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Abstract This paper explores sparse time-frequency dis-
tribution (TFD) using overcomplete discrete wavelet trans-
form (DWT) and sparse representation techniques. This dis-
tribution is discovered for characterizing the periodic tran-
sient information embedded in rolling element bearings and
extracting effective features that can discriminate different
fault conditions. Based on the sparse TFD, a new sparse
wavelet energy (SWE) feature is obtained by three main
steps: first, an overcomplete discrete DWT is employed to
decompose the fault signal and construct a redundant dic-
tionary; second, the redundant dictionary is optimized by
basis pursuit to obtain the sparsest TFD; finally, SWE is
calculated from the new TFD to produce a feature vector
for each signal. SWE features that combine the merits of
overcompleteDWTand sparse representation techniques can
precisely reveal fault-induced information, thereby exhibit-
ing valuable properties for automatic fault identification by
intelligent classifiers. The effectiveness and advantages of
the proposed features are confirmed by simulation and the
practical fault pattern recognition of rolling bearings.
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Introduction

Rapid development in modern industry has generated more
complexmachines. Conditionmonitoring and fault diagnosis
for modern mechanical equipment is increasingly important
to prevent economic loss and numerous researches have been
conducted in this field (Zhang et al. 2013; Wells et al. 2013;
Yu et al. 2014). Defects in rolling element bearings are major
factors in machinery failure and have elicited considerable
attention. Bearing fault diagnosis is conducted by data acqui-
sition, feature extraction and intelligent classification. Data
acquisition and intelligent classification are relatively easy to
implement. Typical method to collect data from a mechani-
cal system is using accelerometers attached to the machines,
and several widely used algorithms have been employed to
create the intelligent classifier, such as the k-nearest neighbor
(Gharavian et al. 2013), fisher discriminant analysis (Jiang
et al. 2013), artificial neural network (Wang and Cui 2013;
He et al. 2013; Mortada et al. 2014), and the support vector
machine (SVM) (Konar andChattopadhyay 2011). However,
feature extraction remains challenging because fault-induced
transient impulses existing in vibration signals are usually
contaminated by noise.

Researchers have proposed numerous methods to extract
features in different situation, for example, Boskoski and
Juricic extracted Renyi entropy values from wavelet packet
coefficients of vibration signals to detect mechanical faults in
rotational drives (Bokoski and Juricic 2012), Li used adap-
tive filter and robust statistical features to detect faults in
wind turbine transmission system (Li and Frogley 2013).
These studies found that features can be extracted in three
domains including time domain, frequency domain, and
time frequency domain. Time domain features are extracted
based on time series analysis, such as the statistical features
(variance, kurtosis) and the autoregressive model (Li et al.
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2012). Frequency domain features are achieved from spec-
trum analysis, such as subband energy (Zhao et al. 2005).
Features in the time or frequency domains focus only on
specific signal content that cannot comprehensively consider
fault-related information because defect-induced impulses
are non-stationarywith time-varying frequencies. Contrarily,
time-frequency features can present a synthetic consideration
for mechanical fault detection by characterizing varying fre-
quency information at different times. Commonly used time-
frequency analysis methods include short-time Fourier trans-
form (Klein et al. 2001), Wigner–Ville distribution (Baydar
and Ball 2001), wavelet transform (WT) (Wang et al. 2011)
and empiricalmode decomposition (Peng et al. 2005; Rai and
Mohanty 2007). Among these techniques, WT is outstand-
ing in rotary machine diagnosis because its multi-resolution
merit is suitable for analyzing signalswith transient impulses.
Continuous wavelet transform (CWT) and discrete wavelet
transform (DWT) are two categories of WT, each with its
own merits as well as deficiencies.

CWT can calculate wavelet coefficients on any scale to
reveal signal features completely (Lin and Zuo 2003). How-
ever, the high computation cost hinders fast diagnosis. DWT
(Mori et al. 1996) can improve decomposition efficiency, but
limitations exist in two aspects: (1) lack in shift-invariance
causes waveform distortion and (2) fixed frequency domain
sampling manner leads to low resolution and severe fre-
quency aliasing. Wavelet packet transform (WPT) (Zhang
et al. 2013; Pandya et al. 2014), as an extension of DWT,
can decompose signals with higher frequency resolution by
analyzing them in both low and high frequency bands. How-
ever, it inherits the other problems of DWT. These drawbacks
sometimes prevent DWT or WPT from effectively capturing
the fault information of rolling bearings.

