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Abstract It is difficult to formulate and solve optimization
problems for sustainability performance in manufacturing.
The main reasons for this are: (1) optimization problems
are typically complex and involve manufacturing and sus-
tainability aspects, (2) these problems require diversity of
manufacturing data, (3) optimization modeling and solving
tasks require specialized expertise and programming skills,
(4) the use of a different optimization application requires
re-modeling of optimization problems even for the same
problem, and (5) these optimization models are not decom-
posed nor reusable. This paper presents the development of
a decision support system (DSS) that enables manufactur-
ers to formulate optimization problems at multiple manu-
facturing levels, to represent various manufacturing data, to
create compatible and reusable models and to derive easily
optimal solutions for improving sustainability performance.
We have implemented a DSS prototype system and applied
this system to two case studies. The case studies demon-
strate how to allocate resources at the production level and
how to select process parameters at the unit-process level to
achieve minimal energy consumption. The research of this
paper will help reduce time and effort for enhancing sustain-
ability performance without heavily relying on optimization
expertise.
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Introduction

As environmental concerns such as climate change, energy
security, and scarcity of resources have grown, manufac-
turing industries have shown more interest in sustainable
manufacturing (OECD 2009). Sustainability performance
is becoming a major indicator in manufacturing industries
for improving energy efficiency and reducing environmental
burdens. In response to these industrial needs, there has been
significant research in optimization, which refers to finding
feasible solutions to obtain extrema for the values of impor-
tant objectives (Deb 2001).

Diaz and Dornfeld (2012) implemented machine tool
scheduling by using a discrete-event simulation for opti-
mizing cost and environmental impact in a flexible man-
ufacturing system. Diaz et al. (2010) implemented green
machining strategy by optimizing process parameters. Fang
et al. (2013) solved flow shop scheduling with peak power
constraint using mathematical programming and a combi-
national approach. Winter et al. (2013) developed multi-
objective optimization models that identified process para-
meters in grinding operations. Aggarwal et al. (2008), Hanafi
et al. (2012), Bhushan (2013), and Kuram et al. (2013) stud-
ied the selection of cutting parameters for minimizing power
consumption with consideration of surface roughness and
tool wear. Li et al. (2013a) suggested a comprehensivemodel
to analyze carbon emission of a machining process quan-
titatively to achieve energy-driven process optimization. Li
et al. (2013b) found optimal cutting parameters thatminimize
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machining time, energy consumption, and surface roughness
in sculptured part machining. Jia et al. (2014) proposed the
optimization method that applies the Therblig-based energy
model through mapping of machining activities with energy
attributes. Lei et al. (2014) integrated a traditional process
planning approach with the green process concept that con-
siders several sustainability indicators such as tool wear,
energy consumption, fluid consumption, fluid toxicity, and
equipment’s noise. Their efforts have contributed to the suc-
cess of utilizing optimization approaches to advance sustain-
ability performance objectives. However, the application of
these optimization approaches remains a major challenge for
manufacturers, especially small andmedium-sizedmanufac-
turers, due to the complexity and expertise required for for-
mulating and solving optimization problems.

Therefore, there is a need to easily formulate optimization
models (i.e., a set of representation models including an opti-
mization problem, its associated manufacturing processes
and data, and optimization strategy) and to obtain optimal
solutions by using a Decision Support System (DSS), which
is “a computer-based program application that helps users in-
corporate business and organizational decisionmaking activ-
ities (Vinodh et al. 2014)”. Manufacturers can use commer-
cial DSSs, i.e., existing optimization applications, for this
purpose. It is more efficient to use a DSS that enables manu-
facturers to formulate their optimization problems easily and
intuitively and, in turn, to obtain optimal solutions for sus-
tainability performance of manufacturing processes. How-
ever, there are no such DSSs in the domain of sustainable
manufacturing, which are capable to resolve the following
challenges.

First, optimization models for sustainable manufacturing
generally need to deal with problems at multiple manufactur-
ing levels such as the production level and/or the unit-process
level (i.e., a process element of a production process). For
example, there are optimization problems forminimal energy
consumption by resource allocation at the production level
and by process parameter selection at the unit-process level.
Moreover, these optimization models are typically complex
and involvemany constraints from both productivity and sus-
tainability aspects such as production throughput and energy
consumption. Second, the diversity of manufacturing data
and the complex relationships among those data make it dif-
ficult to formulate optimization problems. The mathematical
relationships need to be represented correctly and also solv-
able. It is not easy to represent manufacturing data necessary
for formulating the problems due to various characteristics of
the data in terms of time domain, format and data source (e.g.,
time-series or discrete-event, structured or unstructured, and
dynamic or static). For example, process plan data have a
static characteristic that is independent of time domain while
machine monitoring data are dynamic, time-sensitive, and
related to a machine tool’s actions. These two heteroge-

neous data may cause data processing and matching prob-
lems. Third, formulating and solving an optimization prob-
lemgenerally need specialized expertise and skill, e.g.,Math-
ematical Programming (MP), Constraint Programming (CP),
Genetic Algorithms or Simulated Annealing. This work also
requires fundamental knowledge of existing software and
the underlying algorithm principles (Biegler 2010). How-
ever, manufacturers may not have this expertise and skill.
Fourth, manufacturers normally design their incompatible
optimization models, i.e., application-specific models. This
means that the use of a different optimization application
will require re-modeling even for the same problem. Fifth,
manufacturers have to create their optimizationmodels again
and again unless these models or model components can be
reused.

To address these challenges, this paper presents the devel-
opment of aDSS that enablesmanufacturers to: (1) formulate
optimization problems at multiple manufacturing levels, (2)
represent manufacturing data and performance metrics, (3)
create compatible and reusable models, and (4) easily derive
optimization solutions for improving sustainability perfor-
mance. More specifically, the contributions of this paper are
as follows. First, we propose a decision-making procedure
that can be applied to manufacturing practices and design
considerations to map this procedure to system implemen-
tation. Second, we propose a system architecture for the
behavior (activities in a logical progression), the function
(functional components for the activities), and the data (data
components for representing anoptimizationmodel and solu-
tion). Third, we implement a prototype of the DSS based on
the designed architecture. Finally, we apply the prototype to
two case studies to demonstrate the effectiveness of the DSS.
The two case studies include a resource allocation problem
at the production level and a parameter selection problem at
the unit-process level. For representing optimization models
and solutions, we adopt the Sustainable Process Analytics
Formalism (SPAF) that was developed at National Institute
of Standards and Technology (NIST), which “allows formal
modeling of modular, extensible and reusable process com-
ponents and enables the optimization of sustainability perfor-
mance based on mathematical programming (Brodsky et al.
2014)”. The key functions of the DSS are to: (1) provide
an efficient procedure to derive optimal solutions for sus-
tainability performance, and (2) formulate compatible and
reusable optimization models for various optimization appli-
cations.

“Related work” section of this paper reviews the litera-
ture relevant to DSSs in manufacturing and the data struc-
ture of SPAF. “A decision-making procedure for improving
sustainability performance” section describes the decision-
making procedure for improving sustainability performance.
“Design consideration” section presents design considera-
tions for architecting the DSS, called Sustainability Perfor-
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mance Optimization Tool (SPOT) and “Architecture design”
section introduces the architecture design of SPOT. “Imple-
mentation” section describes the prototype implementation
of SPOT and “Case study” section describes the two case
studies and discussion. “Conclusion” section provides a sum-
mary and conclusions of our work.

