
J Intell Manuf (2017) 28:1189–1201
DOI 10.1007/s10845-015-1074-0

Fast GA-based project scheduling for computing resources
allocation in a cloud manufacturing system

Yang-Kuei Lin1 · Chin Soon Chong2

Received: 30 November 2014 / Accepted: 25 March 2015 / Published online: 8 April 2015
© Springer Science+Business Media New York 2015

Abstract Cloudmanufacturing is becoming an increasingly
popular enterprise model in which computing resources are
made available on-demand to the user as needed. Cloudman-
ufacturing aims at providing low-cost, resource-sharing and
effective coordination. In this study, we present a genetic
algorithm (GA) based resource constraint project schedul-
ing, incorporating a number of new ideas (enhancements
and local search) for solving computing resources allocation
problems in a cloud manufacturing system. A newly gen-
erated offspring may not be feasible due to task precedence
and resource availability constraints. Conflict resolutions and
enhancements are performed on newly generated offsprings
after crossover or mutation. The local search can exploit the
neighborhood of solutions to find better schedules. Due to
its complex characteristics, computing resources allocation
in a cloud manufacturing system is NP-hard. Computational
results show that the proposed GA can rapidly provide a
good quality schedule that can optimally allocate computing
resources and satisfy users’ demands.

Keywords Resource allocation · Cloud manufacturing ·
Project scheduling · Genetic algorithm

B Yang-Kuei Lin
yklin@mail.fcu.edu.tw

Chin Soon Chong
cschong@SIMTech.a-star.edu.sg

1 Department of Industrial Engineering and Systems
Management, Feng Chia University, P.O. Box 25-097,
Taichung 40724, Taiwan, ROC

2 Planning and Operations Management Group, Singapore
Institute of Manufacturing Technology, A-star, 7 Nanyang
Avenue, Singapore 638075, Singapore

Introduction

Cloudmanufacturing is a service-oriented, customer-centric,
demand-driven manufacturing model that aims at provid-
ing low-cost, resource-sharing and effective coordination.
According toWu et al. (2013), cloud manufacturing requires
interaction between three groups: the users, application
providers, and physical resource providers. Users are the
consumers in cloud manufacturing. They have the need to
manufacture a product, but do not possess the capabili-
ties to do so, or they possess the capabilities but can also
gain a competitive advantage by using cloud manufactur-
ing. The application providers are responsible for managing
all aspects of the cloud manufacturing environment and
transfers user requirements into data required for manu-
facturing the desired products. Physical resource providers
own and operate manufacturing equipment, such as forms
of machining, finishing, inspection, packaging technology,
testing resources, etc. Moreover, physical resource providers
have the expertise and experience to utilize these machines
effectively and efficiently. Computing resources (such as
CPU, processors, I/O, networks, servers, storage, applica-
tions, services, etc.) at the physical resource layer is an
important part of cloud manufacturing. Through central-
ized management, the application providers transfer users’
demands into virtual access, and assign various heteroge-
neous computing resources to process those demands.

The current computing resource allocation in cloud man-
ufacturing faces several difficult problems. Based onWu and
Yang (2010), in order to cope with the quickly changing
market requirements in an increasing globalized economic
environment, manufacturing enterprises need to develop
extensive collaboration among themselves. This includes
many kinds of manufacturing resources sharing. These
resources are geographically distributed, with morphology

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-015-1074-0&domain=pdf

1190 J Intell Manuf (2017) 28:1189–1201

diversity and autonomy, which makes the resource-sharing
and management very complicated. Further, the computing
resources are made available on-demand and dynamically
allocated to the user as needed, to realize scalable integra-
tion of all kinds of distributed resources for effective use.
Some of the previous studies pointed out that in the cloud
manufacturing system, the resource demands are time vary-
ing and often has large spikes.How to appropriately select the
price and allocate resources for each type of virtual machine
services in order to best match the interests of the customers
is a key issue of cloud manufacturing (Zhang et al. 2011).
Another key issue is how to minimize the response time of
data processing queries to satisfy customer demands (Lee
et al. 2011). Further, Laili et al. (2012) mentioned that the
optimal allocation of computing resources is the core part
of implementing cloud manufacturing. High heterogeneity,
high dynamism, and virtualization make the optimal alloca-
tion of computing resources problemsmore complex than the
traditional scheduling problems in the grid system or cloud
computing system. Motivated by these studies, this paper
proposed a new and fast hybrid GA method on the proposed
model to solve the optimal allocation of computing resources
problems.

In this work, we are assuming that there are multiple
project planning problems that require computing resources
fromcloudmanufacturing platforms at the same time.Hence,
large amount of tasks with different resource requirements
that are submitted to the cloud manufacturing platform need
to be scheduled heterogeneously under layer clusters. The
cloud-based application providers need to centrally manage
those demands, and allocate computing resources in order to
process them and respond to users promptly.

Figure 1 shows computing resources allocation in a
cloudmanufacturing system for resource-constrained project

scheduling problems (RCPSPs). We focus on studying the
problem of computing resources allocation in a cloud man-
ufacturing system. A GA has been proposed to tackle the
problem. The rest of this work is organized as follows.
Section 2 provides the related works; Sect. 3 introduces
resource-constrained project scheduling; the proposed GA
is presented in Sect. 4; in Sect. 5, the computational results
are reported; Sect. 6 presents our conclusions and sugges-
tions for future research.

Related works

In recent years, cloud manufacturing has been studied by
many researchers. Some researchers focused on studying
computing resource allocation in a cloud manufacturing sys-
tem (Wu and Yang 2010; Lee et al. 2011; Zhang et al.
2011). Laili et al. (2011) used a GA to solve the prob-
lem of optimal allocation of computing resources in cloud
manufacturing systems. In a subsequent study, Laili et al.
(2012) proposed a new and improved niche immune algo-
rithm (NIA) for optimal allocation of computing resources
in cloud manufacturing systems. They showed that NIA
outperforms other intelligent algorithms in solving com-
puting resources allocation problems. Tao et al. (2012)
proposed a novel parallel intelligent algorithm, namely, full
connection based parallel-adaptive chaos optimization with
reflex migration (FC-PACO-RM) for service composition
optimization-selection in a cloud manufacturing system.
Laili et al. (2013) proposed a ranking chaos algorithm for
dual scheduling of cloud service and computing resources
in a private cloud. Cheng et al. (2013) established compre-
hensive utility models, which consider energy consumption,
costs, and risks for the three sides (provider, consumer, and

Fig. 1 Computing resources
allocation in cloud
manufacturing system for
project scheduling problems

Cloud manufacturing
platform

Projects

Requirements: schedule,
resource

FeedbackResource allcation

Schedule

Cooperative
resource &

collaboration

Cooperative
resource &

collaboration

Computing resources

123

J Intell Manuf (2017) 28:1189–1201 1191

operator) in the resource service scheduling process in a
cloud manufacturing system.