Recently, overcomplete techniques have become a well
recognized tool in signal processing (Kovacevic and Chebira
2007), and numerous overcomplete WT have been designed
and utilized for application (Chui and He 2000; Selesnick
2011). Comparingwith traditional DWTandWPT, overcom-
plete DWT have significant advantages. First, overcomplete
DWT can achieve higher frequency resolution. Second, over-
complete DWT can be approximately shift-invariant. Third,
the redundant basis can help solve the frequency aliasing
problems. Besides, with a certain set of basis functions, over-
complete DWT can focus on specific physical properties of
the signal. In the current study, Selsnick‘s tunable Q-factor
wavelet transform (TQWT) (Selesnick 2011), as a kind of
overcomplete DWT, will be empolyed because it can reflect
the oscillatory behavior of the signal except for thementioned
advantages.

In order to find a better representation for signal, sparsity-
based method is proposed and has received several notable
achievements in the field of machinery fault diagnosis (Liu
et al. 2002; Yang et al. 2005; Feng and Chu 2007). Its basic

principle is to construct a signal as a linear combination
of transform basis (atoms) from an overcomplete dictionary
(Grbovic et al. 2012). Two well-known methods are utilized
to obtain a sparse representation of the signal, which are
respectively matching pursuit (Mallat and Zhang 1993) and
basis pursuit (Chen et al. 2001). Matching pursuit is suitable
for orthogonal dictionary and has fast computational speed,
whereas basis pursuit is characterized by super-resolution
and better sparsity. The advantages of basis pursuit indi-
cates it has the capacity to extract more informative intrin-
sic features accurately from vibration signals without fre-
quency aliasing. The process can be conducted by the fol-
lowing two steps: redundant dictionary design and sparse
coefficients solving. Redundant dictionary can be designed
by K-SVD algorithm (Rusu and Dumitrescu 2012), shift-
invariant sparse coding algorithm (Plumbley et al. 2006), or
redundant signal transform basis like wavelet packet basis
(Yang et al. 2005). Sparse coefficients can be calculated by
greedy pursuit algorithms (Bahmani et al. 2013), l p norm
regularization algorithms (Marjanovic and Solo 2012) and
iterative shrinkage algorithms (Beygi et al. 2012).

Considering the merits of overcomplete DWT and sparse
representation technique, this paper proposes a pioneering
sparse wavelet energy (SWE) feature for diagnosing rolling
element bearings. SWE features are achieved from a sparse
representation of wavelet-based time-frequency distribution
obtained by basis pursuit. The redundant dictionary for basis
pursuit is designed by TQWT, which can reveal the oscil-
latory properties of the signal. Then, the dictionary is opti-
mized to achieve the sparse wavelet-based distribution by
the split variable augmented Lagrangian shrinkage algorithm
(SALSA) (Selesnick 2011), which can efficiently handle var-
ious problems. After optimization, SWE features can be
obtained from sparse wavelet-based distribution. Its physical
meaning is easy to interpret and has the property of sparsity
and high resolution. Moreover, SWE feature is suitable for
exploring the intrinsic characteristics of bearing fault sig-
nals due to its sensitivity to impulses, which greatly benefits
machinery diagnosis. The advantages of SWE features are
confirmed in both simulation and experiment by comparing
with several traditional features.

The remainder of this paper is organized as follows.
“Sparsity-related theory” section introduces the basic theory
of sparse representation method. “Overcomplete DWT” sec-
tion presents the design of redundant dictionary by overcom-
plete DWT. “Automactic fault diagnosis based on SWE” sec-
tion describes the realization of intelligent diagnosis based
on SWE features. “Simulation” section illustrates the pro-
cedure and preliminary validation of the proposed method
using simulated bearing data. “Engineering validation” sec-
tion further confirms the advantages of SWE features by
experiment. Conclusions are drawn in “Conclusion” sec-
tion.
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Sparsity-related theory

Basis pursuit

Consider signal x with p points, which can be viewed as a
vector in R

p. A redundant dictionary A = {a1, a2, . . . , an}
consists of n vectors a j ∈ R

p, that span the entire space Rp

with n > p. Signal x can be represented as the superposition
of basis functions:

x = As =
n∑

j=1

a j s j , (1)

where s = [s1, s2, . . . , sn]T are the coefficients for basis
functions. Among all possible coefficient sets, the sparsest
can be achieved by the minimization of l0 norm (Donoho
and Huo 2001), which is defined as the number of nonzero
elements. This process can be expressed as Eq. (2).

argmin
s

‖s‖0, s.t. x = As. (2)

Unfortunately, Eq. (2) is a non-convex optimization problem
which is difficult to deal with. Therefore, in practice, the
sparse solution to Eq. (1) is usually obtained by solving the
optimization problem in Eq. (3),

argmin
s

‖s‖1, s.t. x = As, (3)

where ‖s‖1 is the l1 norm of s as defined in Eq. (4).

‖s‖1 :=
N−1∑

n=0

|s(n)|. (4)

Equation (3) is known as the basis pursuit (BP) problem
(Chen et al. 2001) that can provide the sparsest solution
for the l0 problem for most large scale redundant systems
(Donoho 2006).