Related work

This section reviewsDSSswithinmanufacturing domain and
introduces the data structure of SPAF.

Decision support systems in manufacturing

A wide range use of DSSs has served to the improve-
ment of productivity performance in production line design,
process and machine tool selection, outsourcing determi-
nation, condition-based maintenance and so on. For exam-
ples, Vitanov et al. (2007) presented a DSS that obtained a
quasi-optimal solution for cell line formation. Battaia et al.
(2012) developed a DSS that assisted finding the configura-
tion of a production line. Yurdakul et al. (2014) developed a
DSS that provided the most economical net-shape primary
process. Giachetti (1998) developed a DSS to solve a mate-
rial and manufacturing process selection problem. Arslan
et al. (2004), Taha and Rostam (2012) and Alberti et al.
(2011) developed their DSSs for machine tool selection by
using multi-criteria weighted average, fuzzy analytic hier-
archy process, and machine characteristics and performance
tests, respectively. Leng et al. (2014) proposed aDSS for parts
machining outsourcing. Yam et al. (2001) implemented a
DSS that supplemented conventional condition-based main-
tenance by adding fault diagnosis and predicting equipment
deterioration. Their DSSs have shown to assist manufactur-
ers to improve productivity performances across enterprise
and manufacturing process levels; however, they have not
related to the improvement of sustainability performance.

Recently, a few references such as Le and Pang 2013,
Zhu et al. 2014, Vinodh et al. 2014 and Iqbal et al. 2014 have
introducedDSSs relevant to support decision-making on sus-
tainability performance in manufacturing. Their efforts have
demonstrated the usefulness of the relevantDSSs for improv-
ing sustainability performance. However, these references
are different in the scope of this paper. Le and Pang (2013)
proposed a unified DSS architecture that segmented power
data and clustered the power into groups according to the
process operational states. This reference focused on energy-
and cost- efficiency and decision reliability, but it requires
expertise of operational research for generating energy-based
diagnosis and prognosis models. Zhu et al. (2014) developed
a model-predictive Linear Programming (LP) optimizer to
minimize energy lost with application to energy manage-

ment in production environments; however, this reference
only utilized the optimization technique for the specific prob-
lem. Vinodh et al. (2014) implemented a DSS that performed
fuzzy logic-based sustainability evaluation for measuring the
sustainability level of a manufacturing organization and did
not much consider the compatibility and reusability of opti-
mization models. Iqbal et al. (2014) developed a fuzzy-based
DSS that consists of optimization and prediction for trade-off
among energy consumption, tool life, and material removal
rate.

Data structure of sustainable process analytics formalism
(SPAF)

SPAF has been designed to allow formal modeling of modu-
lar, extensible and reusable process and data components in a
unifiedmodeling environment (Brodsky et al. 2014). For such
a purpose, SPAF provides the hierarchical data structure to
represent process flow, data and mathematical specification
of metrics for sustainability-related optimization problems
(Shao et al. 2014). As shown in Fig. 1, ‘context’ presents the
model name and context data and is globally accessed by all
the components. ‘Flow’ describes entities of inputs and out-
puts of a unit-process. ‘Flow aggregator’ presents merges or
splits of the inputs and outputs of a unit-process. ‘Process’
presents a unit-process that may consist of a single process
or its subordinate processes. ‘Metrics aggregator’ provides a
set of sustainability metrics.

A decision-making procedure for improving
sustainability performance

A decision-making procedure, i.e., an optimization proce-
dure, is necessary to formulate an optimization problem and
to solve the optimization problem. When a well-structured
approach is taken, the complexity of an optimization pro-
cedure can be reduced. This section introduces a decision-
making procedure to improve sustainability performance
based on the interaction with SPOT.

An overall procedure

An optimization procedure typically consists of problem for-
mulation and problem encoding (Dimopoulos and Zalzala
2000). The problem formulation step specifies the problem
and system boundary or constraints; meanwhile the prob-
lem encoding step determines an optimal solution through
process modeling, data collection, optimization solving and
validation. In our approach (as shown in Fig. 2), these steps
can be taken by the interaction with SPOT through its user
interfaces. SPAF makes it possible to represent optimiza-
tion model components in a modular and compatible way.
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Fig. 1 A data structure of SPAF (Brodsky et al. 2014)
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The model knowledge-base stores and retrieves these model
components for their reuse. SPOT interacts with optimiza-
tion applications that can derive the optimal solutions for the
given problem.

Figure 2 presents a schematic optimization procedure for
manufacturing domain. Each step can concurrently progress,
take an iterative way with others and even provide feed-
back from the last step to the first one. In the following sub-
sections, we describe the details of these steps and their cor-
responding examples at the production and the unit-process
levels for easy understanding.

Step 1: problem formulation

When manufacturers consider the improvement of sustain-
ability performance, they normally conceptualize an engi-
neering problem based on their requirements. Because this
engineering problem forms informal and conceptual state-
ment at the initial stage, it needs to be transformed to for-
mal andmathematical representation for formulating an opti-
mization problem. As ‘problem formulation’ associates with
this work, it specifies the problem and system boundary or
constraints. The current problemmodel may not be fully for-
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Fig. 3 An example of a
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mulated because its manufacturing process model and data
are not instantiated yet. We need to revisit this step after the
completion of each subsequent step to check for consistency
of the optimization model. This step outputs the definition of
the following elements (Deb 2001):

• Objective function: a scalar quantitative performancemea-
sure that needs to be minimized or maximized

• Boundary or constraints: a feasible region that defines lim-
its of performance

• Decision variables: multiple parameters adjusted to satisfy
the constraints

Production level: when a production engineer needs
to minimize the total energy consumption by allocating
resources appropriately at the production process level, the
engineer can set: 1) an objective function to minimize energy
consumption, 2) constraints to minimum and maximum
throughputs at each unit-process of the production process,
and 3) a decision variable to the number of throughput at a
unit-process, as expressed in Eq. 1.

Minimize E(x1, . . . , xn),

subject to

⎧
⎨

⎩

E(x) =
n∑

i=1
Ei (xi ),

x (L)
i ≤ xi ≤ x (U )

i

(1)

where, x : the number of throughput, Ei (xi ): energy con-
sumption at each unit-process, n: the number of unit-
processes, x (L): minimum throughput, and x (U ): maximum
throughput.

Unit-process level: in the case of a machining process,
when a process engineer needs to minimize the average
power demand (the average electrical power consumed dur-
ing machining time) by the best selection of process para-
meters, the engineer can set an objective function to mini-
mize power demand, constraints to the ranges of the process
parameters and decision variables to the process parameters.
For example, the power demand equation assumes to be a
quadratic linear regression model, as expressed in Eq. 2.

Minimize P(x1, . . . , xn)

subject to

⎧
⎪⎨

⎪⎩

P(x) = γ0 +
n∑

i=1
γi xi +

n∑

i≤ j
γi j xi x j + ε,

x (L)
i ≤ xi ≤ x (U )

i

(2)

where: x : process parameter, P(x): the average power
demand at a machining process, n: the number of process
parameters, x (L): the minimum value of a process parameter,
x (U ): the maximum value of a process parameter, γ : coeffi-
cient, and ε: error.