Some researchers focused on studying workflow schedul-
ing in cloud computing environment. A cloud workflow
system is a type of platform service which facilitates the
automation of distributed applications based on the novel
cloud infrastructure. Kaur et al. (2011) provided a compari-
son of workflow scheduling algorithms in cloud computing.
Varalakshmi et al. (2011) proposed an optimal workflow
based algorithm for scheduling workflows in a cloud envi-
ronment. Bardsiri and Hashemi (2012) provided a review
of workflow scheduling in the cloud computing environ-
ment. Kim et al. (2012) developed an adaptive workflow
scheduling scheme that optimized the allocation ratio of
computing elements to the different datasets in order to min-
imize the total makespan under certain resource constraints.
Abrishami and Naghibzadeh (2012) proposed an algorithm
for workflow scheduling in the software as a service cloud,
whichminimizes the total execution cost,whilemeetinguser-
defined deadlines. Rahman et al. (2013) proposed an adaptive
workflow scheduling algorithm for dynamic grid and cloud
computing environments. Lodha andWadhe (2013) provided
a study on different types of workflow scheduling algorithm
in cloud computing. Yassa et al. (2013) proposed a multi-
objective approach for energy-aware workflow scheduling
in cloud computing environments.

From the literature review, we concluded that the optimal
allocation of computing resources is one of the urgent issues
in cloudmanufacturing. Also, prompt response to customers’
demands is a requirement in cloud manufacturing. Hence, in
this study, we proposed a fast hybrid GA to solve the optimal
allocation of computing resources problems.

Resource-constrained project scheduling problem

According to Laili et al. (2011), cloud manufacturing is
a service-oriented networked manufacturing model which
aims at achieving low cost resource sharing and coordination.
By way of virtual access, various heterogeneous computing
resources at the physical layer of cloud manufacturing are
assigned to users on-demand. The demand of coordination
and computing power on the cloudmanufacturing platform is
high and varied as manufacturing tasks are usually complex
andmulti-disciplinary collaborative tasks. To ensure efficient
running of manufacturing tasks and to fully utilize comput-
ing resources, the optimal allocation of computing resources
to manufacturing tasks in cloud manufacturing is important.
This poses challenges for optimal allocation of computing
resources as computing resources have the characteristics
of large scale, high heterogeneity, dynamic interconnection
and group collaboration. The practical issues and constraints
related to resource allocation are discussed in detail in Laili

et al. (2011). To tackle the challenges, Laili et al. (2011)
formulated a new optimal allocation of computing resources
model based on the uncertain resource topology. The model
considered the constrain conditions from all aspects and is
closer to reality.

Similar to Laili et al. (2011, 2012), we are assuming that
there are multiple project planning problems that require
computing resources from cloud manufacturing. Due to the
large amount of tasks, there are different resource require-
ments submitted to a cloudmanufacturing platform that need
to be scheduled heterogeneously under layer clusters. There
is an insufficient amount of practical activity time, so we
made some assumptions and set a range for them. Hence,
this study only follows one project scheduling. For a given
project scheduling problem, we use graphs and record the
successors and predecessors of each node by having adjacent
lists. Sincemany tasks are submitted to a resource for service,
and the resource is needed to handle the tasks sequentially,
we vary the activity times to reflect the situations of resource
allocation in cloud manufacturing. The task duration of each
node is randomly generated within a certain range. When
we complete evaluations, we start from the source (the first)
node, and then find its successors step by step, which is fol-
lowed by recording the whole task durations at the end of
the graph (sink node). Project scheduling problem in cloud
manufacturing is one type of RCPSPs.

Here, we give a brief literature review of RCPSPs. In
recent years, more and more researchers have studied the
RCPSPs (Brucker et al. 1999; Hartmann and Briskorn 2010).
Kolisch and Hartmann (2006) have summarized and catego-
rized a large number of heuristics that have recently been
proposed in the literature for the RCPSPs. Some researchers
haveproposed sampling-methodbasedonheuristics (Kolisch
1995, 1996a, b; Kolisch and Drexl 1996; Shue and Zamani
1999; Grèze et al. 2014). Amongst the sampling meth-
ods, the heuristics are referred to as sampling random (S)
and sampling-random (P) corresponding to pure random
sampling with serial and parallel scheduling generation
scheme (SGS). Some researchers have developed meta-
heuristic based algorithms to tackle the RCPSPs, which
include GA (Leon and Ramamoorthy 1995; Hartmann 1998;
Coelho andTavares 2003;Debels andVanhoucke 2007;Valls
et al. 2008; Agarwal et al. 2011; Ji and Yao 2014), ant
colony optimization (ACO) (Merkle et al. 2002, Chen et al.
2010a, b), simulated annealing (SA) (Bouleimen and Lecocq
2003), filter-and-fan approach (Ranjbar 2008), bee colony
(Shi et al. 2010; Jia and Seo 2013b), shuffled frog-leaping
algorithm (Fang and Wang 2012) and particle swarm opti-
mization (PSO) (Jia and Seo 2013a).

A brief introduction of RCPSP is provided here. The
RCPSP can be described as follows. A single project con-
sists of a set J = {0, 1, ..., n, n + 1} of tasks (activities),
which have to be processed. Fictitious tasks 0 and n + 1

123

1192 J Intell Manuf (2017) 28:1189–1201

correspond to the “project start” and to the “project end”,
respectively. The tasks are subjected to two kinds of con-
straints. First, precedence constraints enforce task j to start
only after all its immediate predecessors have been com-
pleted. Second, performing the tasks requires resources that
are limited. Resources may be renewable or non-renewable.
Renewable resources are available for each period with-
out being depleted, such as labor and computer memory.
Non-renewable resources are depleted as they are used up,
such as capital and raw materials. We have K renewable
resource types, given by the set κ = {1, ..., K }. While
being processed, task j requires r j,k units of resource type
k ∈ κ during every period of its non-preemptable duration
p j . Resource type k has a limited capacity of Rk at any
point in time. For the project start and end tasks, we have
Pj = 0 and r j,k = 0 for all k ∈ κ . The objective of the
RCPSP is to find precedence and resource feasible comple-
tion times for all tasks so that the makespan of the project is
minimized. We use an instance j301_5 (we call it Example
1) that is taken from the project scheduling problem library
(PSPLIB, Kolisch and Sprecher 1997) to illustrate the ideas
of the studied problem. Table 1 gives an example of a project
comprising n = 32 tasks, which have to be scheduled sub-
ject to the K = 4 renewable resource type with a capacity
of R1 = 11, R2 = 11, R3 = 9, R4 = 11 units. A feasi-
ble schedule with a makespan of 40 periods is represented
in Fig. 2. Figure 3 shows resource allocation of Example 1
where a number inside a parenthesis indicates the resource
consumption of the task.