Signal x usually contains noise in practice. Thus, solving
Eq. (3) exactly is unreasonable. Generally, we can find an
approximate solution by changing the optimization function
to Eq. (5), which is called the basis pursuit denoising (BPD)
problem (Gunn et al. 2002),

argmin
s

‖x − As‖22 + λ‖s‖1, (5)

where ‖x‖22 := ∑N−1
n=0 |x(n)|2, and the Lagrange multiplier

λ is a function of x.

Algorithm to solve the BP and BPD problems

Several effective approaches have been developed for solv-
ing the BP and BPD problems, such as primal-dual log

barrier interior point method (Chen et al. 1998) and itera-
tive shrinkage/thresholding algorithm (ISTA) (Michailovich
2011). Recently, a novel SALSA method is proposed by
Afonso (Afonso et al. 2010). SALSA will be used in the
present study because of its flexibility in handling various
problems and its fast convergence in practice. SALSA will
change the unconstrained optimization formulation in Eq. (5)
to a constrained problem [Eq. (6)] based on a variable split-
ting technique,

argmin
s,u

‖x − Au‖22 + λ‖u‖1, s.t. s − u = 0. (6)

where u is the created new variable. This problem can be
solved by an augmented Lagrangianmethod (ALM) (Mateos
et al. 2010), more specifically, the alternating direction
method of multipliers (ADMM) (Mateos et al. 2010) by the
following update equations:

u(k+1) = argmin
u

λ‖u‖1 + μ

2
‖u − s(k) − d(k)‖22,

s(k+1) = argmin
s

1

2
‖x − As‖22 + μ

2
‖u(k+1) − s − d(k)‖22,

d(k+1) = d(k) −
(
u(k) − s(k)

)
, (7)

where k is the iteration index andμ is a user specified penalty
parameter.

According to the previously mentioned theory, we need
to find a set of basis to construct an underdetermined system
that can be optimized by SALSA to achieve a sparse signal
representation. In the current study, overcomplete DWT will
be used to construct the undetermined system because it can
highlight impulses representing fault information of rolling
bearings.

Overcomplete DWT

DWT

TheWT of signal x(n) (n = 1, 2, . . . N ) is shown in Eq. (8),

W (a, b) = 〈x(n), ψa,b(n)〉 =
N∑

n=1

x(n)
1√
a

ψ∗
(
n − b

a

)
,

(8)

where the asterisk represents complex conjugate, ψ is the
mother wavelet function, a and b denote the scale factor and
translational factor, respectively. In practice, DWT is usually
employed to implement the transform in Eq. (8) for the ben-
efit of computational convenience and easy invertibility. By
making a = 2 j , b = k2 j , DWT can be realized as
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(a)

(b)

Fig. 1 Demonstration of the DWT process: a the decomposition pro-
cedure and b the corresponding frequency partition manner

dwt ( j, k) = 1√
2 j

N∑

n=1

x(n)ψ∗
(
n − k2 j

2 j

)
dt. (9)

Practically, DWT can be implemented byMallat’s iterated
algorithm (Rajpoot et al. 2008), which recursively convolves
the low-pass channel series with low pass filter h(n) and
band pass filter g(n) and subsequently downsamples the fil-
tered series in each channel by a factor of 2. The process
of a three-level DWT can be illustrated by Fig. 1a, and the
frequency partition manner is described in Fig. 1b. DWT
has been proven a powerful tool for time-frequency signal
analysis. However, the frequency aliasing problem and its
poor frequency resolution limits its application inmechanical
fault diagnosis because it cannot effectively identify periodic
impulses.

Realization of overcomplete DWT

Overcomplete DWT is also implemented by an iterated two-
channel filterbank. In the current paper, Selsnick‘s TQWT
(Selesnick 2011) is employed to conduct overcompleteDWT,
which is conceptually simple and can be implemented effi-
ciently.

Unlike DWT, the filters, on which TQWT is based are
specified directly in the frequency domain. Transform is
implemented by iteratively applying the two-channel filter
banks on its low-pass channel, followed by the low-pass scal-
ing and high-pass scaling operations. For low-pass scaling
with parameter α, the output signal has a sampling rate of
α fs , where fs is the sampling rate of the input signal. Simi-

larly, for high-pass scaling with parameter β, the output sig-
nal has a sampling rate of β fs . The scaling parameters satisfy
0 < α < 1, and 0 < β ≤ 1 to ensure that the WT will not
be overly redundant. Meanwhile, to achieve a oversampled
results, we also require α+β > 1. Generally, the parameters
are set based on Eq. (10),

β = 2

Q + 1
, α = 1 − β

r
, (10)

where Q is the quality factor and r is the redundant factor.
The physical interpretation and selection principle of Q and
r can be found in (Selesnick 2011). The low-pass filter and
high-pass filter are defined as Eqs. (11) and (12),

H(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1, |ω| ≤ (1 − β)π

θ
(

ω+(β−1)π
α+β−1

)
, (1 − β)π < |ω| < απ

0, απ ≤ |ω| ≤ π

(11)

G(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

0, |ω| ≤ (1 − β)π

θ
(

απ−ω
α+β−1

)
, (1 − β)π < |ω| < απ

1, απ ≤ |ω| ≤ π

(12)

where θ(ω) = 1
2 (1 + cos(ω))

√
2 − cos(ω), |ω| ≤ π . The

mathematical expression of the low-pass scaling and high-
pass scaling can be found in Eq. (13).