Step 2: process modeling

‘Process modeling’ identifies the composition of a manufac-
turing process. This step enables manufacturers to specify a
system boundary and to configure the flows of material and
energy and the relationship of the data to be collected.

Production level: a production engineer can specify a
set of associated unit-processes in a system boundary, as
shown in Fig. 3. A selective unit-process such as ‘unit-
process 2’ can use a separator and an aggregator, as repre-
sented by the triangle marks in Fig. 3. In some cases, certain
unit-processes or material and energy flows may be irrel-
evant and then excluded from the system boundary. This
process modeling assigns the functions Ei (xi ) of Eq. 1 nec-
essary for the Ei (xi ) specified by the next step, which is
‘data collection’. In this example, the numbers of through-
put in ‘unit-process 2-1, 2-2 and 2-3’ can be set as decision
variables.

Unit-process level: a process engineer specifies a set of
sub-processes for a machining unit-process, as shown in Fig.
4. This unit-process model can be regarded as a “zoomed-
in” model of ‘unit-process 2’ in Fig. 3. The input and out-
put of this unit-process model only includes the electri-
cal power and process parameters (see the bold and italic
texts in Fig. 4) and excludes material-relevant flows for this
example.
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Fig. 4 An example of a machining unit-process model and system boundary

Step 3: data collection

‘Data collection’ performs collection of the manufacturing
data relevant to objective functions, constraints and deci-
sion variables. The manufacturing data can be classified into
dynamic and static data according to their source. As shop
floor data correspond to dynamic data created or used during
manufacturing planning and operation, the data can include
production/process plan, machine monitoring, inspection
and environment information. Inventory data are the static
and referential data supplied by external sources and used
when shop floor data are not available. The focus of this step
is not about data logging from equipment or data collecting
from sensors, instead, it is mainly about the insight of data
characteristics and relationships among different data, and
the identification of data sources.

Production level: the functions Ei (xi ) and the bounds
x (L)
i and x (U )

i of Eq. 1 need to be specified by the collec-
tion of useful real shop floor data. For example, assuming
energy consumption at each unit-process has a piecewise lin-
ear dependency on the throughput of the unit-process, asso-
ciating coefficients are found by the result of this data col-
lection. Equation 3 represents the piecewise linear formula
to calculate energy consumption at each unit-process. Then,
E(x) of Eq. 1 can be instantiated because the E(x) is the
sum of Ei (xi ).

Ei (xi ) =
⎧
⎨

⎩

α1xi + β1, i f 0 ≤ x < x1,
. . .

αnxi + βn, i f xn−1 ≤ x ≤ xn

(3)

where, α: gradient coefficient, and β: Y intercept
Unit-process level: the bounds x (L)

i and x (U )
i and the func-

tion P(x) of Eq. 2 can be instantiated by the collection
of process plan data including a set of process parameters
and machine monitoring data including time-series electri-
cal power data. The lower and upper bounds are specified,
depending on the combination of a workpiece material, a

cutting tool and a machine tool. The P(x) can be obtained
through an empirical approach, which conducts experiment
on the process plan data and measures their corresponding
machine monitoring data.

Step 4: optimization solving

‘Optimization solving’ applies optimization strategies,meth-
ods, and techniques to problem solving. Optimization prob-
lems can be classified in terms of the nature of decision
variables, equations, the number of objective functions and
so on (Rao 2009). For example, an optimization problem
can be classified as either Mixed Integer Linear Program-
ming (MILP) or Non-Linear Programming (NLP) in terms
of continuous or discrete decision variables (Biegler 2010).
However, manufacturers who are not familiar with these
optimization techniques may have difficulty of the selec-
tion of an appropriate optimization technique and the deriva-
tion of optimal solutions. To perform easily this difficult
work, SPOT communicates with optimization applications,
based on the SPAF models that can be generated by the
manufacturers.

Production level: because the functions Ei (xi ) of Eq. 3
form non-convex functions, this problem is a MILP prob-
lem. The problem given to the production level, for example,
can be solved by a branch and bound technique, which is
the most widely-used for solving MILP problems (Clausen
1999). A production engineer can obtain the optimal solu-
tion that includes the minimum energy consumption and the
number of throughput at each unit-process.

Unit-process level: for example, the problem given to
the unit-process level can be solved by a CP technique that
solves optimization problems through the representation of
the problems and the use of tree search algorithms (Zeballos
2010).Aprocess engineer canobtain the optimal solution that
includes the minimum power demand and its corresponding
process parameters.
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Step 5: validation

‘Validation’ decides the application of problem solutions
and ensures reliability caused by assumptions for the solu-
tions and lack of data and knowledge. Manufacturers should
reviewwhether derived solutions are applicable for their pro-
duction process and unit-processes. For example, the optimal
solution derived from an optimization applicationmay not be
applicable due to additional constraints or unexpected distur-
bances that have not been considered in the previous steps.
In this case, manufacturers should find alternative solutions
that are applicable or redo this optimization procedure with
consideration of all the possible constraints and disturbances.
The optimization results can also be validated by using his-
torical data or other analysis applications such as simulation
systems.

Design consideration

In designing the architecture of SPOT, we should take into
account of the design factors required to resolve the five chal-
lenges described in “Introduction” section and the optimiza-
tion procedure presented in “A decision-making procedure
for improving sustainability performance” section. We also
need to transform these design factors to the requirement
specification for tangible development of SPOT. “Design fac-
tor” section presents the design factors and “Requirement
specification” section describes the requirement specifica-
tion.

Design factor

We consider the design factors that emphasize domain-
specificity, diversity, compatibility, simplicity and reusabil-
ity for SPOT architecture development. The meaning of each
design factor is explained below:

• Domain-specificity an optimization procedure demands
abstraction of a problem and its reification to obtain opti-
mal solutions with the use of a DSS. However, reifying
the abstractive problem in the DSS is not easy because it
requires specific and actual data properties and their cor-
responding values. Thus, a new DSS should be designed
to include the data properties specialized to sustainability
performance inmanufacturing. The data properties involve
manufacturingprocesses,materials and sustainability indi-
cators.

• Diversity it is important to represent manufacturing data
without any loss or distortion because the quality of the
data influences the quality of optimal solutions. Moreover,
when real-time manufacturing data are not available, data

from other sources need to be considered, for example,
inventory data provided by consortiums such as CO2PE!
(Kellens et al. 2012) and Eco-Invent (Frischknecht et al.
2007). A newDSS should support the representation of the
manufacturing data as well as the inventory data, i.e., the
DSS allows combination of diverse manufacturing data.

• Simplicity aDSS should enablemanufacturers to formulate
and solve an optimization problem easily without inten-
sive programming burden. For this purpose, we separate
functions of the DSS into a user interface for optimiza-
tion modeling and a solver for optimization solving. In
addition, a DSS can provide functions that are especially
convenient for the process modeling or the data collection
steps. A Graphical User Interface (GUI) will support the
easy modeling of a manufacturing process.

• Compatibility a new DSS that provides an application-
neutral modeling environment is needed to enable inter-
operable model and data exchange. This is one of the rea-
sons we adopt the data structure of SPAF as a represen-
tation model because it enables to model a manufacturing
process once and use this same model for various opti-
mization applications.

