.08 250 254.7 268 2

R10 0.04 138 144.2 155 5.4 0.09 146 150 156 1.5

123

1968 J Intell Manuf (2017) 28:1961–1972

Fig. 4 TheAREcomparison chart ofHDPSOandDPSOwith the same
iterations G = 100

Parameters analysis

In HDPSO, intertia weights w and learning factors c1 and
c2 have key impact. It is chosen that c1 = c2 in general and
denoted by c. In order to obtain the appropriate values for
w and c, we solve R1–R10 by various values of w and c.
Nine values are chosen for both w and c, and they are 0.1,
0.2,…,0.9, respectively. The corresponding objective F with
each combination ofw and c running 10 times on all instances
R1–R10 can be obtained by (1)–(12). The obtainedmakespan
are denoted by Fi jk, i, j = 1, 2, . . . , 9; k = 1, 2, . . . , 10,
where i, j represent the value of w and c, and k represents
index of the instance R1–R10, for example i = 1, j = 1
and k = 1 mean w = 0.1, c = 0.1 and instance R1, respec-
tively.

Then the range analysis method (Xia 1985) is used
for the analysis and the result is shown in Table 6. The
evaluation value of two parameters are defined as Sw

i =∑9
j=1

∑10
k=1 Fi jk, i = 1, 2, . . . , 9 and Scj = ∑9

i=1∑10
k=1 Fi jk, j = 1, 2, . . . , 9, respectively, where the upper

and the lower index of Sw
i or Scj are the parameter and the

level, respectively. Another evaluation values S̄w
i and S̄cj , are

defined as S̄w
i = Sw

i /900 and S̄cj = Scj/900, respectively.

Table 9 Results of the four Kacem instances

Instances AL+CGA MOPSO+LS ABC HDPSO

Q1 16 16 11 11

Q2 15 15 14 14

Q3 15 – 11 11

Q4 7 7 7 7

The range value is defined as S′
w = max Sw

i − min Sw
i and

S′
c = max Scj − min Scj .

From Table 6, we can see S̄w
i achieves the minimal value

172.24 on level 1 for parameter w, and S̄cj achieves the min-
imal value 172.85 on level 9 for parameter c. Then it can be
seen in this test w = 0.1, c = 0.9 is the best parameter com-
bination. In the following experiments,w and c are chosen as
0.1 and 0.9, respectively. As for the range value, we can see
that the two parameters have the same impact to the results
by S′

w = S′
c = 4.44.

The validity test of ISA

In this subsection, the validity of introducing ISA is tested
by comparing HDPSO with DPSO. R1–R10 randomly run
10 times with iterations G = 100 and results are shown
at Table 7, where ARE = (AF − C∗)/C∗ × 100% is the
average relative error, C∗ is the best solution with the two
algorithms, BF is the best fitness, AF is the average value
of 10 runs, WF is the worst fitness, and AT is the running
time.

It can be clearly seen from Table 7 that HDPSO achieve
better BF andWF on all the instances, which means HDPSO
has stronger ability to get the better solution compared with
DPSO. As can be seen in Fig. 4, HDPSO obtained smaller
ARE thanDPSO, indicatingHDPSO ismore stable.However,
the drawback of HDPSO is that the runtime is longer than
DPSO, showing HDPSO has a little more time consuming.

Table 8 Results of HDPSO and
DPSO with the same runtime

Instances HDPSO DPSO

ARE BF AF WF AG ARE BF AF WF AG

R1 0.07 91 97.6 106 38 0.13 99 102.9 107 84

R2 0.04 75 78.1 84 20 0.12 78 83.7 89 251

R3 0.09 94 102.5 116 71 0.15 100 108 113 81

R4 0.04 148 154.5 164 44 0.04 148 154 160 281

R5 0.07 196 210.6 222 54 0.12 214 219 224 129

R6 0.06 172 186.2 195 28 0.04 177 183.2 191 103

R7 0.05 258 271.3 284 39 0.09 270 280.5 291 43

R8 0.06 191 203 213 41 0.09 200 207.6 215 62

R9 0.07 234 249.4 262 41 0.08 249 253 258 52

R10 0.07 136 145.5 155 47 0.05 140 147.4 156 63

123

J Intell Manuf (2017) 28:1961–1972 1969

Table 10 Results of the four
DRC FJSSP instances

Instances C1 C2 C3 C4

Algorithm GA HDPSO GAs HDPSO IGA2 HPAO GATS HDPSO

Results 17 17 63 50 35 35 55 46

Fig. 5 a Machine Gantt chart
of problem C2 (F = 50). b
Worker Gantt chart of problem
C2 (F = 50)

