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Abstract In this paper, we propose two heuristics to solve
the General Q-Delivery Vehicle Routing Problem with con-
sideration of flexibility of mixing pickup, delivery services
and a maximum duration of a route constraint which is
the extending version of the well-known VRP with pickup
and delivery problem. Firstly, the heuristic called DE_G-Q-
DVRP-FD is presented to determine the routing of trans-
ferring pullets from pullet houses to hen houses. Since
the problem considered is very complicated, the DE_G-
Q-DVRP-FD is extended to the two-phase heuristic called
MESOMDE_G-Q-DVRP-FD. The difference between two
heuristics is that in the MESOMDE_G-Q-DVRP-FD algo-
rithm, the customer vertices (pullet houses) will be clustered
before determining routes. The clustering of customer ver-
tices method called the Multifactor Based Evolving Self-
Organizing Map is proposed in the first phase in order to
completely utilize the vehicle. Finally, in the second phase,
the DE_G-Q-DVRP-FD is used to execute the routing. To
demonstrate the algorithm efficiency, flock allocation from
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pullet houses to hen houses in the egg industry is used as the
case study. The results obtained from this study show that the
MESOMDE_G-Q-DVRP-FD algorithm provides lower total
cost values than that of the firm’s current practice by 7.59–
31.28 and 0.84–13.15% better than the DE_G-Q-DVRP-FD
algorithm. Additionally, theMESOMDE_G-Q-DVRP-FD is
adjusted to solve the benchmark problem found in the litera-
ture. The experimental results show that theMESOMDE_G-
Q-DVRP-FD algorithm yields better total cost values by
5.72–61.60% (with an average of 31.46%).

Keywords Poultry houses · Hen egg production ·
Differential evolution · Self-Organizing Map · Total cost

Introduction

This paper considers a special vehicle routing problem with
pickup and delivery services (PDP). This problem is found
in various practical operations of real-world industries. This
research focuses on the PDP in the egg industry as a case
study application. In egg production, eggs are produced
by batches of hens according to production schedules in
order to meet customer demands. A firm generally starts
by purchasing chicks from a hatchery. The chicks are then
transferred to be raised in pullet houses, where they stay
until the age of 17 weeks. Normally, the capacities of the
pullet house are heterogeneous depending on investment
level of contracted farms. These pullets are then moved to
hen houses and fed to a prescribed body weight to sup-
port egg production, and remain in the hen house until they
reach 75 weeks of age. Then the hens are slaughtered since
they have diminishing egg-laying capacity. A flow chart
of hen egg production is depicted in Fig. 1. Hence, egg
production is considered a dynamic production leading to
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Fig. 1 The supply chain of egg production in the case study company (Dechampai et al. 2013)

complex production, especially the decision on how to allo-
cate flocks to facilities.

Generally, the firm has difficulty to obtain efficient flock
allocation, especially allocation of pullets to hen houses. In
the flock transfer process, the vehicles must first pick up
flocks at a pullet house and then deliver the flocks to a hen
house. Due to an imbalance between the flocks to move out
from a pullet house, the capacity of the fleet, and the avail-
able capacity of the hen house to move the flocks in that
time period, a vehicle may pickup pullets from more than
one pullet house until it reaches its capacity. It may then
deliver pullets to more than one hen house while the maxi-
mum duration of a route constraint exists. Hence, allocation
of flocks to facilities in the current period may affect the allo-
cation efficiency of flocks in the next period. An inefficient
flock allocation may lead to high transportation costs and
vehicle utilization costs in terms of a higher number of vehi-
cles used. To reduce such costs, in real practice, the vehicle
may be allowed to have flexible mixed pickup and delivery
services. Pickups can be accepted while not necessarily fin-
ishing all deliveries, and deliveries can be performed at any
level of the commodity in the vehicle unless the delivery
request is not satisfied (see Fig. 2). Hence, the flock alloca-
tion is related to the General Q-Delivery Traveling Salesman
Problem (G-Q-DTSP) since its characteristics contain the
following restrictions: (1) a single-commodity (i.e., pullets)
(p = 1), (2) each pullet house is only for pickup operation
while the hen house is only for delivering operation (P/D),
(3) the depot does not supply (pick up) nor demand (deliver)
any commodity units (pullets), and (4) each pullet housemay
be visited more than once in case the number of pullets to
transfer is greater than the capacity of the vehicle. There-
fore, the vehicle routes may not be restricted to Hamiltonian
tours. The design of the vehicle routes for this problem is
related to the split version of the pickup and delivery travel-
ing salesman problem with a single commodity (1-PDTSP)
allowing facilities (pullet houses and hen houses) to provide
or demand any number of a commodity (pullets).