LPS(α) : Y (ω) = X (αω), |ω| ≤ π,

HPS(β) : Y (ω) = X

(
βω + ω

|ω| (1 − β)ω

)
,

0 < |ω| ≤ π. (13)

The TQWT decomposition process is completely illustrated
in Fig. 2a, whereas the corresponding inverse transform is
shown in Fig. 2b. With the achieved overcomplete DWT
results, it will be possible for us to get more accurate sparse
decomposition results by the optimization algorithm.

Automatic fault diagnosis based on SWE

TQWT decomposition level determination for bearing
diagnosis

For certain TQWT decomposition parameters, correspond-
ing wavelets represent different frequency subbands and
the decomposition result should cover the informative fre-
quencies of the signal. Accordingly, we synthesize the
fault-related frequency band and the frequency response of
wavelets for TQWT for an effective diagnosis. The infor-
mative frequency band can be easily localized in the 2-D
time-frequency distribution.

Supposing a signal with period transient impulses has a
CWT-based TFD shown in Fig. 3a, the normalized fault-
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(a)

(b)

Fig. 2 Demostration of the TQWT process: a the decomposition pro-
cedure and b the inverse TQWT process

related frequency lies in [0.15, 0.35] as the dash line indi-
cates. The frequency responses of the wavelets for TQWT
are shown in Fig. 3b. For fully cover the interested part high-
light inFig. 3b,we should define the lower boundary Jlow ≤ 2
and the upper boundary Jup ≥ 7. Generally, the range can
be set a little larger than necessary. With the decomposition
boundary determined, Jup − Jlow + 2 subbands are obtaned
according to Fig. 2a. In practical fault diagnosis containing
multiple fault classes, the boundary should be determined
by the union of different cases, which will be further dis-
cussed in the engineering section (“Engineering validation”
section).

SWE features

A set of oversampled DWT coeffients s is obtained by apply-
ing TQWT to a signal x as shown in Eq. (14).

s = TQWT(x). (14)

To achieve an ideal set of coefficients, which is the spars-
est, we need to solve the optimization problem expressed in
Eq. (15),

argmin
s

‖x − ITQWT(s)‖22 + λ‖s‖1, (15)

where ITQWT stands for the inverse transform of TQWT.
The above equation is the BPD problem described in “Basis
pursuit” section, and can be efficiently solved by SALSA.
The sparsest result has the most concentrated energy best
reflecting the period impulses of the machinery signal. The
proportion of subband average energy can be regarded as
a significant feature for machinery fault diagnosis, which is
the proposed SWE feature. Suppose signalX hasm subbands
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Fig. 3 Determination of the decomposing level: a CWT result of a
signal and b frequency responses of wavelets in TQWT

{w(1),w(2), . . . ,w(m)}. The SWE feature of the i th subband
with l(i) points can be calculated as shown in Eq. (16).

SWE(i) = Ei

Etotal
=

(∑l(i)
j=1 w(i)( j)2

)
/ l(i)

∑m
i=1

((∑l(i)
j=1 w(i)( j)2

)
/ l(i)

) .

(16)

Automatic fault diagnosis

The diagnosis process includes the training part which infers
a feature space for fault types and the testing part which
evaluates the accuracy of the training model. The detailed
steps to conduct intelligent fault diagnosis based on SWE
features can be summarized as follows:
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Step 1: The dataset is randomly divided into the training and
testing sets.

Step 2: TQWT is applied to obtain the oversampled DWT
subbands of each sample.

Step 3: SALSA is employed to achieve the sparse represen-
tation of the oversampled DWT subbands.

Step 4: The proportion of subband energy is calculated as
the SWE features for fault diagnosis.

Step 5: A classifier is trained by the SWE features of the
training samples.

Step 6: The misclassification rate of testing samples is
checked to evaluate the performance of the clas-
sifier. If the classification accuracy rate is satisfac-
tory, then the classifier can be finally used to conduct
intelligent fault diagnosis.