123

1970 J Intell Manuf (2017) 28:1961–1972

Fig. 6 a Machine Gantt chart
of problem C4 (F = 46). b
Worker Gantt chart of problem
C4 (F = 46)

The performance ofHDPSO andDPSO are testedwith the
same runtime. The runtime is chosen to be 5s. Table 8 shows
the experimental results, from which we can see HDPSO
achieves better ARE, BF, AF and WF on instances R1–R3,
R5, R7–R10. As for theAG, HDPSO is better on all instances
than DPSO, which means the convergence speed is faster.
That is to say, even in a time-critical setting, HDPSO is still
more effective than DPSO.

Thus, it can be concluded from the experimental results in
this subsection that ISA enhance the ability of both exploita-
tion and exploration besides adding some computational time
in solving the DRC-FJSSP.

Results comparisons

In this subsection, two sets of benchmark examples are
employed to compare the proposed HDPSO with other
algorithms. The first set of examples is for single-resource
constraint problems and the other set is for DRC-FJSSP.

Single resource constraint problems

Table 9 shows the results of our approach HDPSO compared
with the algorithms of AL+CGA (Kacem and Hammadi
2002), MOPSO+LS (Moslehi and Mahnam 2011) and ABC
(Wang et al. 2012). We can see our approach can find the
optimal solution for all the fourKacem instances (Kacem and
Hammadi 2002). So the proposed approach is also effective
to solve single-resource constraint job scheduling problems.

DRC-FJSSP

For DRC-FJSSP, C1 is used to compared with GA (Ju and
Zhu 2006), C2 is used to compared with GAs (ElMaraghy
et al. 2000),C3 is used to comparedwith IGA2 (Cao andYang
2011), andC4 is used to comparedwithGATS (Liang andTao
2011). The results are showed in Table 10. For instances C1
and C3, the optimal values are the same as the best solutions
of the other algorithms.

123

J Intell Manuf (2017) 28:1961–1972 1971

For instances C2 and C4, the optimal solution of HDPSO
is better than the best solutions of other algorithms. Figure 5a,
b give the Gantt chart of the optimal solution for instance C2
obtained by HDPSO and Fig. 6a, b give the Gantt chart of the
optimal solution for instance C4 obtained by HDPSO.M and
W stands for machine and worker, respectively. The number
followingM orW is the index of the resource number. The 3-
digit number in the blocks are job number, operation number
and resource number (machine number or worker number)
respectively. “A” stands for the number 10.

Conclusions

This paper solved the DRC-FJSSP by presenting a HDPSO
algorithmwith improved SA technique. The main benefits of
this algorithm include the exclusion of infeasible solutions
and improvements of the local search ability. Experimental
results showed the effectiveness of the proposed method and
the superiority over some available results.

The computation time is a critical issue that limits the
application of thismethod.Moreover, some parameters in the
algorithm are chosen not in a systemic way. How to choose
more appropriate parameters for the algorithm is also help-
ful in improving the performance. Since other objectives such
as production cost and total overload are also important in
the manufacturing systems, multi-objective case for the con-
sidered problem is an interesting and important topic that
deserves investigation.

Acknowledgements This project is supported byNationalNatural Sci-
enceFoundation ofChina (NSFCGrantNo. 61379123) and theNational
Key Technology R&D Program in the 12th Five Year Plan of China
(Grant No. 2012BAD10B01).