The G-Q-DTSP is a difficult and challenging problem in
the field of vehicle routing problems (VRP). However, the

Fig. 2 Characteristics of flexibility of mixing pickup and delivery ser-
vices of the problem

problems faced by the egg production industry aremore com-
plex than the G-Q-DTSP in three aspects. (1) In order tomeet
the objective function by minimizing the total transportation
costs consisting of two cost components: fuel cost and cost
of vehicle utilization (i.e., vehicle rent cost), the vehicle is
allowed to mix pickup services and delivery services in the
vehicle routing while the maximum duration of a route con-
straint exists. (2) Due to imbalance between the flocks to
move out from a pullet house, the capacity of the fleet, and
the capacity of the hen house to move the flocks in, some
vertices (i.e., pullet houses and hen houses) may have mul-
tiple visits. However, at each vertex, it is either a pick up or
a delivery operation (P/D). This means the pullet house is a
pickup service, while the hen house is a delivery operation.
(3)Multiple vehicles are used to transfer pullets to hen houses
(k > 1) based at the depot. Thus, in this paper, the transporta-
tion model is characterized as a “many-to-many structure:
M–M” [i.e., several origins (pullet houses) and destinations
(hen houses)] for only one commodity [M−M|P/D|k > 1].
It is rather a special G-Q-DTSP problem. In this study, the
problem can be considered as the General Q-Delivery Vehi-
cleRouting Problem (G-Q-DVRP) variantwith the flexibility
of mixing pickup and delivery services with constraints on
maximum duration of a route. Since the Q-DTSP including
the TSP is NP-hard (Berbeglia et al. 2007), in this paper,
the G-Q-DVRP with consideration of flexibility of mixing
pickup and delivery services with constraints on maximum
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duration of a route (G-Q-DVRP-FD) is more complex than
the Q-DTSP problem and remains NP-hard. Therefore, this
observationmakes a strong case for the application of heuris-
tics and meta-heuristics to solve the problem.

This research focuses on determining routes for trans-
ferring pullets from pullet houses to hen houses with the
objective to minimize the total transportation costs with the
consideration of capacity restriction, maximum duration of
a route, and multiple depots. The total cost consists of two
cost components: fuel cost and cost of vehicle utilization.
The fuel cost can be minimized by reducing the traveling
distance while the cost of vehicle utilization can be reduced
by minimizing the number of vehicles by fully utilizing the
vehicles’ capacity. To solve the problem, two heuristic are
proposed. The first heuristic called Differential Evolution
for G-Q-DVRP with consideration of flexibility of mixing
pickup and delivery services with constraints on maximum
duration of a route (DE_G-Q-DVRP-FD) uses the differ-
ential evolution technique (DE). Since the problem is very
complicated, a two-phase algorithm calledMultifactor Based
Evolving Self-Organizing Maps with Differential Evolution
for G-Q-DVRP with consideration of flexibility of mixing
pickup and delivery services and the maximum duration of
a route constraint (MESOMDE_G-Q-DVRP-FD) is devel-
oped. In the first phase, clustering of pullet houses was
determined before allocating pullets to the hen houses effi-
ciently. According to Dechampai et al. (2013), the Multi-
factor Based Evolving Self-Organizing Map (MESOM) was
developed to cluster pickup customer vertices (i.e., pullet
houses) in order to reduce traveling distance. The MESOM
was introduced by modifying from the traditional SOM in
that the MESOM considers not only the distance as the main
factor but also the hen house capacity. Most importantly,
the MESOM algorithm was developed for clustering pullet
houses by the pullet capacity of each house that can be split
and its coordinates that will be adjusted to two locations with
splitting-coefficient of centroid movement in order to com-
pletely utilize the vehicle capacity. Due to its effectiveness,
the MESOM was therefore adopted to cluster pickup cus-
tomer vertices (i.e., pullet houses) in the first phase. The dif-
ferential evolution technique (DE) developed in the DE_G-
Q-DVRP-FD algorithm was used to determine routes for
transferring pullets from the pullet houses to the hen houses
in the second phase. To illustrate the effectiveness of the
algorithm, numerical experimental results were compared
with those of the current practice of the egg industry selected
as a case study. Additionally, the MESOMDE_G-Q-DVRP-
FD was evaluated by using the benchmark approach called
the Growing Neural Gas (GNG) (Boonmee et al. 2013). In
the next section, related literature is reviewed. The method-
ology used to solve the problem is presented in “Method-
ology” section. “Case Study Application” section presents
the case-study application and illustrates numerical exam-

ples and performance of the algorithms. Finally a summary
of the main findings is given in “Numerical experiments”
section.

Literature review

Pickup and delivery problems (PDPs) constitute an impor-
tant class of vehicle routing problems in which objects (com-
modities) or people have to be collected from the origins and
distributed to the destinations. The PDP problems arise in
various contexts such as logistics, ambulatory services, and
robotics (Landrieu et al. 2001; Berbeglia et al. 2007; Ai and
Kachitvichyanukul 2009; Kim and Son 2012). In the PDPs
context, each vertex (i.e. customer), including the depot, can
either require or supply a non-negative number of each com-
modity. The available vehicles to pick up and deliver com-
modities may have heterogeneous capacity. The load of each
vehicle must not exceed its capacity. However, additional
assumptions and constraints on vehicle routes may be pre-
sented depending on a specific problem, such as time win-
dows, or multiple visits at some vertices. As a result, the
vehicle routing problem arises in various contexts (see, e.g.,
Belmecheri et al. 2013; Vahdani et al. 2012; Wang and Lu
2010).