Genetic algorithms

GAs are stochastic search techniques that are inspired by
the principles of evolution and heredity (Holland 1975). The
usual form of a GA is described by Goldberg (1989). GAs
have been proven to be a very robust algorithm for solving
NP-hard global optimization problems, including schedul-
ing problems. GAs are very effective for its climbing ability
and the diversification in search. Besides that, GAs are easy
to adapt, implement, and enhance. In the last two decades,
there are lots of researchers applied GA-based approaches
to solve the RCPSPs successfully (Leon and Ramamoorthy
1995; Hartmann 1998; Alcaraz and Maroto 2001; Hartmann
2002; Coelho and Tavares 2003; Kochetov and Stolyar 2003;
Alcaraz et al. 2004; Valls et al. 2008; Mendes et al. 2009;
Debels and Vanhoucke 2007; Khanzadi et al. 2011; Agar-
wal et al. 2011; Gonçalves et al. 2011; Zamani 2013). GAs
are population based algorithms that work iteratively. A sin-
gle iteration is called a generation. When applying them to
scheduling problems, GAs consider a schedule as an individ-
ual of a population. A fitness value derived from the objective
value of the schedule is assigned to each single individ-
ual, called a genome. The individuals of the new generation
are obtained from the individuals of the previous generation
by applying crossover and mutation procedures. The fittest
among populations are selected, and are then carried into the
next generation. In this work, we present a GA for optimal
allocation of computing resources in a cloud manufacturing
system. The proposed GA are described as follows.

Table 1 Data of Example 1

Task j Successors Durations p j r j,1 r j,2 r j,3 r j,4 Task j Successors Durations p j r j,1 r j,2 r j,3 r j,4

1 2, 3, 4 0 0 0 0 0 17 26 3 0 2 0 0

2 11, 12, 15 6 0 0 7 0 18 19, 23 2 7 0 0 0

3 5, 8, 16 4 0 0 1 0 19 22 3 0 8 0 0

4 27 2 0 0 0 2 20 29 3 0 0 5 0

5 6, 12, 14 1 0 0 6 0 21 31 7 0 0 0 2

6 7 5 2 0 0 0 22 24 4 0 0 0 1

7 9, 28 1 0 0 0 6 23 24 8 0 0 0 5

8 10, 20 3 0 9 0 0 24 29 1 0 0 0 5

9 13, 21 5 0 8 0 0 25 30 8 0 9 0 0

10 17, 25 6 8 0 0 0 26 28 8 0 5 0 0

11 25, 28 6 0 0 7 0 27 30 5 0 9 0 0

12 25, 29 4 7 0 0 0 28 30 1 0 4 0 0

13 22, 23, 31 1 8 0 0 0 29 32 5 0 4 0 0

14 17 6 0 1 0 0 30 32 2 0 9 0 0

15 24 5 0 0 0 2 31 32 1 0 0 0 10

16 18 3 0 0 5 0 32 – 0 0 0 0 0

123

J Intell Manuf (2017) 28:1189–1201 1193

2

3

4

27

5

12

15

11

18

7

6

14

8

16

19

10

20

22

13

9

17

21

25

31

24

23

26

28

30
29

1
32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 400

Fig. 2 A feasible solution of Example 1

R1=11
12

6 10

18

13

14 19 9 25 29 30

27 8 17 26 28

2 16 11 20

3

4 15 7 22 31 24

23

21

(7)

(2) (8) (8)

(1) (8) (8) (9) (4) (9)

(9) (9) (2) (5) (4)

(7) (6) (5) (7) (5)

(1)

(2) (2) (6) (1) (10)(5)

(5)

(2)

R2=11

R3= 9

R4=11

(9) (9) (8) (8)

(9) (10) (8) (8) (10) (11) (5) (9) (4) (9)

(8) (6) (5) (7) (5)

(2) (2) (6) (2)(8) (10)(5)

Sum of resource consumption

(7)

Sum of resource consumption

Sum of resource consumption

5

Sum of resource consumption

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 400

Fig. 3 Resource allocation of Example 1

Basic operations of the GA

Genetic representation

Wall (1996) developed a coding scheme that can generate a
feasible solution for project scheduling problems. Here, we
use the Wall (1996) coding scheme to represent a solution
to the problem at hand, as a genome. A single genome is a
single array of integer start times. Each element in the array
corresponds to a task in the project plan. The times repre-
sent delay times relative to the latest finish time of the task’s
predecessors. Unlike traditional solution methods which are

typically sequence-based, each genome uses representation
that encodes scheduling information as an array of relative
start times. Each time represents the duration from the latest
finish of all predecessor tasks, to the start time of the corre-
sponding task. The times represent delay times relative to the
finish time of the predecessors. If the precedence constraints
for a task is allowed to overlap, then negative values are
permitted for the start time for this particular task. If overlap
is not modeled, values are truncated to zero. The elements
in the array correspond to the tasks in the project plan, but
the order of elements relative to each other is insignificant.
This encoding scheme for scheduling is a minimal repre-

123

1194 J Intell Manuf (2017) 28:1189–1201

t1=0

t3

t2
t4

t7

t5

t6

1

2

3

4

5

6

7

t1 t2 t3 t4 t5 t6 t7

0 2 4 5 7 8 9 10 11 13 17 18

Fig. 4 Representation of a genome and its mapping to the schedule

sentation that can only represent resource-feasible solutions.
Unlike order-based representation, the encoding scheme will
assure precedence feasibility for every schedule after any
crossover operator, with no schedule repair required. Fig-
ure 4 gives an example of a single project consisting of
seven tasks. A possible representation for Fig. 4 could be
[t1, t2, t3, t4, t5, t6, t7] = [0, 2, 3, 3, 3, 1, 4].

Initialization

We use random initialization. The integer start times of the
genome are initialized with random numbers. The range of
possible values is basedupon the average estimated task dura-
tions. We sum up all of the task durations and divide them by
the number of tasks, excluding the first and last virtual tasks.
Based on this average duration, we get the lower and upper
durations by multiplying them with certain factors, currently
set at 0.1 and 3.0, and then use a random function to generate
a random value for each element in the time component of
the genome.