References

Adibi, M. A., & Shahrabi, J. (2014). A clustering-based modified
variable neighborhood search algorithm for a dynamic job shop
scheduling problem. International Journal of Advanced Manufac-
turing Technology, 70(9–12), 1955–1961.

AitZai, A., Benmedjdoub, B., & Boudhar, M. (2014). Branch-
and-bound and PSO algorithms for no-wait job shop
scheduling. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-014-0906-7

Cao, X. Z., & Yang, Z. H. (2011). An improved genetic algorithm for
dual-resource constrained flexible job shop scheduling. In Inter-
national conference on intelligent computation technology and
automation, Shen Zhen.

Coello, C. A. C., Pulido, G. T., & Lechuga, M. S. (2004). Handling
multiple objectives with particle swarm optimization. IEEE Trans-
actions on Evolutionary Computation, 8(3), 256–279.

ElMaraghy, H., Patel, V., & Ben Abdallah, I. (1999). A genetic algo-
rithmbased approach for scheduling of dual-resource constrainded
manufacturing systems. Journal of Manufacturing Systems, 48(1),
369–372.

ElMaraghy,H., Patel, V.,&BenAbdallah, I. (2000). Scheduling ofman-
ufacturing systems under dual-resource constraints using genetic
algorithms. Journal of Manufacturing Systems, 19(3), 186–201.

Gargeya, V. B., & Deane, R. H. (1996). Scheduling research in multiple
resource constrained job shop:A review and critique. International
Journal of Production Research, 8(34), 2077–2097.

González, M., Vela, C., González-Rodríguez, I., & Varela, R. (2013).
Lateness minimization with Tabu search for job shop scheduling
problem with sequence dependent setup times. Journal of Intelli-
gent Manufacturing, 24(4), 741–754.

Ju, Q. Y., & Zhu, J. Y. (2006). Study of fuzzy job shop scheduling
problems with dualresource and multi-process routes.Mechanical
Science and Technology, 12, 1424–1427.

Kacem, I., & Hammadi, S. (2002). Approach by localization and
multi-objective evolutionary optimization for flexible job-shop
scheduling problems. IEEE Transaction on Systems, Man, and
Cybernetics Part C: Applications and Reviews, 32(1), 1–13.

Katherasan, D., Elias, J., Sathiya, P., & Haq, A. N. (2014). Simulation
and parameter optimization of flux cored arc welding using arti-
ficial neural network and particle swarm optimization algorithm.
Journal of Intelligent Manufacturing, 25(1), 67–76.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In
Proceedings of the 4th IEEE international conference on neural
networks, Piscataway.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598), 671–680.

Lei, D. M. (2010). A genetic algorithm for flexible job shop scheduling
with fuzzy processing time. International Journal of Production
Research, 48(10), 2995–3013.

Lei, D. M., & Guo, X. P. (2014). Variable neighbourhood search for
dual-resource constrained flexible job shop scheduling. Interna-
tional Journal of Production Research, 52(9), 2519–2529.

Li, J. Y., Sun, S. D., Huang, Y., & Wang, N. (2010). Research into self-
adaptive hybrid ant colony algorithm based on flow control. In
The 2nd international workshop on intelligent systems and appli-
cations, Wuhan.

Li, J. Q., Pan, Q. K., Suganthan, P. N., & Chua, T. J. (2011). A hybrid
tabu search algorithm with an efficient neighborhood structure for
the flexible job shop scheduling problem. International Journal of
Advanced Manufacturing Technology, 52(5–8), 683–697.

Li, J. Y., Sun, S. D., & Huang, Y. (2011). Adaptive hybrid ant
colony optimization for solving dual resource constrained job shop
scheduling problem. Journal of Software, 6(4), 584–594.

Liang, D., & Tao, Z. (2011). Hybrid genetic-Tabu Search approach to
scheduling optimization for dual-resource constrained job shop. In
Cross strait quad-regional radio science and wireless technology
conference, Harbin.

Lin, T.-L., Horng, S.-J., Kao, T.-W., Chen, Y.-H., Run, R.-S., Chen, R.-
J., et al. (2010). An efficient job-shop scheduling algorithm based
on particle swarm optimization. Expert Systems with Applications,
37(3), 2629–2636.