To understand the PDP models clearly, more recently,
Berbeglia et al. (2007) have presented a general frame-
work to model a collection of pickup and delivery prob-
lems as well as a three-field classification scheme [Struc-
ture:Visits:Vehicles]. The first field, named structure, speci-
fies the number of origins and destinations of the commodi-
ties and is classified in three types: many-to-many problems
(M–M) (see, e.g., Chen et al. 2014), one-to-many-to-one
problems (1–M–1) (see, e.g., Erbao et al. 2008; Martinovic
et al. 2008; Zachariadis et al. 2009), and one-to-one problems
(1–1) (see, e.g., Şahin et al. 2013). In the M–M problems,
any vertex can serve as a source or as a destination for any
commodity. In one-to-many-to-one problems (1–M–1), com-
modities are initially available at the depot and are distributed
to the customers. Additionally, commodities available at the
customers are transferred to the depot. Finally, in one-to-
one problems (1–1), each commodity has a given origin and
a given destination. This type of problems arises, for exam-
ple, in courier operations and door-to-door transportation ser-
vices (see, e.g., Cordeau and Laporte 2003). The second field
provides information on the way pickup and delivery opera-
tions are performed at customer vertices. Three notations are
classified. Firstly, the notation PD indicates that each cus-
tomer vertex is visited exactly once for a combined pickup
and delivery operation, while it is noted as P−D if these two
operations may be performed together or separately. Lastly,
the P/D notation indicates the case that either a pickup or
a delivery operation is performed at each customer vertex.
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The last field indicates the number of vehicles used in the
problem.

The problem considered in this paper is related to the
pickup and delivery problems with many-to-many structure
(M–M). In the M–M structure, three problems are classified:
the Swapping Problem (SP), the One-Commodity Pickup
and Delivery Traveling Salesman Problem (1-PDTSP), and
the Q-Delivery Problem respectively (Q-DTSP) (Berbeglia
et al. 2007). The SP is a many-to-many with n-commodity
PDP introduced by Anily and Hassin (1992a). The 1-PDTSP
is a many-to-many, single-commodity problem firstly intro-
duced by Hernandez-Perez and Salazar-Gonzalez (2004).
A single vehicle based at the depot is considered to serve
various customers classified into pickup and delivery cus-
tomers. Additionally, the route of the vehicle is Hamiltonian.
The 1-PDTSP is closely related to a special case of the SP
with the additional constraint that the vehicle route is Hamil-
tonian (Berbeglia et al. 2007). For the Q-DTSP, only a single
commodity is considered and is firstly introduced by Anily
and Bramel (1999). Hence, the Q-DTSP is a special case
of the 1-PDTSP that allows the customer vertices to pro-
vide or demand any number of commodities. Amore general
problem named the General Q-Delivery Traveling Salesman
Problem (G-Q-DTSP), allows customer vertices to provide
or demand any number of objects. The G-Q-DTSP is similar
to the 1-PDTSP. The difference is that the vehicle route is not
necessarily Hamiltonian. Therefore, the G-Q-DTSP is some-
times seen as a split version of the 1-PDTSP (Berbeglia et al.
2007). Moreover, the split delivery problem can be extended
in the vehicle routing problem that a delivery to a demand
vertex can be split between any number of vehicles (see, e.g.,
Dror and Trudeau 1989; Dror et al. 1994; Archetti et al. 2006;
Dong et al. 2011; Şahin et al. 2013; Chen et al. 2014). Hence,
in this study, the problem can be considered as the General
Q-Delivery Vehicle Routing Problem (G-Q-DVRP) variant
with the flexibility of mixing pickup and delivery services
with constraints on maximum duration of a route. The prob-
lem has never been studied before (see Table 1).

To solve the problem, various methods have been applied.
Over the last decade, DE as a novel evolutionary technique
has been developed. Storn and Price (1997) first introduced
the DE algorithm that was effectively applied to continuous
optimization. DE is a population based search technique,
which uses a simple operator with the classical operators
of crossover, mutation and selection to create new candi-
date solutions. Its simple arithmetic operators, straightfor-
ward nature, quick convergence and features make it very
attractive for numerical optimization. DE is one of the best
evolutionary algorithms and is used extensively in various
fields such as scheduling, machine layout, and manufactur-
ing problems. For examples, in 2006, Nearchou used DE to
design a machine layout problem, the unidirectional loop-
layout design problem (LLDP) and to solve manufacturing

problems with mixed integer discrete variables. In 2012 Vin-
cent et al. proposed DE to schedule flexible assembly lines
(FAL). Recently, Karen et al. (2013) used DE to describe
how to use intelligent die design based on shape and topol-
ogy optimization. In the same year, Chakaravarthy et al.
(2013) presented DE and Particle Swarm Optimization algo-
rithms (PSO) for scheduling m-machine flow shops with lot
streamingandMa et al. (2013) proposed a hierarchical hybrid
particle swarm optimization (PSO) and differential evolution
(DE) based algorithm (HHPSODE) to deal with bi-level pro-
gramming problems (BLPP).