Simulation

Vibration model construction

To illustrate the procedure and the preliminary validation of
the proposed SWE features, a simulated bearing fault sig-
nal is contructed. The periodical impulses representing fault
information can be described in Eq. (17),

I (t) =
t∑

k=1

Aexp

{
−ξ√
1 − ξ2

[2π f0(t − kT )]

}

sin [2π f0(t − kT )] , (17)

where A = 4 is the initial magnitude of the simulated vibra-
tion signal, f0 = 2000Hz is the central frequency of the
resonance band, ξ = 0.04 represents the damping ratio and
T = 0.02 s denotes the repetition period. The vibration signal
of the rolling bearing generally includes periodic impulses,
harmonic components, and noise. Therefore, the vibration
model is constructed as shown inEq. (18),wheren(t)denotes
white noise.

h(t) = I (t) + Bsin(2π f1t) + Ccos(2π f2t) + Dn(t). (18)

In this case, B = 0.2, C = 0.15, D = 0.4, f1 = 500,
and f2 = 900Hz. The waveform of the simulated signal is
presented in Fig. 4.

SWE features of the simulated signal

TheCWT-based TFDof the simulated signal is demonstrated
in Fig. 3a. With the analysis in “SWE features” section, the
decomposition boundaries of TQWT are set to be Jlow = 1
and Jup = 8 based on the wavelet frequency responses in
Fig. 3b (Q = 4, r = 3). Period impulses are detected in four
subbands (subband 4–7) as shown in Fig. 5a because of the
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Fig. 4 Waveform of the simulated signal
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Fig. 5 Illustration of the overcompleteDWT: a the distribution of coef-
ficients in each subband and b the corresponding subband energy dis-
tribution

aliasing of different subbands. This result can be improved
through sparse-related techniques. By applying SALSA, a
sparse representation of overcomplete DWT coefficients can
be obtained and the result is shown in Fig. 6. Obviously,
distribution in Fig. 6a is much clearer, with period impulses
concentrated in subbands 5 and 6. The sparsity can reduce
frequency aliasing and ensure intrinsic energy flow from low
to high level with little noise, which can be considered as the
intrinsic structure embedded in the signal. It can be inferred
that different health states of the bearing signal possess differ-
ent energy flows, which motivates its application in machin-
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Fig. 6 Illustration of the sparsity-based wavelet transform: a the dis-
tribution of coefficients in each subband and b the corresponding SWE
features

ery fault diagnosis. Therefore, we use the average energy
proportion of each subband as a signature representing the
fault information calculated by Eq. (16). The result is illus-
trated in Fig. 6b.

Comparison with other methods

The same simulated signal is analyzed by DWT and WPT
for comparison, which are widely used in fault diagnosis.
According to “SWE features of the simulated signal” sec-
tion, energy flow is captured from TFD. An 8-level DWT
decomposition result and its corresponding subband energy
is shown in Fig. 7. Figure 7a with five periodic impulses indi-
cates the effectiveness of DWT decomposition, and energy
flow in Fig. 7b reflects the energy distribution in different
subbands. However, the distribution in Fig. 7a has a few con-
fusing fuzzy lines and the impulse information can be found
in subband six except the energy-concentrated subbands (7
and 8), which is caused by the frequency aliasing of DWT.
Contrarily, theSWE-basedmethodproposed in this paper can
compensate for the drawback and achieve accurate energy
flow. Moreover, the little energy in subbands 1–4 in Fig. 7b
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Fig. 7 Illustration of theDWT: a the distribution of coefficients in each
subband and b the corresponding subband energy features

indicates the low frequency resolution of DWT, which may
lead to the missing of signal information.

WPT is conducted in three levels for the simulated sig-
nal with 23 = 8 subbands obtained. The transform coef-
ficients and corresponding subband energy are presented
in Fig. 8a. WPT performs a complete decomposition in
each level to achieve both low-frequency and high-frequency
components, thereby obtaining a higher frequency resolu-
tion than DWT. The WPT coefficients in Fig. 8a demon-
strate obvious periodic impulses embedded in the signal
in subbands 4–6. However, the distribution is not as clear
as Fig. 6a and frequency aliasing still exists, leading to a
more dispersed energy along the frequency axis as shown in
Fig. 8b.