• Reusability a DSS should be designed to adopt a modular
approach, which partitions the modeling along a logical
boundary into a collection of smaller, semi-independent
but interrelated model elements. The SPAF approach sup-
ports the reuse of existing elements to create a new opti-
mization model. If we have identified and decomposed
a set of unit-process, we can reuse these unit-processes
in another model. For example, the process element for
‘unit-process 2-1’ can be reused to model ‘unit-processes
2-2 and 2-3’, as shown in Fig. 3.

Requirement specification

Figure 5 presents the use case diagram that visualizes the
requirement specification transformed from the optimization
procedure and the design factors. A user can be a production
engineer, a process engineer, an equipment engineer, a facil-
ity engineer, an analyzer and an operational manager. Each
use case, represented by an ellipse, defines the user’s interac-
tion with an in-boundary system. ‘Include’ implies that the
behavior of the included use case is inserted into the behavior
of the including use case. ‘Extend’ specifies that the behav-
ior of a use case may be extended by the behavior of another
supplementary use case (OMG 2007).

A user interacts with SPOT by providing inputs and deriv-
ing outputs of the first four steps shown in Fig. 2. The current
DSS excludes the requirements related to the ‘validation’
step because this step mainly depends on human knowledge
and experience. Each of the use cases also incorporates the
five design factors of the previous sub-section. For example,
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Fig. 5 Use cases of requirement specification for designing SPOT

‘search & reuse existing model’ is the use case that spec-
ifies reusability for the reuse of existing model elements.
‘Collect data’ and its extended cases specify diversity for the
availability of various data sources. ‘Inquire an application-
neutral code’ and ‘generate an application-neutral code’ sup-
port compatibility by generating an application-neutral for-
mat.

Architecture design

Based on the requirement specification presented in
“Requirement specification” section, we design the archi-
tecture that describes the behavior (how activities take place
in a logical progression), the function (which functions are
responsible for the activities) and the data (which data are
necessary for representing an optimization model and solu-
tion). The following sub-sections present the behavior, the
function, and the data structures, respectively. The design of
these structures adopts Unified Modeling Language (UML)
to facilitate mutual understanding and commonality.

Behavior structure

Because an activity diagram can specify the execution and
command of subordinate behaviors, it is commonly used to
identify the behaviors of the system (OMG 2007). Figure 6
visualizes the activity diagram to present the behavior struc-
ture that transforms the use cases in Fig. 5 to procedural
activities.

The stream on the left includes a set of activities that for-
mulate an optimization problem. In the middle stream, the
activities of ‘process modeling’ support the identification of
a set of unit-processes and their relationships. The activi-
ties of ‘data collection’ provide separate channels to collect
data from internal and external data sources. The activities
of the right stream include the activities for the ‘optimiza-
tion solving’ step to generate an application-neutral code that
includes process structure, resource flow, data, control para-
meters, metrics and constraints. There are two data exchange
options to request and return optimal solutions: (1) file trans-
action, and (2) direct data transaction through Application
Programming Interfaces (API).
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Fig. 6 An activity diagram for the behavior design of SPOT

Function structure

Because the activity diagram does not state functions respon-
sible for the behaviors, a component diagram specifies a set of
components that take the responsibility (OMG 2007). Figure
7 shows the component diagram that defines the structure
and interaction of the functions. The functions are catego-
rized into three packages: workflow engine, user interface,
and data interface.

‘Workflow engine’ controls all the activities and intercon-
nections with ‘user interface’, ‘data interface’, and external
applications. A user can give inputs and take outputs through
viewers provided by ‘user interface’. ‘Data interface’ sup-
plies data through different sub-interfaces: an internal, a shop
floor, and an external interface. Such interfaces are designed
to implement the diversity design factor. The internal inter-
face accesses the data stored within the user’s database. The
shopfloor interface directly connectswithmachine interfaces
and data acquisition systems. The external interface accesses
to external sources. Inventories such as CO2PE! (Kellens
et al. 2012) and Eco-invent (Frischknecht et al. 2007) show
the potential of interconnection with external sources.

‘Workflow engine’ generates an application-neutral code
and translates it to an interoperable code for optimization
applications. This realization of the compatibility design fac-
tor allows one to increase accessibility to various optimiza-
tion applications and reduce the burden of implementing

complex and various optimization techniques. ‘Workflow
engine’ can import and parse an output code that encodes
optimal solutions. On the other hand, because some opti-
mization applications provide a set of API coded using some
programming languages, ‘workflowengine’ can alternatively
make use of an application-supplied API to exchange data
and results. The following items describe eachmodule shown
in ‘workflow engine’ as well as some of the components
shown in ‘user interface’ and ‘data interface’.

• Problem formulator: the ‘problemmanager’ functionover-
sees the formulation of user-defined problems. It connects
with other managers to control proper activities and gov-
ern a given problem. A user considers a goal and an initial
boundary of a production process through ‘goal and scope
definer’. The process boundarywill later be specifiedwhen
the scope and data availability are determined. The user
specifies sustainability indicators and an objective func-
tion through ‘indicator and function definer’. ‘Variable
and constraint definer’ identifies decision variables and
constraint variables.

• Processmodeler: ‘processmodelingmanager’ controls the
activities of the ‘process modeling’ step. The user defines
a production process and its data flow through ‘process
model viewer’. This function, together with ‘process
model finder’, helps the user to search reusable existing
process model components. ‘Process model repository’
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Fig. 7 A component diagram for the function design of SPOT

stores and retrieves process model components registered
by the user’s former works.

• Data collector: ‘data collection manager’ controls activi-
ties related to the ‘data collection’ step and configures data
connectivity with targeted data sources. After establishing
data connectivity, a query-and-response transaction can
occur. ‘Query generator’ reformulates the syntax of user’s
query as required. It then delivers the reformulated query
to an Extract/Transform/Load (ETL) tool installed in the
database. The ETL tool delivers the data set that satis-
fies the query condition to ‘responder’. A data set from
an external source cannot be used directly because of het-
erogeneous semantics and syntaxes. ‘Ontology mapper’
in the ‘data interface’ resolves this heterogeneity. Corre-
spondences between semantically related entities of the
local information sources and the virtual ontology are to
be established, known as a matching. The query answer-
ing is performed by this matching (Euzenat and Shvaiko
2007). ‘Data pre-processor’ handlesmissing and error data
to leverage data conformance and reliability. This function

can perform data cleaning and data validation. The data
cleaning uses reasoning rules to omit unnecessary, erro-
neous or duplicated data. The data validation checks and
quantifies data reliability and consistency. This ‘data pre-
processor’ plays a role of handling data uncertainty (will
be discussed in “Discussion” section).

• Code generator: ‘application-neutral code matcher’ con-
verts the integrated process model (the process model
instantiating relevant data) and the problem formulation
into instances structured by a data schema (which will be
described in “Data structure” section). This function can
transform graphical notation to textual code. For example,
if a user attaches a separator that decomposes a production
flow into several flows, the graphical separator is trans-
formed to a textual separator. ‘Application-neutral code
generator’ creates an application-neutral code in an SPAF
form from the data instances.