Although the DE has been effectively used in a variety of
fields, it has been very limited when applying to solve VRP,
especially the Vehicle Routing Problem with Pick-up and
Delivery (VRPPD), because the encoding scheme ofDE can-
not be directly adopted forVRP. Erbao et al. (2008) presented
a hybrid optimization algorithm (HOA), which is based on
a combination of differential evolution (DE) and the genetic
algorithm (GA). The advantages of both DE andGA are opti-
mizing large scale problems effectively and the optimization
process. In 2009, Erbao and Mingyong proposed stochastic
simulation and the differential evolution algorithm to solve
vehicle routing problems with fuzzy demand (VRPFD). The
proposed differential evolution algorithmcan also solve other
deterministic counterparts in that theVRPFD considersmore
complicated side constraints. Later, Lai and Cao (2010) pro-
posed an improved differential evolution algorithm (IDE) for
solving vehicle routing problem with simultaneous pickups
and deliveries and time windows (VRP-SPDTW). A novel
decimal coding was adopted to construct an initial popula-
tion and an integer order criterion based on natural number
coding method. In the same year, Hou et al. (2010) presented
a novel discrete differential evolution algorithm (DDE) for
solving stochastic vehicle routing problems with simultane-
ous pickups and deliveries (VRPSPD) by developing a novel
mutation operator which can be used in the discrete domain
directly. That result obtains better results than the traditional
DE algorithm and the existing GA algorithm.

However, customer vertices can be clustered before deter-
mining routes by several techniques such as K-mean (Mac-
Queen 1967), GNG (Fritzke 1995) and hGNG (Boonmee
et al. 2015). One of the most popular data clustering tech-
niques is the self-organizing map (SOM) that is proposed by
Kohonen (1995). The SOM is widely used in several appli-
cations such as resource allocation (Arnonkijpanich et al.
2004), data representation and compression (Arnonkijpanich
et al. 2011a). The SOM conceptually works by dividing a
large set of vectors into groups, and each group is then repre-
sented by its prototype (Dechampai et al. 2013). Furthermore,
Deng andKasabov (2000) proposed an algorithmof an evolv-
ing self-organizingmap (ESOM),which is different from that
of SOM. The network structure of ESOM evolves in an on-
line adaptive mode. No topological constraint is given for the
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Table 1 A comparison of the different papers on the VRPPD

Author (year) Structure Number of
commodities

Visit
type

Flexibility of
mixing pickup
and delivery

Pickup-first
delivery-
second

Mixed pickups
and deliveries

Time
constraint

Maximum
duration of
a route

Split
delivery

Our problem M–M 1 P/D
√ √ √

Chen et al. (2014) M–M >1 PD
√ √

Şahin et al. (2013) 1–1 1 P/D
√ √

Zachariadis et al.
2009

1–M–1 1 PD
√

Martinovic et al.
(2008)

1–M–1 1 P/D
√

Erbao et al. (2008) 1–M–1 1 PD
√ √

Nagy and
Salhi (2005)

1–M–1 1 PD
√

feature map a priori and the ESOM network starts without
nodes. During learning, the network updates itself, creating
new nodes when necessary. These algorithms construct the
topology by using only the distance criteria. Additionally, the
SOM can also be applied for enhancing agriculture supply
chain. Arnonkijpanich et al. (2004) developed the Propor-
tional Self-Organizing Map (PSOM) for clustering growers
and finding the locations of loading stations by all data vec-
tors being classified under both distance and capacity con-
straints. However, the result from the PSOM may not be
the final solution, since some low-utilization clusters which
have an amount of sugar cane less than the allowed mini-
mum station capacity should be pruned by each farm and
be merged into the nearest cluster. Recently, Boonmee et al.
(2013) applied one of clustering techniques called Growing
Neural Gas (GNG) to solve problems in allocation and trans-
portation of pullets to hen houses with the aim of minimizing
the cost of houses used, hen transportation costs, and loss
from mixing hens at different ages in the same hen house.
However, in terms of transportation costs reported in their
work the improvementswere limited (−0.05 to 4.11%)when
comparedwith the improvement in cost of houses used (3.62–
22.60%) and with loss from mixing cost (24.84–58.23%).
It means the phase of routing should be further developed
in future research in order to improve the efficiency of hen
transportation.

Since, in our problem, the distance information alone is
not sufficient for determining the clusters of pullet houses,
we need to consider several attributes such as the capacity of
each house. Therefore, both distance and capacity constraints
such as in the research of PSOM were considered in order
to find a more effective solution. For these reasons, a new
architecture of clustering algorithms called the Multifactor
Based Evolving Self-OrganizingMaps algorithm (MESOM)
was developed based on the traditional Evolving-SOM algo-

rithm by Dechampai et al. (2013). The MESOM is used to
cluster pullet houses in order to minimize traveling distance.
Afterwards, DE is applied first to determine routes of trans-
ferring pullets to hen houses which is a special case of VRP
with consideration of flexibility of mixing pickup and deliv-
ery services and the maximum duration of a route constraint
and split deliveries where pullets can be transferred to a hen
house by more than one vehicle. It is the main contribution
of this paper. Details of the algorithms will be described in
the next section.