Moslehi, G., & Mahnam, M. (2011). A Pareto approach to multi-
objective flexible job-shop scheduling problem using particle
swarmoptimization and local search. International Journal of Pro-
duction Economics, 129(1), 14–22.

Nie, L., Gao, L., Li, P., & Li, X. (2013). A GEP-based reactive schedul-
ing policies constructing approach for dynamic flexible job shop
scheduling problem with job release dates. Journal of Intelligent
Manufacturing, 24(4), 763–774.

Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete particle
swarmoptimization algorithm for the no-wait flowshop scheduling
problem. Computers & Operations Research, 35(9), 2807–2839.

Pérez,M. F.,&Raupp, F. P. (2014). ANewton-based heuristic algorithm
for multi-objective flexible job-shop scheduling problem. Journal
of Intelligent Manufacturing. doi:10.1007/s10845-014-0872-0

123

http://dx.doi.org/10.1007/s10845-014-0906-7
http://dx.doi.org/10.1007/s10845-014-0906-7
http://dx.doi.org/10.1007/s10845-014-0872-0

1972 J Intell Manuf (2017) 28:1961–1972

Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algo-
rithm for the flexible job-shop scheduling problem. Computers &
Operations Research, 35(10), 3202–3212.

Qiu, X., & Lau, H. K. (2014). An AIS-based hybrid algorithm for static
job shop scheduling problem. Journal of Intelligent Manufactur-
ing, 25(3), 489–503.

Vijay Chakaravarthy, G.,Marimuthu, S., &Naveen Sait, A. (2013). Per-
formance evaluation of proposed differential evolution and particle
swarm optimization algorithms for scheduling m-machine flow
shops with lot streaming. Journal of Intelligent Manufacturing,
24(1), 175–191.

Wang, L., Zhou, G., Xu, Y., Wang, S. Y., & Liu, M. (2012). An effective
artificial bee colony algorithm for the flexible job-shop schedul-
ing problem. International Journal of Advanced Manufacturing
Technology, 60(1–4), 303–315.

Xia, B. Z. (1985). Orthogonal experiment. Changchun: Jilin People
Publishing House.

Xia, W. J., & Wu, Z. M. (2005). An effective hybrid optimization
approach for multi-objective flexible job-shop scheduling prob-
lems. Computers & Industrial Engineering, 48(2), 409–425.

Xu, J., Xu, X., & Xie, S. Q. (2011). Recent developments in dual
resource constrained (DRC) system research. European Journal
of Operational Research, 215(2), 309–318.

Yazdani, M., Amiri, M., & Zandieh, M. (2010). Flexible job-shop
scheduling with parallel variable neighborhood search algorithm.
Expert Systems with Applications, 37(1), 678–687.

Zhang, H., Li, H., & Tam, C. M. (2006). Particle swarm optimization
for resource-constrained project scheduling. International Journal
of Project Management, 24(1), 83–92.

Zhang, R., & Wu, C. (2010). A divide-and-conquer strategy with par-
ticle swarm optimization for the job shop scheduling problem.
Engineering Optmization, 42(7), 641–670.

Zhang, J.,Wang,W. L.,&Xu,X. L. (2012). Hybrid particle-swarmopti-
mization formulti-objective flexible job-shop scheduling problem.
Control Theory & Applications, 29(6), 715–722.

123

	A hybrid discrete particle swarm optimization for dual-resource constrained job shop scheduling with resource flexibility
	Abstract
	Introduction
	Problem description
	Notations
	Parameters
	Decision variables
	Problem formulation

	HDPSO for DRC-FJSSP
	Coding scheme
	Population initialization
	Global search structure
	Local search for HDPSO algorithm
	NS1 for OS
	NS2 for MA
	NS3 for WA

	Procedure of HDPSO

	Experiment results
	Preparation
	Parameters analysis
	The validity test of ISA
	Results comparisons
	Single resource constraint problems
	DRC-FJSSP

	Conclusions
	Acknowledgements
	References