• API integrator: ‘API manager’ provides connectivity with
the application through API-based data transaction. When
a user selects a target application through ‘application
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selector’, ‘API manager’ assigns the application and
invokes ‘model mapper’. ‘Model mapper’ maps the data
instances of ‘application-neutral codematcher’with a data
scheme dedicated to the application. For instance, if a user
selects ILOG CPLEX (IBM 2012), the data instances are
mapped to the data schema available in ILOG CPLEX.
‘API connector’ provides a channel between the workflow
engine and an optimization application. This connector
delivers an optimization model to an optimization appli-
cation and obtains the solutions directly from the opti-
mization application.

• Translator: ‘translation manager’ supports file-based data
transaction with an optimization application. It also
assigns the application and invokes ‘file translator’ that
converts the SPAF file to interpretable files for the target
application. ‘Semantics and syntax repository’ registers
and stores the rules of semantics and syntaxes for opti-

mization applications. This repository provides rules that
enable conversion of an application-neutral format to an
application-specific format. For example, if a user selects
ILOG CPLEX, ‘translation manager’ opens a channel to
‘Optimization Programming Language (OPL) file transla-
tor’. Then, this file translator generates an OPL file, which
can be executed by ILOG CPLEX.

Data structure

Because the behavior structure and the function structure
do not cover data representation, a class diagram is created
to specify the structure of data objects, their attributes and
the relationships among the objects. As shown in Fig. 8, the
classes are also clustered into four groups: problem formu-
lation, process modeling, data collection and optimization

ProblemStatement

+name: String
+objective: String
+list of ProcessModelPackage: List
+list of Indicator: List
+list of DecisionVariable: List
+list of Constraint: List
+objectiveFunction: FunctionType
+targetApplication: Application
+solution: Solution

FunctionType
<<enumeration>>

+Minimize
+Maximize
+Satisfy

DataType
<<enumeration>>

+Integer
+Double
+String
+Boolean
+DateTime

Indicator

+name: String
+dataType: DataType
+classification: String

(ABS) Variable

+name: String
+booleanConstraint: Boolean
+relatedProcess: Process
+dataType: DataType

DecisionVariable

Constraint

+minimumValue: Double
+maximumValue: Double
+optional: Boolean

ProcessModelPackage

+name: String
+list of IntegratedProcessModel: List

Context

+modelName: String
+contextData: String

Flow

+modelName: String
+context: Context
+flowData: String

FlowAggregator

+context: Context
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+inputFlow: String
+outputFlow: String
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+outputFlows: String
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+flowAggregator: FlowAggregator
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+flow: Flow
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+list of Resource: List
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+interfaceMethod: MethodType

MethodType
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InternalDatabase ExternalDatabase

DatabaseScheme

+name: String
+databaseType: String
+TCP/IP: String
+Port: Integer
+databaseName: String
+identificationCode: String
+password: String
+status: StatusType

StatusType
<<enumeration>>

+Available
+Standby
+NotAvailable

ManufacturingSystem

Query

+name: String
+targetDatabase: DatabaseScheme
+queryStatement: String

Response

+name: String
+returnedValue: DataTable
+refinedValue: DataTable
+query: Query

Solution
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+textualSolution: String
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ProblemSequence
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Fig. 8 A class diagram for the data design of SPOT
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Fig. 9 The roles and interactions of the system components

solving. This class diagram is designed to make consistency
with the data structure of SPAF shown in Fig. 1. The ‘con-
text’, ‘flow’, ‘flow aggregator’, and ‘process’ objects in Fig.
8 correspond to the homonymous objects in Fig. 1. The ‘indi-
cator’ class in Fig. 8 is used to represent the data content of
‘metrics aggregator’ in Fig. 1.

The ‘problem sequence’ class has a set of ‘problem state-
ment’ objects that play the role of centralized data hold-
ers. These objects are also linked to the classes relevant
to problem formulation, process models, and solutions. The
‘problem statement’, ‘indicator’, and ‘variable’ objects are
instantiated by the activities of the ‘problem formulation’
step. ‘Process model package’ is a list of the ‘integrated
process model’ classes that consist of ‘context’, ‘flow’, ‘flow
aggregator’, ‘process’, and ‘resource’ (Brodsky et al. 2014).
‘Query’ and ‘response’ are classes to represent the data
related to the ‘data collection’ step. ‘Query’ includes the
attributes of the query statement and connectivity informa-
tion for a target data source. ‘Response’ includes a data set
returned from a data source.

The solutions returned from an optimization application
can be classified into four abstractive classes in terms of fea-
tures of the solutions. ‘Evaluation’ stands for an assessment
result within assigned variables and constraints. ‘Constraint’
is the class that provides the ranges of decision variables and
their indicator values. ‘Alternative’ indicates a list of selec-
tive or alternative solutions that satisfy constraints. ‘Opti-
mization’ indicates the solutions that include optimal values
of decision variables and indicators.

Implementation

We develop a prototype system based on the architecture
described in “Architecture design” section. Sections “Imple-
mentation framework” and “User interface”, respectively,
present an implementation framework and a user interface
for the prototype system.

Implementation framework

Figure 9 shows the implementation framework to specify
the roles and interactions of the system components. In this
paper, this prototype connects with ILOG CPLEX through
the file transaction on a web-service. The prototype utilizes
Netbeans as Integrated Development Environment, Java as a
programming language, and Representational State Transfer
as a web-service.

The roles and interactions of the system components are
explained as follows: (1) a user designs an optimization
model through ‘user interface’ and requests a service, (2)
‘workflow engine’ creates a SPAF file, (3) the engine trans-
fers the file to ‘web-server’, (4) the transfer of the SPAF file
invokes internal functions of theweb-service, (5) ‘lexer’ con-
verts a sequence of characters in the SPAFfile into a sequence
of tokens, (6) ‘parser’ forms a data structure of the tokens on
the basis of the semantics of the SPAF, (7) ‘file generator’
makes the data structure conform to OPL syntax and seman-
tics, (8) ‘CPLEX engine’ creates an optimal solution file and
returns this file to ‘web-server’, (9) ‘web-server’ delivers the
file to ‘workflow engine’, (10) ‘workflow engine’ transforms
the file into the data schema of SPOT (particularly the ‘solu-
tion’ object in Fig. 8), and (11) SPOT displays the optimal
results through ‘user interface’.

User interface

Figure 10 presents the GUIs of the prototype system. In Fig.
10a, the left panel includes the tree menus that list the hierar-
chical classifications for unit-processes, materials and sus-
tainability indicators (designed for the implementation of
domain-specificity). In Fig. 10b, the unit-process tree cat-
egorizes unit-processes in terms of energy source, which
is a major concern in sustainable manufacturing (domain-
specificity) (Kumaraguru et al. 2014). The indicator tree pro-
vides sustainability indicators to help a user measure sustain-
ability performance (domain-specificity) (Joung et al. 2013).
A user easily selects unit-processes, materials, and indica-
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Fig. 10 Screen shots of SPOT prototype system. a A main GUI. b Tree viewers for the selection of unit-process and sustainability indicator. c A
pop-up box for unit-process characterization (e.g., a turning machining process)
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Fig. 11 An example of a production process

tors by drag-and-drop operation (simplicity). In addition, the
left panel provides a process template tree that saves process
model components for reuse (reusability).