Methodology

Two heuristics are proposed to solve the problem. The first
heuristic is calledDifferential Evolution forG-Q-DVRPwith
consideration of flexibility of mixing pickup services, deliv-
ery services and a maximum duration of a route constraint
(DE_G-Q-DVRP-FD) and it directly applies the differen-
tial evolution technique (DE), while the second heuristic
called Multifactor Based Evolving Self-Organizing Maps
with Differential Evolution for G-Q-DVRP with considera-
tion of flexibility ofmixingpickup anddelivery services and a
maximum duration of a route constraint (MESOMDE_G-Q-
DVRP-FD) which is a two-phase algorithm. The first phase
of the MESOMDE_G-Q-DVRP-FD is to cluster the pullet
houses. In this phase, the MESOM technique was used by
employing both the distance factor and the capacity factor for
solving the transportation problem. Furthermore, the pullet
capacity of each house can be split into two nodes in order
to completely utilize the capacity of each vehicle, and to
reduce the steps of pruning after clustering. Then the rout-
ing for transferring pullets from the pullet houses to the hen
houses is determined in the second phase with the objective
to minimize the total transportation costs under the restric-
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tions of capacity, a maximum duration of a route, and multi-
ple depots. The differential evolution as detailed in the first
algorithm (DE_G-Q-DVRP-FD) is also applied in this phase.
Details of the proposed algorithms are as follows.

DE_G-Q-DVRP-FD

Differential evolution (DE) is the stochastic, population-
based optimization algorithm that firstly introduced by Storn
and Price in 1997. Such methods are commonly known as
meta-heuristics that optimizes a problem by iteratively try-
ing to improve a candidate solution with regard to a given
measure of quality. The candidate solution is presented as an
initial vector population for each generation utilizes NP, D-
dimensional parameter vectors Xi,G; i = 1, 2, . . . , N P . In
the first step, the initial vector population is chosen randomly
and mostly generated in a uniform probability distribution.
The initial vector population is evaluated the cost function
of the target vector. Next, DE generates new parameter vec-
tors by adding the weighted difference between two popula-
tion vectors to a third vector in the mutation operation. The
mutated vector’s parameters are then mixed with the para-
meters of another predetermined vector, the target vector, to
yield the so-called trial vector. Finally, in selection process,
the trial vector and the target vector are compared, if the trial
vector yields a lower cost function value than the target vec-
tor, the trial vector replaces the target vector in the following
generation. Each population vector has to serve once as the
target vector so that NP competitions take place in one gen-
eration (Storn and Price 1997). The process is repeated until
there is no improvement of the objective function.

Since the traditional DE solves the optimization problem,
it has obtained prestige as a very effective global optimizer. In
this section, the new algorithm called “Differential Evolution
for G-Q-DVRP with consideration of the flexibility of mix-
ing pickup and delivery services and the maximum duration
of a route constraint (DE_G-Q-DVRP-FD)” is developed to
enhance company management in pullet transportation. In
order to appropriately apply to real problems, this technique
considers capacity restriction, maximum duration of a route,
andmultiple depotswith the objective tominimize total costs.

Prior to the presentation of the algorithms, the indices
and parameters used in modeling the problem are defined as
follows:
Indices

i Index for pullet houses; i = 1, 2, . . ., I
j Index for hen houses; j = 1, 2, . . ., J
k Index for number of vehicles k; k = 1, 2, . . ., K
a Priority order of ROV for pullet allocation; a = 1, 2, . . .,

amax

b Priority order of ROV for hen allocation; b = 1, 2, . . .,
bmax

Parameters

di j Distance from pullet house i to hen house j
[km]

CF Fuel cost [unit per kilometer]
CT Rent for vehicle k [unit per vehicle]
Xa
i Pullet house i , priority order no. a

Y b
j Hen house j , priority order no. b

Tk Distance of vehicle no. k
Ta,b Distance between pullet house order no. a

to hen house order no. b
Tb,a Distance between hen house order no. b to

pullet house order no. a
Tmax Maximum duration of a route of each vehi-

cle
cap.Xa

i Capacity of a pullet house i , priority order
no. a

cap.Yb
j Capacity of a hen house j , priority order no.

b
maxcap.truck Maximum capacity of a vehicle
cap.truckk Capacity of a vehicle no. k

Decision variables

pk Amount of pullets to be transported by vehicle no.
k

rk Solution set of pullet and hen quantities to be trans-
ported by vehicle no. k

sk Solution set of house routing sequence (pickup
from pullet house and delivery to hen house of
vehicle no. k)

Xi jk = 1; when pullet house i is transported to hen
house j , vehicle number k
= 0; otherwise

Qk Number of vehicles k used to transport the com-
modity (Integer value)

Moreover, the problem considered is very complex in
terms of house scatter, sizes of vehicles, and transportation
time, some parts of DE algorithm are modified in order to
determine cost function and suitably applied for allocation
pullets to hen houses. Therefore, after the crossover process,
the allocation of pullets to hen houses is added. Finally,
Selection process is conducted. Overall step of the DE_G-
Q-DVRP-FD is presented in Fig. 3.