The comparison verifies that the proposed processing
method based on overcomplete DWT and SALSA guaran-
tees high resolution in frequency and accurate reflection of
fault information. These merits are beneficial to character-
ize a more representative intrinsic energy pattern of the fault
signal than traditional WT techniques, thereby rendering the
new SWE features recognizable for mechanical fault identi-
fication.
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Fig. 8 Illustration of theWPT: a the distribution of coefficients in each
subband and b the corresponding subband energy features

Fig. 9 Experimental setup for acquiring vibration signals of the rolling
element bearings

Engineering validation

Instruction of the dataset

The proposed SWE feature is evaluated on a rolling bearing
dataset from the Case Western Reserve University Bearing
Data Center. The experimental apparatus presented in Fig. 9
consists of the followingmain parts: a 2hpmotor on the left, a
torque transducer and adynamometer in themiddle and a load

motor on the right. The testing groove ball bearing supports
the motor shaft at the drive end, on which single-point faults
are seeded. Vibration data are collected by accelerometers
attached to the housing with magnetic bases at the 12 o‘clock
position at the drive end. The sampling frequency is set at
12kHz. The dataset includes four health conditions of the
rolling bearing: healthy; rolling element defect; inner-race
defect and outer-race defect. Each fault condition has defects
with three different sizes: 0.007, 0.014 and 0.021 inches.
Detailed parameters are listed in Table 1. Typically, sample
signals and their corresponding Fourier spectrum under 10
different states are illustrated in Fig. 10.

TQWT decomposition level determination for bearing
signals

In this rolling bearing case, Q is set to 4 and r is set to
4 to obtain the preliminary wavelet in advance referring to
(Selesnick 2011). The same bearing fault locations usually
share similar fault-related frequency bands in TFD. Thus,
we select three typical defective signals in different locations
to determine the effective energy band. The obtained CWT
results and frequency responses of wavelets used in TQWT
are shown in Fig. 11. The fault-related band is [0.15, 0.35] for
rolling-element defect; [0.1, 0.37] for inner-raceway defect
and [0.1, 0.3] for outer-raceway defect. The final frequency
band determined by the union of three conditions is [0.1,
0.37]. According to Fig. 11d, the decomposition boundary
should be determined as Jlow ≤ 2 and Jup ≥ 14. A larger
decomposition level is needed to ensure thewhole fault infor-
mation is embodied. Therefore, Jlow is set to 1 and Jup is set
to 15.

SWE feature extraction

After a redundant dictionary is constructed by TQWT,
SALSA is utilized to achieve a sparse set of coefficients.
The SWE features calculated by Eq. (16) for samples under
10 conditions are shown in Fig. 12a. It can be learned that
energy is mainly concentrated in 1 or 2 subbands, each of
which presents unique energy distribution that is beneficial
for classifiers to identify the condition of the bearing signals.
To illustrate the classification capability of the SWE feature
intuitively, principle component analysis (PCA) (Humber-
stone et al. 2012; Shao et al. 2014) is applied to the features
as a dimension reduction method. The target dimension is
set to 3 to generate a visualization clustering result as shown
in Fig. 12b. The SWE features in low-dimension show rea-
sonable distribution for original high-dimensional features.
Samples in the same class are gathered to a cluster and sepa-
rated from the others with a significant distance. The remark-
able clustering result is strong proof that the SWE feature is
effective in fault identification of the rolling bearings.
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Table 1 Parameters of the
rolling bearings Class label Fault location Fault size (in.) Training sample no. Testing sample no. Sample length

S1 Healthy 0 50 20 1024

S2 Rolling element 0.007 50 20 1024

S3 Rolling element 0.014 50 20 1024

S4 Rolling element 0.021 50 20 1024

S5 Inner raceway 0.007 50 20 1024

S6 Inner raceway 0.014 50 20 1024

S7 Inner raceway 0.021 50 20 1024

S8 Outer raceway 0.007 50 20 1024

S9 Outer raceway 0.014 50 20 1024

S10 Outer raceway 0.021 50 20 1024
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Fig. 10 Demonstration of the bearing signals: a the original waveform and b the corresponding Fourier spectrum

To highlight the advantages of the SWE features, theDWT
and WPT subband energy features are extracted as a com-
parison. In this case, 15-level DWT is employed and the
DWT features extracted from the samples of 10 cases are
presented in Fig. 13a. It can be seen that energy concentrated
in subbands 2 and 3 express similarities among many condi-
tions, indicating that DWT-based energy flow cannot effec-
tively identify bearing faults. The frequency aliasing and low
frequency resolution render DWT ignore some unique sig-
nal information as discussed in “Simulation” section. Such
a result can also explain the weakness of DWT-based fea-
tures in bearing fault diagnosis. More intuitive proof can be
achieved by PCA clustering result presented in Fig. 13b.
DWT-based PCA clustering results are completely indis-

cernible. The only fault type we can identify is the healthy
one, which is consistent with the result in Fig. 13a. Thus,
DWT subband features cannot express intrinsic fault infor-
mation in this rolling bearing diagnosis.