The upper middle panel provides a process modeler that
allows a user to graphically design a production process (sim-
plicity). The lower middle panel provides a production prop-
erty table and an indicator property table. The production
property table edits and shows production details such as
identification, throughput, and units (simplicity and diver-
sity). By using the indicator table, the selected indicator can
be specified as either a performance indicator or a constraint
indicator variable. A user can select an object and ranges of
the indicators and constraints.

The lower right panel displays a unit-process characteri-
zation table. A user can characterize a unit-process through
a characterization wizard, as shown in Fig. 10c. This char-
acterization wizard provides a guidable interface to identify
process properties such as parametric design, process para-
meters, amachine and its auxiliaries (diversity and simplicity)
(Madan et al. 2013). When a unit-process is characterized, a
user can check process properties and edit them directly on
the viewer (simplicity).

Case study

Two case studies are performed to demonstrate the effective-
ness of SPOT. “Manufacturing scenario” section describes
a manufacturing scenario that includes a production process
and its associated assumptions. Sections “Optimization for
resource allocation at the production level” and “Optimiza-
tion for parameter selection at unit-process level”, respec-
tively, show minimizing energy consumption by alloca-

tion of resources at the production level and selection
of process parameters at the unit-process level. The two
case studies use assumed data values. “Discussion” sec-
tion discusses the issues of data uncertainty and size,
computations and comparison with existing optimization
applications.

Manufacturing scenario

Figure 11 illustrates a production process to manufacture a
mechanical part of a drilling tool. A welding process joins
two metal parts and an injection molding process produces a
plastic part. A die casting process forms a casted part from
metal powders and this part passes through one of three
machine tools in a turning machining process. These turn-
ing machines can manufacture a maximum of 20 parts per
hour.A fastening processmakes afinal part bymanual assem-
bly. The production process should yield 20 final parts per
hour.

We assume that the energy profiles of the three turn-
ing machines have a piecewise linear dependence on hourly
throughput. But, these energy profiles have different coef-
ficients of the linear dependency due to different machine
capabilities while other unit-processes have constant energy
consumption. We also assume that an engineer has no expe-
rience in optimization and accesses to an optimization appli-
cation to solve optimization problems.

Optimization for resource allocation at the production level

The objective of this case study is to minimize energy con-
sumption in the production process by proper allocation of
the numbers of parts to each of the three turning machine
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Fig. 12 Examples of energy profiles for the three turning machines

tools. An engineer can formulate an optimization problem,
as expressed in Eq. 4:

Minimize E(x1, x2, x3)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E(x1, x2, x3) =
n∑

i=1
En(xn) + C,

x1 + x2 + x3 = 20,
0 ≤ x1 ≤ 20,
0 ≤ x2 ≤ 20,
0 ≤ x3 ≤ 20

(4)

where, xn : the numbers of parts to each of the three machine
tools En(xn): energy consumption at each machine tool, C :
constant energy consumption by other unit-processes.

The engineer designs the production process in Fig. 11
through the ‘process modeler’ user interface. The engineer
needs to collect the data relevant to energy consumption
because Eq. 4 needs to be instantiated with real values.
Assuming the three turning machines make the energy pro-
files with regard to the number of parts, as shown in Fig.
12, En(xn) can be instantiated. For example, the energy
equation for ‘turning machine 1’ can be expressed by
Eq. 5:

E1(x1) =

⎧
⎪⎪⎨

⎪⎪⎩

0.2x1 + 50 0 ≤ x1 ≤ 10,
0.25x1 + 49.5 10 ≤ x1 ≤ 60,
0.3x1 + 46.5 60 ≤ x1 ≤ 100,
0.5x1 + 26.5 100 ≤ x1 ≤ 150

(5)

The engineer selects ILOG CPLEX as an optimization
application through the ‘application selector’ user interface.
Then the prototype system generates a SPAF file. Figure
13 demonstrates a portion of a SPAF file. ‘Model flow
item{}’ indicates the flow model, and ‘model flow aggre-
gator itemAggr{}’ stands for the flow aggregator model.

‘Model process baseEnergyThruMachine { }’ represents
an abstract function for energy consumption, based on
the energy function ‘pwlFunction energyFunction’ and its
constraints.

For example, ‘Turning 1’ shows a unit-process model that
calculates energy consumed by ‘turningmachine 1’. The pro-
file has a linear gradient (s[0] = 0.2) and an initial energy
(initEnergy = 50) during its first segment. ‘Model process
ManufacturingFloor{ }’ includes the metric model and the
context model. The ‘energyPerHour’ variable equals to total
energy consumed during the production process. Here the
constraint is coded by ‘item[threadedOutItem].unitPerHour
= 20’, and the objective function is coded by ‘minimizeMan-
ufacturingFloor[ ].energyPerHour’, respectively.

The ‘OPL translator’ component transforms the SPAF
file into two OPL files (i.e., a model file and a data file).
Figure 14 presents a portion of the OPL model file and
Fig. 15 shows a portion of the OPL data file. The mapping
rule defined in ‘semantics/syntax repository’ converts syn-
tax and semantics of the SPAF into those of the OPL. For
example, the ‘float energyPerHour’ variable of the SPAF
model is converted to “dexpr float ManufacturingFloor_
energyPerHour[..] =…’of theOPLmodel. Thedetailedmap-
ping rule (Brodsky et al. 2014) is beyond the scope of this
paper.

TheCPLEXengine receives theOPLfiles, derives an opti-
mal solution through the branch-and-bound algorithm and
returns the solution to ‘web-server’. The optimal solution
calculates that minimal energy consumption will be 316.35
kJ for the production process if the numbers of parts are allo-
cated as 7 parts for ‘turning machine 1’, 3 parts for ‘turning
machine 2’, and 10 parts for ‘turningmachine 3’, as displayed
in Fig. 10a.

Optimization for parameter selection at unit-process level

The objective of this case study is to minimize energy con-
sumption of, for example, ‘turning machine 1’ by select-
ing appropriate decision variables – feedrate, spindle speed,
and cutting depth. The engineer uses an empirical model of
power demand that relates the decision variables of ‘turn-
ing machine 1’ to its energy consumption (Shin 2010). Sim-
ilar to the production case presented in “Optimization for
resource allocation at the production level” section, the engi-
neer can formulate and instantiate an optimization problem,
as expressed in Eq. 6:
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model flow item {
string type = ...; 
float  unitPerHour;  

}
model flow aggregator itemAggr {

...
sum(i in inputFlows) item[i].unitPerHour == sum(j in outputFlows) item[j].unitPerHour;

}
model process baseEnergyThruMachine {

... 
forall(i in inputFlows)

forall(o in outputFlows) 
item[i].unitPerHour == item[o].unitPerHour * inputPerOutput[i];
...

pwlFunction energyFunction = piecewise{s[1] -> b[1]; s[2] -> b[2]; s[3] -> b[3]; s[4]}(minThru, initEnergy);

float  thru;
minThru <= thru <= maxThru;
float energyPerHour = energyFunction(thru);
forall (i in outputFlows) thru == item[i]a.unitPerHour;