Crossover

Weuseblend crossover (EshelmanandSchaffer 1992) to gen-
erate new offsprings from two parent values. Each genome is
encoded as an array of relative start times. Each time repre-
sents the duration from the latest finish of all the predecessor
tasks to the start time of the corresponding task. This rep-
resentation is different from traditional solution methods,
which are typically sequence based. By combining the array
of relative start times encoding and Blend Crossover, the
location of the offspring will depend on the difference in
the parent solutions. If the differences between the parent
solutions are small, the difference between the offspring and
parent solution will be correspondingly small. This prop-
erty of the search operator constitutes an adaptive search and
needs no tuning parameter. The operator enables searching of
an entire space, at the initial stage, when a randompopulation
over the entire space is initialized, and then it concentrates
the searchmore on the later stages, when the population tends

to converge in some region of the search space. The adaptive
search property was highlighted in a study by Mehra et al.
(2014). They showed that Blend Crossover performed bet-
ter than Arithmetic Crossover in their problem domain. The
crossover operator is a kind of linear combination of the two
parents that uses the following equations for each gene:

Offspring 1 = Parent1 − b × (Parent1 − Parent2)

Offspring 2 = Parent2 + b × (Parent1 − Parent2)

where b is a random value between 0 and 1.

Mutation

Mutation is performed by applying Gaussian noise to each
element in the array. A single element in the genome was
mutated by replacing it with a number chosen based upon a
Gaussian distribution defined by a mean and a standard devi-
ation. The mean and standard deviation are both set equal to
the gene’s previous value. The mutation probability is gene-
based, not genome-based.

Evaluation and selection

During each generation, genomes are evaluated using a mea-
sure of fitness based on the original objective function. Since
we dealwith aminimization problem,we convert the genome
i objective function value into its fitness value by using a
fi = 1/makespan, so that a fitter genome has a larger fitness
value. In each generation, we select a portion (replacement
percentage) of the worst individuals, and then replace them
with newly generated good individuals in order to create a
new population for the next generation.

Termination

There are two terminating conditions. The first one is based
on the number of generations, and the second one is based
on the number of generations that cannot achieve a better
solution, whichever is earlier.

123

J Intell Manuf (2017) 28:1189–1201 1195

Parameterization

We studied the effects of several important parameters on
the performance of our proposed GA. Since a rapid response
and optimal resource allocation is required for cloud manu-
facturing, extensive trial runs have been performed to provide
practical values for the GA-related parameters. The selected
GA parameters are the number of generations=20, popu-
lation size=30, crossover rate=0.6 and mutation rate=0.2,
generations that cannot achieve a better solution=9, the
replacement percentage=0.2, local search level=5, and
number of best local search at each level=3.

Enhancement

A newly generated offspring might not be feasible after
crossover or mutation. This is because the encoding of
genome has not considered resource constraints. In that case,
we will perform enhancements to resolve those problems.
After the crossover and mutation, and based on the delay
times of genes of a genome, we construct an initial project
schedule without considering the resource constraint, and in
ascending order of task numbers and by using serial sched-
ule generation scheme (serial SGS). Based on the start times
of tasks in the constructed schedule, we sort the tasks in
ascending order of their start times. The sorting also ensures
the task precedence relationships of tasks satisfied. Based on
the sorted task sequence, we then construct a final schedule
that takes into consideration of task precedence and resource
constraints by using serial SGS.

Local search

Two kinds of neighborhood search approaches are imple-
mented in this research to exploit the neighborhood of
solutions. Both neighborhood search approaches have used
the concept of a block, in which a move is defined by insert-
ing a task to a block on a critical path. Critical paths play

an important part in a feasible solution. Critical paths are the
longest routes from a start node to a sink node in a directed
graph. We first try to locate the critical path blocks for a
given solution. This is quite similar to job shop scheduling
(Nowicki and Smutnicki 1996). From the last task, based on
predecessor tasks and resource constraints, we traced them
backwards. Take Example 1 in Fig. 3 as an example. Those
rectangles highlighted with thicker borders are tasks in the
critical path, which include (2, 5, 12, 18, 19, 9, 25, 26, 28, 30).
A critical block (B) is amaximum subsequence of successive
tasks, which contains tasks that are processed on the same
machine in the critical path. For example, there arefiveblocks
in the critical path, which are B1 = (2, 5), B2 = (12, 18),
B3 = (19, 9, 25), B4 = (26, 28), B5 = (30).

Our first neighborhood search approach (N1) is based on
Nowicki and Smutnicki (1996). For each critical path, we
consider a set of moves that “swaps tasks near the borderline
of blocks on a single critical path”, as shown in Fig. 5. In
the first block, we only swap the last two tasks, while in the
last block, we only swap the first two tasks. For other blocks,
besides the first and last blocks, we swap the first two tasks
and the last two tasks, each of which contains at least two
tasks.

Our second neighborhood search approach (N2) is based
on Balas and Vazacopoulos (1998). For each critical path, we
consider a set of moves that “moves internal tasks to either
before thefirst or after the last task on a critical path” as shown
in Fig. 6. The size of N2 is quite large and the approach is
time consuming. However, our preliminary result shows that
it tends to get better makespan than N1 since it considers
more moves.

We test all ofN1 (N2)moves, and choose the bestn defined
by the parameter (number of best local search) to go and find
another critical path and then repeat the same procedure. This
can go on indefinitely, as long as there are still tasks that can
be swapped. Hence, we further use another parameter (local
search level) to define how many levels (how many critical
paths) we want to execute in a local search.

first block last block

move move move move

Swapping the last two
tasks

Swapping the first two
tasksSwapping the first two and the last two tasks

other blocks

… …

move move

Fig. 5 Neighborhood of moves (N1)

123

1196 J Intell Manuf (2017) 28:1189–1201

…

Moving a task to the end of the block

Moving a task to the begining of the block

critical block critical block

First task

Last task

Fig. 6 Neighborhood of moves (N2)

80

90

100

110

120

130

140

150

160

0 500 1000 1500 2000 2500 3000

M
ak

es
pa

n

Genera�on

j120_1

j120_2

j120_3

j120_4

j120_5

j120_1

j120_2

j120_3

j120_4

j120_5

Fig. 7 The converge curves of the proposed GA

Computational results

In this section, we present several computational results
on the performance of the proposed GA. The GA was
implemented in C++ using GAlib, a C++ library of GA com-
ponents developed by Wall (1996). Test instances include
a variety of RCPSPs taken from PSPLIB (Kolisch and
Sprecher 1997) and ran on an Intel (R) Core (TM) i7-3770
3.4GHz processor and 16GB RAM. We have selected the
test sets J30, J60, J90, and J120. Each of these sets contains
projects with 30, 60, 90, and 120 tasks, respectively, and four
resources.