WPT has higher resolution than DWT, therefore, WPT
subband energy feature has arguably more elaborate infor-
mation than DWT. The level of WPT is set to 4 to obtain
24 = 16 subbands. WPT subband energy of samples from
10 different conditions are shown in Fig. 14a. WPT sub-
band energy features perform better than the DWT subband
energy features with most conditions presenting distinguish-
able characteristics. However, similarities remain in WPT-
based features, such as S2, S3, S4 and S8. These features
cannot be inferred to rival SWE features for the following
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Fig. 11 Determination of the decomposing level: a CWT result of the rolling-element fault case, b CWT result of the inner-raceway fault case,
c CWT result of the outer-raceway fault case and d frequency response of the wavelets in TQWT
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Fig. 12 Illustration of the SWE features of the bearings: a the distribution of the SWE features in 10 cases and b the intuitive clustering result
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Fig. 13 Illustration of the DWT subband energy features of the bearings: a the distribution of the DWT-based features in 10 cases and b the
intuitive clustering result
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Fig. 14 Illustration of theWPT subband energy features of the bearings: a the distribution of theWPT-based features in 10 cases and b the intuitive
clustering result

reasons: (1) WPT-based features are not as concentrated as
the SWE features for frequency aliasing and (2) the extracted
WPT-based features cannot reveal fault impulse information
as clearly as SWE features according to “Simulation” sec-
tion. Similar with SWE and DWT-based features, the WPT
features are illustrated intuitively by PCA in Fig. 14b. WPT
demonstrates better clustering than DWT, however, signif-
icant overlapping is found between S2 and S5, as well as
S3 and S8. The overlapping is detrimental for effective and
accurate fault pattern recognition. Moreover, it puts forward
higher requests to the classifier.

The advantages of SWE features can be preliminarily seen
by the comparison with DWT and WPT subband energy

features in both feature distribution and PCA-based cluster-
ing. To further confirm the effectiveness and practical value
of SWE features, two commonly used intelligent classifiers
were employed to achieve the final diagnosis result, as pro-
vided in “Intelligent fault diagnosis based on SWE features”
section.

Intelligent fault diagnosis based on SWE features

The last step of intelligent fault pattern recognition is con-
ducted by intelligent classifiers. In the current study, two
commonly used intelligent classifiers are employed: near-
est neighbor classifier (Gharavian et al. 2013) and SVM
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Table 2 Classification results of
the bearing data by the nearest
neighbor classifier

Feature DWT subband energy WPT subband energy SWE

Training Testing Training Testing Traning Testing

Mean recognition rate (%) 100 67.05 100 88.5 100 97.95

Best recognition rate (%) 100 73.5 100 90.5 100 99

Mean standard deviation (10−4) 0 7.121 0 4.238 0 0.899

Best standard deviation (10−4) 0 6.763 0 3.425 0 0.45

Table 3 Classification results of
the bearing data by the SVM
classifier

Feature DWT subband energy WPT subband energy SWE

Training Testing Training Testing Traning Testing

Mean recognition rate (%) 79.7 76.1 99.96 91.85 99.16 98.65

Best recognition rate (%) 81.2 81 100 93.50 99.6 100

Mean standard deviation (10−4) 2.384 6.2 0.008 3.331 0.161 0.611

Best standard deviation (10−4) 2.219 5.075 0 2.813 0.077 0

(Konar andChattopadhyay 2011). The nearest neighbor clas-
sifier is based on the intuitive concept that data instances of
the same class should be closer in the feature space. It is
conducted by calculating the distance of a new sample to all
samples in the training data, and class is determined by the
sample nearest to the new one. The SVM classifier is devel-
oped from the optimal separating plane under linearly sepa-
rable condition. It determines the optimal separating hyper-
plane that minimizes the generalization error by maximizing
the margin between the separating hyperplane and the near-
est sample points, thereby realizing the classification. The
nearest neighbor classifier is simple and intuitive while the
SVM classifier generally has higher accuracy. Moreover, to
confirm the merits of SWE features, the subband energy fea-
tures obtained by DWT and WPT are also used for the same
classifiers as a comparison.

The simple nearest neighbor classifier is first employed
for the 10-class problem. The classification recognition rate
η and standard deviation σ are calculated by Eqs. (19) and
(20),

η = 1 −
M∑

i=1

P(ωi )
ki
Ni

, (19)

σ =
M∑

i=1

P2(ωi )
Pi (1 − Pi )

Ni
, (20)

where M is the class number, P(ωi ) is the occurrence prob-
ability of class ωi with Ni samples, ki is the misclassified
number in ωi , Pi = ki/Ni . A higher η means a better classi-
fication and a smaller σ indicates a more convincing result.
It can be inferred from Eq. (20) that the recognition rate
estimated by Eq. (19) is asymptotically consistent only as

Ni → ∞. In this case, the training set has 50 samples and
the testing set has 20 samples according to Table 1. In order
to get more convincing evaluation, we conduct a cross val-
idation by randomly selecting training and testing samples
for 50 times. Diagnosis results of three feature extraction
techniques based on the nearest neighbor classier over 50
runs are listed in Table 2. The standard deviation is around
10−4 for all the three features, which indicates the estima-
tion result is acceptable. In comparison, the DWT subband
energy feature has the lowest recognition rate, where nearly
1/4 testing samples are misclassified. This poor performance
is consistent with feature distribution in Fig. 13a and sample
clustering in Fig. 13b. TheWPT subband energy feature with
higher frequency resolution has a more satisfactory recogni-
tion rate, which proves thatWPT-based feature is more effec-
tive than DWT-based feature. This better classification abil-
ity can be inferred from the feature demonstration in Fig. 14.
SWE feature has the highest recognition rate because it is the
sparse optimal result of a high resolution overcompleteDWT.
Stated differently, SWE can reflect more elaborate content
of the signal and reveal the intrinsic fault-related informa-
tion.