According to theDE_G-Q-DVRP-FDprocedure, there are
four operations: Solution initialization, mutation, recombi-
nation, and selection operations. Detail of each operation is
presented in the following:

Step 1: Solution initialization
Generating the initial vector population is an important

part of DE and a good initial population directly affects the
solution to reach better quality. The design of the popula-
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Fig. 3 Steps of the proposed
method (DE_G-Q-DVRP-FD) Procedure of DE_G-Q-DVRP-FD algorithm

Begin Encoding step: randomly generate a set of target vectors n (n =1…NP);
// n is index of the vector representation; NP is predefined number of population
while termination condition is not satisfied do

for n = 1 to NP                  //NP is predefined number of population
Solution Initialization 

Decoding and Evaluation
Mutation Operation
Crossover Operation
Selection Operation

endfor
endwhile

end;

tion and its parameters is represented in the encoding and
decoding procedures shown in the following:

(1) Encoding method
In DE, an initial vector population is a set of parame-

ters which define a proposed solution to the problem that is
trying to solve. Firstly, in the encoding step, the initial vec-
tor population is randomly generated in the uniform num-
ber between [0,1) of both target vectors Xn,G and Yn,G for
n = 1, . . .,NP, where NP is a number of population for each
generation G. The initial vector population in the problem
is separated in two parts. The first part is necessarily spe-
cific to pullet house routing problem in the form of vector
Unclassi f ied.X = {

Xi ∈ R2|i = 1, .., I
}
and the second

part is specific to hen house routing problem in the form
of vector Unclassi f ied.Y = {

Y j ∈ R2| j = 1, .., J
}
. Two

vectors are the sets of pullet house and hen house loca-
tions which are defined as the 2-D vectors relying on XY-
coordinate system, respectively as show in Fig. 4. The real
number shown in each position of the vectors in the first
iteration of the proposed algorithm obtains from randomly
generatewhile the next iteration the position values gain from
the differential evolution algorithm operators (mutation and
recombination process).

(2) Decoding method
From Fig. 4, the position value of both X and Y vector is

sorted. The sorting of the pullet and hen house index bases
on its corresponding position value. According to the pri-

Fig. 4 Encoding of the initial vector population n = 1 for pullet and
hen house routing problem

Fig. 5 ROV of the initial vector population n = 1 for pullet and hen
house routing problem

ority order of value (ROV) rule, the smaller position value
is defined to the higher priority of the pullet and hen house
allocation (see Fig. 5).

The following conceptual framework of the allocation
process is shown in Fig. 6. Allocation of pullets to hen houses
can be done by ranking the number of ROV values. All pul-
lets in the houses must be transferred (Unclassi f ied. = ∅)

to hen houses which have enough capacity. In transporting
pullets, only one vehicle is considered at a time until all pul-
lets are completely transported. The ROV ranking is used to
consider howmany of pullets to be transported. If the vehicle
can transport pullets as its maximum capacity from the first
pullet house (Xa

i ) to deliver them to the first hen house (Yb
j ),

the vehicle will pick up and deliver only one time each. In
order to obtain high vehicle utilization, a vehicle can pick
up pullets from more than one houses, and also deliver them
to more than one hen houses unless the maxcap.truck and
Tmax constraints are met. Each vehicle will have its own
sequences (sk) and amount of pullets to pick up and/or deliv-
ery (rk).

Once the pullets from the first pullet house are com-
pletely picked up (cap.Xa

i == 0), the next pullet house
is considered (Xa

i == Xa+1
i ). Using the same concept,

delivery pullets to the first hen houses must be completed
(cap.Yb

j == 0) before delivering to the next hen house

(Yb
j == Yb+1

j ). Once the pullets from the pullet house are
picked up and delivered to the hen house, the sets of pullet
houses (Unclassi f ied.X ← Unclassi f ied.X − Xa

i ) and
hen houses (Unclassi f ied.X ← Unclassi f ied.X − Yb

j )

for picking up and delivering for the next round are updated
by deleting the houses already picked up and delivered.
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Procedure: Allocation operation
begin