The convergence curves of the proposed GA

We examined the convergence curves of the proposed GA.
We set the maximum generation to 10000 and disabled the
terminating conditions for the number of generations that

cannot achieve a better solution. Figure 7 shows five typical
convergence curves for some of the benchmark instances of
J120. From the curves, the GA has a steep descent for early
generations. This is important for a fast GA applicable for
resource allocation problems in cloud manufacturing. The
GA, in average, takes 2703.4 generations to converge to the
best solution for the 20 tested benchmark problem instances
of J120.

The performance of the proposed GA

In order to examine the performance of the proposed GA,
we first compare it with benchmark problem instances taken
from PSPLIB. Two kinds of neighborhoods have been used
to evaluate the quality of the proposed GA. GA_N1 repre-
sents GA incorporated with neighborhood search approach
N1 while GA_N2 represents GA incorporated with neigh-
borhood search approach N2. Four sets (J30, J60, J90, and
J120) of benchmark instances have been used to evaluate the
quality of the proposed GA. For each set of problem sizes,
20 instances have been selected. Since not all of the problem
instances in PSPLIB have found optimal solutions, we have
selected instances that have provided optimal solutions to be
tested (lower bound=upper bound). Table 2 gives the compu-
tational results for benchmark problem instances. For single
project scheduling that contains J30, J60, J90, and J120, the
GA_N1on average deviates 1.1, 2.9, 5.9, and 14.2% from the
optimal solution. The average computation times are 0.09,
0.24, 0.51, and 1.77 s for J30, J60, J90, and J120, respec-
tively. The GA_N2 on average deviates 1.1, 2.4, 4.8, and
13.3% from the optimal solution for J30, J60, J90, and J120,
respectively. The average computation times are 0.09, 0.28,
0.81, and 2.88 s for J30, J60, J90, and J120, respectively.
As the problem size increases, the average deviation from
the optimal solutions increases. Also, as the problem size
increases, the computation time increases. Our GA settings
are fined tune for problem size 30 and we used the same GA

123

J Intell Manuf (2017) 28:1189–1201 1197

Table 2 The performance of GA for benchmark problem instances

Number
of tasks

Opt. GA_N1 (GA_N1-Opt.)/ Opt. Computation
time(s)

GA_N2 (GA_N2-Opt.)/ Opt. Computation
time(s)

J30 48.20 48.75 0.011 0.09 48.75 0.011 0.09

J60 71.45 73.55 0.029 0.24 73.20 0.024 0.28

J90 84.05 87.90 0.046 0.50 87.00 0.035 0.76

J120 98.00 111.90 0.142 1.77 111.00 0.133 2.88

Average 75.425 80.813 0.057 0.649 80.25 0.051 1.004

Table 3 Average percent
deviations from the critical-path
based lower bound for J30

Algorithm Reference Maximum no. of schedules

1000 5000

Neurogenetic (FBI) Agarwal et al. (2011) 0.13 0.10

SFLA-FBI Fang and Wang (2012) 0.36 0.21

PSO Jia and Seo (2013a, b) 0.49 –

GA This study 0.64 0.56

BSO Ziarati et al. (2011) 0.65 0.36

GA-late join Coelho and Tavares (2003) 0.74 0.33

Sampling-global Coelho and Tavares (2003) 0.81 0.54

ABC Ziarati et al. (2011) 0.98 0.57

Sampling-WCS Kolisch (1996a, b) 1.40 1.28

Sampling-LFT Kolisch (1996a, b) 1.40 1.29

Sampling-random (S) Kolisch (1995) 1.44 1.00

ACO Chen et al. (2010a, b) 1.57 –

Sampling-random (P) Kolisch (1995) 1.77 1.48

GA-problem space Leon and Ramamoorthy (1995) 2.08 1.59

Filter and fan Ranjbar (2008) 13.93 13.37

settings for other problem sizes. If GA settings are changed
depends on the problem sizes, better results can be achieved
for larger problem sizes. Overall, the GA_N1 deviates 5.7%
from the optimal solution, and the average computation time
is 0.649s while the GA_N2 deviates 5.1% from the opti-
mal solution, and the average computation time is 1.004s.
The GA_N2 outperforms the GA_N1 in terms of makespan.
However, the GA_N1 outperforms the GA_N2 in terms of
computation time. This is a tradeoff between solution qual-
ity and the time response to the users that a manager needs
to consider. Table 2 shows that the proposed GA can gen-
erate good quality solutions quickly, even in large problem
instances.

Comparison with other algorithms

Next, we compare the performance of the GA_N2 developed
in this work with the existing algorithms. We also compare it
with benchmark problem instances taken from PSPLIB. We
have selected the test sets J30, J60, and J120. Sets J30 and J60
consist of 480 instances. Set J120 consists of 600 instances.

The effectiveness of the algorithmproposed is comparedwith
a number of state-of-the-art algorithms for the RCPSP. In
order to provide a basis for the comparison, the number of
generated and evaluated schedules, has been fixed to 1000
and 5000. Tables 3, 4, 5 display the results obtained from our
GA and other tested algorithms. In these tables, we present
the type of algorithms, the reference of each heuristic and
the average percent deviations from the critical-path based
lower bound (from the optimal solution for J30 instances)
for 1000 and 5000 schedules, respectively. In each table, the
algorithms are sorted according to descending performance,
with respect to 1000 schedules. Table 3 summarizes the aver-
age percentage deviations from the optimal solution for the
instance set J30. The average deviation of the proposed GA
from the optimal solution is 0.64 and 0.56% for 1000 and
5000 schedules, respectively. Tables 4, 5 summarized the
average percentage deviations from the critical-path based
lower bound for the instance sets J60 and J120, respectively.
The average deviation of the proposed GA from the critical-
path based lower bound is 12.73 and 12.38% for 1000 and
5000 schedules for J60 set. The average deviations are 41.2

123

1198 J Intell Manuf (2017) 28:1189–1201

Table 4 Average percent
deviations from the critical-path
based lower bound for J60