Classification is then conducted by SVM classifier. As
listed in Table 3, the recognition rate is higher than the nearest
neighbor classifier for the testing samples and the standard
deviation is smaller, which indicates a better performance of
the SVM classifier.

In this case, the WPT-based feature remains more effec-
tive than the DWT-based one, and the SWE feature steadily
exhibits the highestmean recognition rate.All of these results
powerfully prove that SWE has significant advantages over
DWT and WPT-based features for bearing fault classifica-
tion.
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Discussions

1. The main contribution of this paper is proposing a new
SWE feature based on overcomplete DWT and sparsity
theory. Overcomplete DWT brings high frequency reso-
lution to time-frequency decomposition and the sparsity-
related technique can effectively eliminate the frequency
aliasing to obtain a concentrated energy distribution.
Therefore, SWE feature can accurately reveal fault-
related information, thereby approaching the intrinsic
pattern of fault bearing signals. The above studies have
comprehensively shown the benefits of the SWE feature
in clustering and classification.

2. PCA is used to generate a visualization clustering result
for intuitively interpreting the advantages of SWE fea-
tures. Final diagnosis process by classifiers is performed
on original SWE features rather than dimension-reduced
features because PCA as a linear dimension reduction
method will sacrifice non-linear information, which may
be important to pattern recognition.

3. Two intelligent classifiers were employed in this study:
nearest neighbor classifier and SVM classifier. Near-
est neighbor classifier is almost the simplest method to
emphasize the benefits of the SWE features, and SVM
classifier is more advanced and illustrates the practical
application. Some parameters need to be determined in
practice for SVM, such as kernel function, kernel argu-
ment and penalty parameter (Gharavian et al. 2013). In
this study, radial basis function kernel with kernel argu-
ment set to 1 is employed and the penalty parameter is
set to 2500. The parameters are chosen roughly by exper-
iment because the main point of this paper is highlight-
ing the advantages of SWE features. More theoretical
and elaborate parameters determination methods can be
found in (Hsu and Lin 2002; Lorena and de Carvalho
2008).

4. Fault feature extraction by basis pursuit can also be
conducted using wavelet packet dictionary according
to (Yang et al. 2005) with experiments exhibiting the
effectiveness. However, unlike the overcomplete DWT
dictionary employed in this paper, the wavelet packet
dictionary has little redundant information in frequency
domain, thus limiting the sparse optimization (Chen et al.
2001). Take the simulated signal in Eq. (18) for fur-
ther discussion, the basis pursuit result using wavelet
packet dictionary is shown in Fig. 15. Comparing Figs. 5a
and 15a, we can find that both of them indicate obvious
period concentration around impulses along the timeaxis,
but the result using wavelet packet dictionary (Fig. 15b)
is severely dispersed along frequency axis in contrary to
the result using overcomplete DWT dictionary (Fig. 5b).
Stated differently, basis pursuit using wavelet packet dic-
tionary cannot solve the frequency aliasing problem.
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Fig. 15 Illustration of basis pursuit result using wavelet packet dic-
tionary: a the distribution of coefficients in each subband and b the
corresponding subband energy features

Therefore, the proposed SWE feature with redundant
information in both time and frequency domains perform
better than basis pursuit using wavelet packet dictionary.

Conclusion

In this study, a new energy-related feature, called SWE is
proposed based on overcomplete DWT and basis pursuit.
SWE feature is the sparse optimization result of the wavelet
redundant dictionary, and reveals signal impulse information,
which means it can be a meaningful characteristic for fault
pattern recognition of rolling bearings. Compared with tra-
ditional DWT and WPT subband energy features, SWE has
the advantages of high resolution, concentrated energy and
clear physical significance. With the parameters set properly,
the SWE feature is evaluated to have remarkable clustering
result, outperforming the DWT-based feature and the WPT-
based feature. The practical application of SWE features in
distinguishing bearing fault signals under 10 health condi-
tions further confirms its merits, with the highest recognition
rate in both the nearest neighbor classification and the SVM
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classification. All evidence indicates that the SWE feature
has valuable potential and significant practicability in rolling
bearing fault diagnosis.
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