1k ←
while .Unclassified  X ≠ ∅ do 

k k a
is s X← ∪ //update sequence of route 

while . 0kcap truck > or k maxT T≥ do

min{ . ,min{ . , . }}k a b
k i jp cap truck cap X cap Y←

k k kpr r← + //update quantity of pullet transporting
k k b

js s Y← ∪ //update sequence of route
. . k

k k pcap truck cap truck← − //update remaining capacity of a vehicle k
if . 0kcap truck == then

k k a
is s X← ∪ //update sequence of route 
,k k b aT T T← + //update remaining route duration of vehicle k

endif
. .a a k

i i pcap X cap X← − //update remaining quantity of pullet house a
. .b b k

j j pcap Y cap Y← − //update remaining quantity of hen house b
,k k a bT T T← + //update remaining route duration of vehicle k

if . 0a
icap X == then

if maxa a
i iX X== then

k maxT T= , .Unclassified X = ∅
endif

1a a
i iX X +==

k k a
is s x← ∪ //update sequence of route
. . a

iUnclassified X Unclassified X X← − //update the set of unclassified pullet houses
,k k b aT T T← + //update remaining route duration of vehicle k

endif
if . 0b

jcap Y == then
1b b

j jY Y +==

. . b
jUnclassified X Unclassified X Y← − //update the set of unclassified hen houses

endif
endwhile

. .kcap truck cap truck=
endwhile

1k k← +
end;

Fig. 6 Procedure for allocating pullets to hen houses

These pullet and hen houses already picked up and deliv-
ered will be stored in the sets of vehicles sk ← sk ∪ Xa

i and
sk ← sk ∪ Yb

j , respectively. The amount of pullets already

transported to hen houses will be stored in the set rk and
updated as rk ← rk + pk .

Example of decoding

The sorted list of pullet and hen house of the initial vector
population in Fig. 5 is considered as the priority list to assign
routing between the pullet house and hen house. The maxi-
mum capacity of vehicle is given as maxcap.truck = 3600
hens per vehicle and the maximum duration of a route
(Tmax) is 12 h.

Under these two constraints, it can be seen from Fig. 7
that the Vehicle no. 1 picks up 3600 pullets from pullet house
i = 2 and deliver 2800 and 800 pullets to hen houses j = 3
and j = 1, respectively. Total time duration for transferring
from pullet house i = 2 to hen houses j = 3 and j = 1 are
five hours (3 + 2 = 5h). Therefore, we can see that Vehicle
no. 1 still has remaining time (12− 5 = 7h) to pick up 3000
pullets fromhouse i = 3 and delivers all of them to hen house
j = 4 that requires six hours (4 + 2 = 6h) for transferring.
We can see thatVehicle no. 1 still has 300 pullets as remaining
capacity to pick up. However, the vehicle has only one hour
remaining (7 − 6 = 1h) to pick up the pullets from this
route. Hence, Vehicle no. 1 cannot deliver these pullets to
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Fig. 7 Decoding of transferring
pullets to hen houses obtained of
solution set n = 1

the next priority hen houses ( j = 6), since the time duration
for travelling from hen house i = 4 to hen houses j = 6
takes two hours violating to the Tmax constraint. Therefore,
the second vehicle (k ← k+1) is considered to pick up these
300 pullets from pullet house i = 3 and also pullet houses
i = 1 and i = 5 for 300, 1000, and 1800 pullets, respectively.
These pullets will then be transferred to hen houses j = 6
and j = 7, for 1900 and 1200 pullets, respectively. The
process is repeated until all pullets are transferred to hen
houses (Unclassi f ied. = ∅).

Subsequently, the solution set is obtained from decoding
which is the sequence for transferring pullets to hen houses,
and also the quantity of pullets transported by each vehicle
as shown in Fig. 8.

Fig. 8 Solutions obtained from decoding for transferring pullets to hen
houses of solution set n = 1

When all pullets are completely allocated to hen houses
and the routes of pullet transportation are assigned, the total
cost (TC) as objective function for each of n parameter
vectors on iteration t is calculated in terms of fuel cost
( f uel_cost) and vehicle renting cost (veh_rent) as shown
in Eq. (1).

TC Total cost including fuel cost ( f uel_cost) and vehi-
cle renting cost (veh_rent)

= f uel_cost + veh_rent

=
I∑

i=1

J∑

j=1

K∑

k=1

(CF × di j × Xi jk) + (CT × Qk) (1)

Step 2: Mutation operation
Mutation is performed in order to obtain new solutions

differently from the initial population. Mutation can be done
by taking randomvector tofind thedifference in the following
process.

(1) Define Target vectors Xn,G and Yn,G , where n = 1, 2,
3,…,NP

(2) Random 3 vectors from the initial population differently
from the target vector (i.e., n �= r1 �= r2 �= r3). The
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random vectors are Xr1,G , Xr2,G , Xr3,G for pullet
houses, and Yr1,G ,Yr2,G ,Yr3,G for hen houses.

(3) Calculate themutant vector from the equations:V xn,G+1

= Xr1,G + F(Xr2,G − Xr3,G) for pullet houses and
V yn,G+1 = Yr1,G + F(Yr2,G − Yr3,G) for henhouses.
The mutation factor (F), which is a real constant used
is 2.