Algorithm Reference Maximum no. of schedules

1000 5000

SFLA-FBI Fang and Wang (2012) 11.44 10.87

Neurogenetic (FBI) Agarwal et al. (2011) 11.51 11.29

PSO Jia and Seo (2013a, b) 12.12 –

GA This study 12.73 12.38

ABC Shi et al. (2010) 12.75 11.48

GA-late join Coelho and Tavares (2003) 13.28 12.63

Sampling-LFT Kolisch (1996a, b) 13.59 13.23

Sampling-WCS Kolisch (1996a, b) 13.66 13.21

TS-schedule scheme Baar et al. (1998) 13.80 13.48

Sampling-global Coelho and Tavares (2003) 13.80 13.31

Sampling-LFT Kolisch (1996a, b) 13.96 13.53

GA-problem space Leon and Ramamoorthy (1995) 14.33 13.49

ABC Ziarati et al. (2011) 14.57 13.12

GA-random key Hartmann (1998) 14.68 13.32

Sampling-random (P) Kolisch (1995) 14.89 14.30

Sampling-random (S) Kolisch (1995) 15.94 15.17

Table 5 Average percent
deviations from the critical-path
based lower bound for J120

Algorithm Reference Maximum no. of schedules

1000 5000

Neurogenetic (FBI) Agarwal et al. (2011) 34.65 34.15

SFLA-FBI Fang and Wang (2012) 34.83 33.20

ACOSS Chen et al. (2010a, b) 35.19 32.48

PSO Jia and Seo (2013a, b) 37.22 –

GA This study 41.20 39.52

Sampling-global Coelho and Tavares (2003) 41.36 40.46

Sampling-adaptive Kolisch and Drexl (1996) 41.37 40.45

SA-activity list Bouleimen and Lecocq (2003) 42.81 37.68

Sampling-LFT Kolisch (1996a, b) 42.84 41.84

GA-problem space Leon and Ramamoorthy (1995) 42.91 40.69

ABC Ziarati et al. (2011) 43.24 39.87

Sampling-random (P) Kolisch (1995) 44.46 43.05

GA-random key Hartmann (1998) 45.82 42.25

Sampling-random (S) Kolisch (1995) 49.25 47.61

AS Kolisch and Hartmann (2006) 49.25 –

s-ACO Merkle et al. (2002) – 39.82

and 39.52% for 1000 and 5000 schedules for J120 set. These
results are competitive with other techniques used in the lit-
erature.

Results for computing resources allocation in a cloud
manufacturing system

Asmentioned above, for a given RCPSP, graphs are used and
the successors and predecessors of each node are recorded by
adjacent lists. Since many tasks are submitted to a resource

for service and the resource is needed to handle the tasks
sequentially, we vary the task durations to reflect the sit-
uation of resource allocation in cloud manufacturing. The
duration of each task is randomly generated from uniform
distribution [0.5p j , 2.0p j]. Moreover, we vary the level of
parameters to see how they influence the performance of the
GA. Instead of comparing all combinations of parameter
settings individually, we fix all parameters and change the
level of a parameter in one setting at a time. For example,
the second row of Table 6 shows the results of a changing

123

J Intell Manuf (2017) 28:1189–1201 1199

Table 6 Experiment results with different parameter settings of the GA (120 tasks)

Parameter settings GA_N1 GA_N2

Average makespan Computation time Deviationa Average makespan Computation time Deviationa

Crossover rate 0.4 131.05 1.91 0.003 129.60 2.93 −0.008

0.6 130.65 1.89 0.000 128.60 3.35 −0.016

0.8 130.75 1.77 0.001 129.25 2.65 −0.011

Mutation rate 0.05 132.60 1.64 0.015 130.35 2.90 −0.002

0.1 131.75 1.76 0.008 130.05 2.92 −0.005

0.2 130.65 1.89 0.000 128.60 3.35 −0.016

Number of generation 20 130.65 1.89 0.000 128.60 3.35 −0.016

100 130.65 1.89 0.000 128.60 3.30 −0.016

200 130.65 1.89 0.000 128.60 3.28 −0.016

Replacement percentage 10 132.25 1.59 0.012 129.90 3.03 −0.006

20 130.65 1.89 0.000 128.60 3.35 −0.016

50 130.00 2.23 −0.005 128.60 3.20 −0.016

Population size 30 130.65 1.89 0.000 128.60 3.35 −0.016

100 129.15 2.57 −0.011 128.05 3.79 −0.020

150 129.10 3.23 −0.012 127.70 4.26 −0.023

Generations that can-
not achieve a better
solution

9 130.65 1.89 0.000 128.60 3.35 −0.016

15 130.35 2.16 −0.002 128.25 3.33 −0.018

30 129.90 2.20 −0.006 128.50 3.27 −0.016

Local search level 0 135.70 0.38 0.039 135.70 0.38 0.039

3 132.15 0.57 0.011 130.55 0.73 −0.001

5 130.65 1.89 0.000 128.60 3.35 −0.016

Number of best local
search

0 135.70 0.38 0.039 135.70 0.38 0.039

3 130.65 1.89 0.000 128.60 3.35 −0.016

5 130.55 7.76 −0.001 128.15 16.21 −0.019

a Deviation is calculated by (average makespan- standard setting of GA_N1)/standard setting of GA_N1

crossover rate to 0.4, and all the other parameters are kept
the same, as defined in Sect. 4.1 under Parameterization. For
each parameter settings, 20 instances have been generated
and tested. Table 2 shows that the GA has a larger devia-
tion from the optimal solution for projects with 120 tasks.
We fix problem size to 120 tasks instances since it is more
challenging.

Table 6 demonstrates the computational results for com-
puting resources allocation in a cloud manufacturing system
with different parameter settings of the GA. If we use the
parameter settings defined in Sect. 4.1 under Parameteri-
zation, the average makespan obtained is 130.65 for the
GA_N1. We called it standard setting of the GA_N1. We
use it as a benchmark to evaluate the performance of each
parameter setting by calculating (average makespan- stan-
dard setting of the GA_N1)/standard setting of the GA_N1
that is listed under the deviation column. In the deviation
column, a positive value represents that the corresponding
settings of GA has found solutions that are worse than the
standard setting of GA_N1’s solutions (130.65). A negative
value represents that the corresponding settings of theGAhas

found solutions that are better than the standard setting of the
GA_N1’s solutions. It is obvious that in all casesGA_N2 per-
forms equal to or better than GA_N1 when solution quality
is concerned. However, the mangers might prefer GA_N1
since computation time is an important factor in cloud man-
ufacturing for fast response to customer request. Except for
the number of generation, the results show that all parameters
have influences on the performance of the GA. The mutation
rate, population size, local search level, and number of best
local search have significant influences on the performance
of the GA. Increasing mutation rate, population size, local
search level, or number of best local search can lead to a
smaller makespan with the effect of increasing computation
time. When local search level (number of best local search)
set to 0, it means that local search has been disabled. Both the
GA_N1 and GA_N2 perform poorly when local search has
not been implemented. Among all the settings, the GA_N2
performs the best when population size is set to 150 and the
average computation time for it is 4.26 s. When both local
search level and number of best local search set to 5, the
computation time for GA_N2 is the longest.