}
model process Turning1 {

... 
model  energy =  new baseEnergyThruMachine["turn1"]{

inputFlows = { turningInItem1 };    outputFlow = turningOutItem1;    inputPerOutput[] = [1];    s[] = [0.2, 0.25, 0.30, 0.5];
b[] = [10,60,100];    minThru = 0.0;    maxThru = 150;    initEnergy =  50.0
};

float energyPerHour = baseEnergyThruMachine[energy].energyPerHour;
float thru = baseEnergyThruMachine[energy].thru;

}
model process ManufacturingFloor {

...
float energyPerHour = DieCasting[dieCastingProc].energyPerHour + Turning1[turning1Proc].energyPerHour +

Turning2[turning2Proc].energyPerHour + Turning3[turning3Proc].energyPerHour +
GasMetalArcWelding[gasMetalArcWeldingProc].energyPerHour + 
InjectionMolding[injectionMoldingProc].energyPerHour;

item[threadedOutItem].unitPerHour == 20;
}
minimize ManufacturingFloor[].energyPerHour;

Fig. 13 A SPAF sample file for the resource allocation problem

Minimize P(x1, x2, x3)

subject to

⎧
⎪⎨

⎪⎩

P(x1, x2, x3) = 2.807 + 0.123x1 + 0.676x2 + 0.157x3 − 0.028x21 + 0.053x22 − 0.008x23 + 0.176x1x2 + 0.022x1x3 + 0.024x2x3,

x1 = X1−0.25
0.02 , x2 = X2−133.25

33.25 , x3 = X3−2.5
0.5 ,

0.23 ≤ x1 ≤ 0.27, 100 ≤ x2 ≤ 166.5, 2 ≤ x3 ≤ 3

(6)

where, X1: feedrate (mm/rev), X2: spindle speed (rad/s) X3:
cutting depth (mm), P(x): the average power demand.

Figure 16 shows a portion of a SPAF file. ‘TurningMa-
chineOrders’ identifies the ranges of the decision variables
and the power demand model. ‘TurningMachine’ specifies
the ranges of the process parameters by allocating real num-
bers. The SPAF file is also translated to an OPL model file
and an OPL data file. The optimization engine derives opti-
mal process parameters through the constraint propagation
and search algorithm. The optimal solution calculates that
minimal energy consumption will be 178.28 kJ for ‘turn-

ing machine 1’ when the process parameters result in 0.27
mm/rev for feedrate, 100 rad/s for spindle speed, and 2.6 mm
for cutting depth.

Discussion

The case study showed the effectiveness of SPOT. This sec-
tion discusses data uncertainty and size, and computations
aspects as well as the difference with an existing optimiza-
tion application.
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{string} item_IDS = ...;
string item_type[item_IDS] = ...;
dvar float item_unitPerHour[item_IDS];
… 
dexpr float Turning1_energyPerHour[Turning1_index in Turning1_IDS] = 

baseEnergyThruMachine_energyPerHour[Turning1_energy];
dexpr float Turning1_thru[Turning1_index in Turning1_IDS] = baseEnergyThruMachine_thru[Turning1_energy];
dexpr float ManufacturingFloor_energyPerHour[ManufacturingFloor_index in ManufacturingFloor_IDS] = 

DieCasting_energyPerHour[ManufacturingFloor_dieCastingProc] + 
Turning1_energyPerHour[ManufacturingFloor_turning1Proc] + 
Turning2_energyPerHour[ManufacturingFloor_turning2Proc] + 
Turning3_energyPerHour[ManufacturingFloor_turning3Proc] + 
GasMetalArcWelding_energyPerHour[ManufacturingFloor_gasMetalArcWeldingProc] + 
InjectionMolding_energyPerHour[ManufacturingFloor_injectionMoldingProc];

minimize ManufacturingFloor_energyPerHour["P-01"];
subject to {
forall(id in baseEnergyThruMachine_IDS)  

forall(baseEnergyThruMachine_i in baseEnergyThruMachine_inputFlows[id])  
forall(baseEnergyThruMachine_o in baseEnergyThruMachine_outputFlows[id])  
item_unitPerHour[baseEnergyThruMachine_i] == item_unitPerHour[baseEnergyThruMachine_o] * 
baseEnergyThruMachine_inputPerOutput[<id, baseEnergyThruMachine_i>];

};
subject to {
forall(id in baseEnergyThruMachine_IDS)  
baseEnergyThruMachine_minThru[id] <= baseEnergyThruMachine_thru[id] <= baseEnergyThruMachine_maxThru[id];

};
subject to {
forall(id in baseEnergyThruMachine_IDS)  

forall(baseEnergyThruMachine_i in baseEnergyThruMachine_outputFlows[id])  
baseEnergyThruMachine_thru[id] == item_unitPerHour[baseEnergyThruMachine_i];

};
subject to {
forall(id in ManufacturingFloor_IDS)  
item_unitPerHour[ManufacturingFloor_threadedOutItem] == 20;

};

Fig. 14 An example of an OPL model file

item_IDS = { "dieIN" "dieOUT" "turnIN1" "turnOUT1" "turnIN2" "turnOUT2" "turnIN3" "turnOUT3" "weld2fast" 
"weldIN" "inj2fast" "injIN" "fastOUT" "fastIN" };

item_type = #["dieIN" : "dieCastingInType", "dieOUT" : "dieCastingOutType" , "turnIN1" : "dieCastingOutType" , "turnOUT1" :
"turningOutType" , "turnIN2" : "dieCastingOutType" , "turnOUT2" : "turningOutType" , "turnIN3" : 
"dieCastingOutType" , "turnOUT3" : "turningOutType" , "weld2fast" : "weldingOutType" , "weldIN" : 
"turningOutType" , "inj2fast" : "injectionMoldingOutType" , "injIN" : "injectionMoldingInType" , "fastOUT" :
"finalPartType" , "fastIN" : "addFasteningInType" ]#;

itemAggr_IDS = { "dieAggr" "turnAggr" };
itemAggr_inputFlows = #["dieAggr" : {"dieOUT"}, "turnAggr" : {"turnOUT1", "turnOUT2", "turnOUT3"} ]#;
itemAggr_outputFlows = #["dieAggr" : {"turnIN1", "turnIN2", "turnIN3"}, "turnAggr" : {"weldIN"} ]#;
baseEnergyThruMachine_IDS = { "die" "turn1" "turn2" "turn3" "weld" "inject" "fast" };
…
baseEnergyThruMachine_inputPerOutput = [5.7, 1 , 1 , 1 , 1 , 1 , 1, 1, 1 ];
baseEnergyThruMachine_minThru = #["die" : 0.0, "turn1" : 0.0 , "turn2" : 0.0 , "turn3" : 0.0 , "weld" : 0.0 , "inject" : 0.0 , "fast" : 0.0 ]#;
baseEnergyThruMachine_initEnergy = #["die" : 50.0, "turn1" : 50.0 , "turn2" : 50.0 , "turn3" : 50.0 , "weld" : 50.0 , "inject " : 50.0 , "fast" : 

50.0 ]#;
baseEnergyThruMachine_maxThru = #["die" : 150, "turn1" : 150 , "turn2" : 3 , "turn3" : 10 , "weld" : 150 , "inject" : 150 , " fast" : 150 ]#;
baseEnergyThruMachine_s = [0.2, 0.25, 0.30, 0.5, 0.2, 0.25, 0.30, 0.5 , 0.15, 0.2, 0.25, 0.5 , 0.1, 0.11, 0.12, 0.5 , 0.2, 0. 25, 0.30, 0.5 , 0.2, 0.25, 

0.30, 0.5 , 0.2, 0.25, 0.30, 0.5 ];
baseEnergyThruMachine_b = [10, 60, 100, 10, 60, 100 , 10, 60, 100 , 10, 60, 100 , 10, 60, 100 , 10, 60, 100 , 11, 60, 100 ];
...
Turning1_IDS = { "turn1" };
Turning1_turningInItem1 = #["turn1" : "turnIN1"]#;
Turning1_turningOutItem1 = #["turn1" : "turnOUT1"]#;
Turning1_energy =  "turn1";
...