123

1200 J Intell Manuf (2017) 28:1189–1201

Conclusions and future works

Fast optimal allocation of computing resources is one of
the most important problems in cloud manufacturing. In this
study, a GA-based algorithm has been proposed to solve the
problem of computing resource allocation in a cloud manu-
facturing system.We focus on the computation time which is
an important factor in cloud manufacturing for fast response
to customer request. Experiments demonstrate the effective-
ness of the proposed GA, and show GA’s high performance
for solving optimally allocated computing resources in the
cloud manufacturing system. To further improve the perfor-
mance of the GA, a full design of experiment should be done
for different problem sizes.

Due to the complex characteristics, determining how to
find a feasible solution that can satisfy all users’ demands
with the minimum resources utilization in a short time is
the most important matter in resource management in cloud
manufacturing system. Hence, future works can study on
designing more efficient algorithms that minimize makespan
and resources utilization simultaneously.

References

Abrishami, S., &Naghibzadeh,M. (2012). Deadline-constrained work-
flow scheduling in software as a service cloud. Scientia Iranica,
19(3), 680–689.

Agarwal, A., Colak, S., & Erenguc, S. (2011). A neurogenetic approach
for the resource-constrained project scheduling problem. Com-
puter and Operations Research, 38(1), 44–50.

Alcaraz, A., & Maroto, C. (2001). A robust genetic algorithm for
resource allocation in project scheduling. Annals of Operations
Research, 102, 83–109.

Alcaraz, J., Maroto, C., & Ruiz. R. (2004). Improving the performance
of genetic algorithms for the RCPS problem. In Proceedings of the
9th International Workshop on Project Management and Schedul-
ing (pp. 40–43).

Baar, T., Brucker, P., & Knust, S. (1998). Tabu search algorithms
and lower bounds for the resource-constrained project schedul-
ing problem (pp. 1–18). US: Springer.

Balas, E., &Vazacopoulos, A. (1998). Guided local search with shifting
bottleneck for job shop scheduling.Management Science, 44, 262–
275.

Bardsiri, A. K., & Hashemi, S. M. (2012). A review of workflow
scheduling in cloud computing environment. International Journal
of Computer Science and Management Research, 1(3), 348–351.

Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and itsmultiplemode version.European Journal of Oper-
ational Research, 149(2), 268–281.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999).
Resource-constrained project scheduling: Notation, classification,
models, and methods. European Journal of Operational Research,
112(1), 3–41.

Chen, R. M., Wu, C. L., Wang, C. M., & Lo, S. T. (2010). Using novel
particle swarm optimization scheme to solve resource-constrained
scheduling problem in PSPLIB.Expert Systems with Applications,
37(3), 1899–1910.

Chen, W., Shi, Y. J., Teng, H. F., Lan, X. P., & Hu, L. C. (2010).
An efficient hybrid algorithm for resource-constrained project
scheduling. Information Sciences, 180(5), 1031–1039.

Cheng, Y., Tao, F., Liu, Y., Zhao, D., Zhang, L., & Xu, L. (2013).
Energy-aware resource service scheduling based on utility evalua-
tion in cloud manufacturing system. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manu-
facture, 227(12), 1901–1915.

Coelho, J., & Tavares, L. (2003). Comparative analysis of meta-
heuristics for the resource constrained project scheduling problem.
Technical Report, Department of Civil Engineering, Instituto
Superior Tecnico.

Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic
algorithm for the resource-constrained project-scheduling prob-
lem. Operations Research, 55(3), 457–469.

Eshelman, L. J.,&Schaffer, J. D. (1992). Real-coded genetic algorithms
and interval schemata. In L. Darrel Whitley (Ed.), Foundations of
Genetic Algorithms 2. San Mateo, CA: Morgan Kaufmann Pub-
lishers.

Fang, C., & Wang, L. (2012). An effective shuffled frog-leaping
algorithm for resource-constrained project scheduling problem.
Computers and Operations Research, 39, 890–901.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Reading: Addison Wesley.

Gonçalves, J. F., Resende, M. G., & Mendes, J. J. (2011). A biased
random-key genetic algorithm with forward-backward improve-
ment for the resource constrained project scheduling problem.
Journal of Heuristics, 17(5), 467–486.

Grèze, L., Pellerin, R., Leclaire, P., & Perrier, N. (2014). CIGI2011: A
heuristic method for resource-constrained project scheduling with
activity overlapping. Journal of Intelligent Manufacturing, 25(4),
797–811.

Hartmann, S. (1998). A competitive genetic algorithm for resource-
constrained project scheduling. Naval Research Logistics, 45(6),
733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project
scheduling under resource constraints. Naval Research Logistics,
49(5), 433–448.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and exten-
sions of the resource-constrained project scheduling problem.
European Journal of Operational Research, 207(1), 1–14.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems.
Ann Arbor, MA: University of Michigan.

Jia, Q., & Seo, Y. (2013a). An improved particle swarm optimization for
the resource-constrained project scheduling problem. The Interna-
tional Journal of Advanced Manufacturing Technology, 67(9–12),
2627–2638.

Jia, Q., & Seo, Y. (2013b). Solving resource-constrained project
scheduling problems: conceptual validation of FLP formulation
and efficient permutation-based ABC computation. Computers
and Operations Research, 40(8), 2037–2050.

Ji, X., & Yao, K. (2014). Uncertain project scheduling problem with
resource constraints. Journal of Intelligent Manufacturing. doi:10.
1007/s10845-014-0980-x.

Kaur, N., Aulakh, T. S., & Cheema, R. S. (2011). Comparison of
workflowscheduling algorithms in cloud computing. International
Journal of Advanced Computer Science and Applications, 2(10),
81–86.

Khanzadi, M., Soufipour, R., & Rostami, M. (2011). A new improved
genetic algorithm approach and a competitive heuristic method
for large-scale multiple resource-constrained project-scheduling
problems. International Journal of Industrial Engineering Com-
putations, 2(4), 737–748.

Kim, B., Youn, C. H., Park, Y. S., Lee, Y., & Choi, W. (2012). An
adaptive workflow scheduling scheme based on an estimated data

123

http://dx.doi.org/10.1007/s10845-014-0980-x
http://dx.doi.org/10.1007/s10845-014-0980-x

J Intell Manuf (2017) 28:1189–1201 1201

processing rate for next generation sequencing in cloud computing.
JIPS, 8(4), 555–566.

Kochetov, Y., & Stolyar, A. (2003). Evolutionary local search with vari-
able neighborhood for the resource constrained project scheduling
problem. In Proceedings of the 3rd International Workshop of
Computer Science and Information Technologies, Russia.

Kolisch,R.,&Drexl,A. (1996).Adaptive search for solving hard project
scheduling problems. Naval Research Logistics, 43(1), 23–40.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of
heuristics for resource-constrained project scheduling: An update.
European Journal of Operational Research, 174, 23–37.

Kolisch, R. (1995). Project scheduling under resource constraints: Effi-
cient heuristics for several problem classes. Heidelberg: Springer
Press.

Kolisch, R. (1996a). Efficient priority rules for the resource-constrained
project scheduling problem. Journal of Operations Management,
14(3), 179–192.

Kolisch, R. (1996b). Serial and parallel resource-constrained project
scheduling methods revisited: Theory and computation. European
Journal of Operational Research, 90(2), 320–333.

Kolisch, R., & Sprecher, A. (1997). PSPLIB—A project schedul-
ing problem library: OR Software—ORSEP operations research
software exchange program. European Journal of Operational
Research, 96(1), 205–216.

Lee, G., Chun, B. G., & Katz, R. H. (2011). Heterogeneity-aware
resource allocation and scheduling in the cloud. In Proceedings
of HotCloud (pp. 1–5).

Laili, Y., Tao, F., Zhang, L., Cheng, Y., Luo, Y. L., & Sarker, B. R.
(2013). A ranking chaos algorithm for dual scheduling of cloud
service and computing resource in private cloud. Computers in
Industry, 64, 448–463.

Laili, Y., Tao, F., Zhang, L. & Ren, L. (2011), The optimal allocation
model of computing resources in cloud manufacturing system. In
IEEE Seventh International Conference on Natural Computation.

Laili, Y. J., Tao, F., Zhang, L., & Sarker, B. R. (2012). A study of optimal
allocation of computing resources in cloudmanufacturing systems.
International Journal of AdvancedManufacturing Technology, 63,
671–690.

Leon, V. J., & Ramamoorthy, B. (1995). Strength and adaptability
of problem space based neighborhoods for resource-constrained
scheduling. OR Spectrum, 17(2–3), 173–182.

Lodha, P. R., & Wadhe, M. A. P. (2013). Study of different types of
workflow scheduling algorithm in cloud computing. International
Journal of Advanced Research in Computer Science and Electron-
ics Engineering (IJARCSEE), 2(4), 421.

Mehra, M., Jayalal, M. L., Arul, A. J., Rajeswari, S., Kuriakose, K.,
& Satya Murty, S. A. V. (2014). Study on different crossover
mechanisms of genetic algorithm for test interval optimization for
nuclear power plants. International Journal of Intelligent Systems
and Applications, 6(1), 20–28.

Mendes, J. J., Goncalves, J. F., & Resende, M. G. C. (2009). A random
key based genetic algorithm for the resource constrained project
scheduling problem. Computers and Operations Research, 36(1),
92–109.

Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant colony
optimization for resource-constrained project scheduling. IEEE
Transactions on Evolutionary Computation, 6(4), 333–346.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for
the job shop problem. Management Science, 42(6), 797–813.

Rahman, M., Hassan, R., Ranjan, R., & Buyya, R. (2013). Adap-
tive workflow scheduling for dynamic grid and cloud computing
environment. Concurrency and Computation: Practice and Expe-
rience, 25(13), 1816–1842.

Ranjbar,M. (2008). Solving the resource constrained project scheduling
problem using filter-and-fan approach. Applied Mathematics and
Computation, 201, 313–318.

Shi, Y. J., Qu, F. Z., Chen, W., & Li, B. (2010). An artificial bee colony
with random key for resource-constrained project scheduling. In
Life System Modeling and Intelligent Computing (pp. 148–157).
Springer, Berlin Heidelberg.

Shue, L. Y., & Zamani, R. (1999). An intelligent search method for
project scheduling problems. Journal of Intelligent Manufactur-
ing, 10(3–4), 279–288.

Tao, F., Laili, Y., Xu, L., & Zhang, L. (2012). FC-PACO-RM: A parallel
method for service composition optimal-selection in cloud man-
ufacturing system. IEEE Transactions on Industrial Informatics,
9(4), 2023–2033.

Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algo-
rithm for the resource-constrained project scheduling problem.
European Journal of Operational Research, 185(2), 495–508.

Varalakshmi, P., Ramaswamy, A., Balasubramanian, A., &Vijaykumar,
P. (2011). An optimal workflow based scheduling and resource
allocation in cloud. In Advances in Computing and Communica-
tions (pp. 411–420). Springer, Berlin Heidelberg.

Wall B. W. (1996). A Genetic Algorithm for Resource Constrained
Scheduling, PhD Thesis, Department of Mechanical Engineering,
Massachusetts Institute of Technology, USA.

Wu, D., Greer, M. J., Rosen, D. W., & Schaefer, D. (2013). Cloud
manufacturing: Strategic vision and state-of-the-art. Journal of
Manufacturing System, 32(4), 564–579.

Wu, L., & Yang, C. (2010). A solution of manufacturing resources
sharing in cloud computing environment. Cooperative Design,
Visualization and Engineering (pp. 247–252). Berlin Heidelberg:
Springer.

Yassa, S., Chelouah, R., Kadima, H., & Granado, B. (2013). Multi-
objective approach for energy-awareworkflow scheduling in cloud
computing environments. The Scientific World Journal.

Zhang, Q., Zhu, Q., & Boutaba, R. (2011). Dynamic resource alloca-
tion for spot markets in cloud computing environments. In Utility
and Cloud Computing (UCC), 2011 Fourth IEEE International
Conference on IEEE (pp. 178–185).

Zamani, R. (2013). A competitive magnet-based genetic algorithm
for solving the resource-constrained project scheduling problem.
European Journal of Operational Research, 229(2), 552–559.

Ziarati, K., Akbari, R., & Zeighami, V. (2011). On the performance of
bee algorithms for resource-constrained project scheduling prob-
lem. Applied Soft Computing, 11(4), 3720–3733.

123

	Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system
	Abstract
	Introduction
	Related works
	Resource-constrained project scheduling problem
	Genetic algorithms
	Basic operations of the GA
	Genetic representation
	Initialization
	Crossover
	Mutation
	Evaluation and selection
	Termination
	Parameterization

	Enhancement
	Local search

	Computational results
	The convergence curves of the proposed GA
	The performance of the proposed GA
	Comparison with other algorithms
	Results for computing resources allocation in a cloud manufacturing system

	Conclusions and future works
	References