Fig. 15 An example of an OPL data file
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Model process turningMachineOrders {
…
Min_Depth_Cut <= Depth_Cut <= Max_Depth_Cut;
Min_Spindle_Speed <= Spindle_Speed <= Max_Spindle_Speed;
Min_Feed_Rate <= Feed_Rate <= Max_Feed_Rate;
…
float P_active[o in Orders] = 2.807 + 0.123*(Feed_Rate[o]) + 0.676*Spindle_Speed[o] + 0.157*(Depth_Cut[o]) 

- 0.028*(Feed_Rate[o])*(Feed_Rate[o]) + 0.053*Spindle_Speed[o]*Spindle_Speed[o] 
- 0.008*(Depth_Cut[o])*(Depth_Cut[o]) + 0.176*(Feed_Rate[o])*Spindle_Speed[o] 

+ 0.022*(Feed_Rate[o])*(Depth_Cut[o]) + 0.024*(Spindle_Speed[o])*(Depth_Cut[o]); 
}
Model process TurningMachine {
…
Min_Depth_Cut = 2.0;
Max_Depth_Cut = 3.0;
Min_Spindle_Speed = 100.0;
Max_Spindle_Speed = 166.5;
Min_Feed_Rate = 0.23; 
Max_Feed_Rate = 0.27;
float Power_Demand = turningMachineOrders[demoTurningMachine].Power_Demand;
…
};
Minimize TurningMachine[].Power_Demand;

Fig. 16 A SPAF sample file for the parameter selection problem

• Data uncertainty and size: because manufacturing data
normally include erroneous or missing data and the dif-
ference between measured values and their true values
(Wazed et al. 2009), various degrees of uncertainty exist
in the data. Therefore, it is a challenge to handle the
data uncertainty because the increase of the data uncer-
tainty decreases the accuracy of optimal solutions. The
uncertainty comes from the data, as one of epistemic
uncertainties (Roy 2010), can be reduced with uncer-
tainty quantification and data-preprocessing. The uncer-
tainty quantification helpsmanufacturers characterize the
sources of the uncertainty and measure the probability
distribution of the data and finally find some controllable
solutions. The data pre-processing, which includes data
cleaning, normalization, transformation, feature extrac-
tion, and selection (Kotsiantis et al. 2006), enables man-
ufacturers to generate the data that decrease the uncer-
tainty by the elimination of noisy and unreliable data
and the reduction of large data sets without any loss of
important information. We have taken into account the
data pre-processing in our architecture design (see the
‘data pre-processor’ component in Fig. 7); however, the
current SPOT excludes the implementation of the data
pre-processor.
Another issue is the retrieval and processing of large data
because a shop floor obviously generates and uses a large
volume of data. Especially, machine monitoring data can
have a huge amount of streaming data content. A con-
ventional database environment has a limitation on man-
aging efficiently the large volume of data that are needed
to perform fast data retrieval and processing for on-time
or real-time optimization. Thus, it is beneficial to use a

distributed database like Hadoop Distributed File Sys-
tem (HDFS) (Shvachko et al. 2010) and a programming
model such as MapReduce (Dean and Ghemawat 2008).
We are developing a HDFS and MapReduce infrastruc-
ture to enable on-time prediction and optimization for
improving sustainability performance in manufacturing
processes (Shin et al. 2014). However, the current SPOT
doesn’t integrate this data infrastructure. This should be a
future implementation together with the implementation
of the data pre-processor.

• Computational aspect of SPOT: in the current imple-
mentation, the OPL model and data are submitted to
the CPLEX Mixed Integer Linear Programming (MILP)
application, which returns an optimal instantiation of all
variables to real or integer values if the problem is feasi-
ble and bounded. The CPLEX uses the branch and bound
algorithm for MILP problems, augmented with a variety
of heuristics. The optimization problems can only use
linear arithmetic in terms of decision variables. How-
ever, because the SPAF-to-OPL translator in Fig. 9 works
without this limitation, it could be easily extended with
more general applications (e.g., a NLP solver and a CP
solver). Also it is important to note that this paper focuses
on the easy modeling aspects under the assumption that
an optimization application, best suited to the problem,
is used to handle the computation. As a future research,
we are working on specialized algorithms that can handle
non-linearity and stochasticity formanufacturing process
problems.

• Difference between SPOT and existing optimization
applications: SPOT is a domain-specific DSS designed
for manufacturing engineers; whereas existing optimiza-
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tion applications such as Optimus, ILOG CPLEX and
OptQuest are generic optimization tools designed for
Operations Research (OR) experts who will be devel-
oping mathematical models with heavily relying on their
expertise. As we discussed in “Introduction” section, a
key contribution behind SPOT is to raise the level of
abstraction so that manufacturing engineers, as opposed
to OR experts, would be able to use it.

Conclusion

This paper presented the development of a DSS specifi-
cally defined to improve sustainability performance in man-
ufacturing. The system architecture identified the behavior,
function and data structures in consideration of the domain-
specificity, diversity, compatibility, simplicity and reusability
design factors. We anticipate that SPOT will help manufac-
turers reduce time and effort for enhancing sustainability per-
formance without heavily relying on optimization expertise.

The modeling approach of this paper can facilitate the
development of data analytics, i.e., the science of data
analysis to discover new and meaningful information in
data (Kohavi et al. 2002), for improving sustainability per-
formance in manufacturing. The adoption of the modu-
lar approach by SPAF makes (de-) composition of opti-
mization models easier and the model components can
be efficiently reused for various analytics purposes. The
application-neutral environment enables interoperable data
communication in various analytics applications. Further-
more, data collection connected with a shop floor will
embody (near) real-time optimization on a manufacturing
process. For this purpose, we are developing a shop floor data
interface by the use ofMTConnect, which defines a language
and structure for open communication with machine tools
(AMT 2011).

Some limitations of this paper are that SPOT only shows
the possibility of the data connection between SPOT and a
shop floor or between SPOT and an external data source.
The data used in the two case studies are given from our
assumption not from an industry data source. Even though
the focus of the paper is to introduce the system tool, not real
data analytics, but real manufacturing data definitely make it
more interesting. Also SPOT is only integratedwith one opti-
mization application at a time. In the future, we will extend
the simultaneous connectivity toward multiple data sources
for the use of referential inventory and industry data. We
will integrate SPOT with a distributed data infrastructure for
handling a large volume of manufacturing data. We will also
implement the communication of SPOT with other analytics
applications such as diagnostics, prognostics and prediction
as well as optimization.
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