Step 3: Recombination operation
In the recombination operation, each of themutant vectors

does a crossover with the target vector to generate the trial
vectors Uxi,n,G+1 and Uyj,n,G+1 for pullet house and hen
house, respectively.CR is the crossover rate ∈ [0, 1]. After
the experiment, the CR is chosen as 0.80 appropriately for
the problem. The trial vectors are formed by the following
equations:

Uxi,n,G+1 =
{
V xi,n,G+1 if randi ≤ CR
Xi,n,G otherwise

Uyj,n,G+1 =
{
V y j,n,G+1 if rand j ≤ CR
Y j,n,G otherwise

The recombination operation is carried out by:

(1) generating randomnumbers, randi for pullet houses and
rand j for hen houses, within interval [0,1],

(2) for each of NP: if randi ≤ CR and rand j ≤ CR; copy
the value from the mutant vector, else copy the value
from the target vector into the trial vector (see Fig. 9).

(3) Then, update the values of trial vector in range between
[0, 1] using the following equations.

Ux∗
i,n,G = MaxTarget − MinTarget

MaxUn − MinUn

× (Uxi,n,G − MinUn),

Uy∗
j,n,G = MaxTarget − MinTarget

MaxUn − MinUn

× (Uyj,n,G − MinUn)

Fig. 9 Illustration of recombination operation of pullet house

(4) Finally, sorting the values of trial vector in ascending
order (or rank order value: ROV).

Step 4: Selection operation
The last operation is called selection that to decidewhether

or not it should become the initial solution of the next gen-
eration (G + 1) using the format of one-to-one competition
scheme to select new candidates greedily. The objective func-
tion of the trial vectorsare compared with that of the target
vectors, the vector with the lowest value of the two becomes
“Individual 1” for the next generation, according to the fol-
lowing equation:

Xn,G+1 =
{
Uxn,G+1 if f (Un,G+1) ≤ f (Xn,G)

Xn,G otherwise

Yn,G+1 =
{
Uyn,G+1 if f (Un,G+1) ≤ f (Xn,G)

Yn,G otherwise

To evolve “Individual 2” for the next generation, the sec-
ond member of the population is set as target vector and the
above process is repeated. This process is repeated NP times
until the new population set array is filled which completes
one generation. Once the termination criterion is met, the
algorithm ends. If the trial vector yields a lower cost func-
tion value than the target vector, the trial vector replaces the
target vector in the following generation.

MESOMDE_G-Q-DVRP-FD

Since the problem considered in this paper is very complex,
the new algorithm called a “Multifactor BasedEvolving Self-
OrganizingMapswithDifferential Evolution forG-Q-DVRP
with consideration of flexibility of mixing pickup and deliv-
ery services and a maximum duration of a route constraints
(MESOMDE_G-Q-DVRP-FD)” was developed to improve
the solution of the problem. Details of the two-phase algo-
rithm are as follows.

Phase 1: Clustering phase

According to Dechampai et al. (2013), the algorithm called
“Multifactor Based Evolving Self-Organizing Maps
(MESOM)” was developed to cluster pickup customer ver-
tices (i.e., pullet houses) in order to reduce transportation
cost. Due to its effectiveness, the MESOM is therefore used
in this study. TheMESOMwas developed based upon the tra-
ditional Evolving Self-organizing Maps algorithm (ESOM).
The modifications are that, in the MESOM, the winner node
was adjusted and the calculation of the neighborhood func-
tion was ignored to determine the online K-mean. Resulting
from each cluster has a centroid which does not depend on
one cluster, the cluster updates itself until it is fulfilled, cre-
ating a new cluster (node) when necessary. Therefore, this
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Procedure: MESOM algorithm
Input: Location of pullet houses ( jX ), MESOM parameters ( max.cap , max.dist ,η ,α ) 
Output: cluster of pullet houses
begin

0k ← ; //k: cluster number
. jUnclassified X X←

initialize kC by selecting from the largest capacity house xj;
evaluate kC by selecting a neighbor vector xj which is closest to Ck;
while (not termination condition) do

if || max .|| j kX C dist− ≤ then
if . .jk XCluster cap cap max.cap+ ≤ then                        //xj can be included into Ck

update jk k XCluster Cluster← ∪
. . .jk k XCluster cap Cluster cap cap← + and . . jUnclassified X Unclassified X X← −

( )j kk k X CC C η← + − // update centroid of Ck

else if . .jk XCluster cap cap max.cap+ > then //xj might be split 
1 ..j kX cap max.cap Cluster cap= − //the capacity that is included to Ck

12 . . .jj jX X Xcap cap cap= −
update 1 ( , )j j jX x yα α← − − , 2 ( , )j j jX x yα α+ +←

1jk kCluster Cluster X∪←
1. . .jk kCluster cap Cluster cap X cap← +

1. . jUnclassified X Unclassified X X← −
2. . jUnclassified X Unclassified X X← +

1 1( )xj jk k X CkC C η −← +

1 211 . / ( . . )jjxj jX X Xcap cap capη = + //update centroid of Ck

else 1k k← + //a new Ck will be constructed
endif

endwhile
output cluster of pullet house

end;

Fig. 10 The procedure of the MESOM algorithm (Dechampai et al. 2013)

method does not need to consider weak connections or cal-
culate connection strength. Each house will become a data
vector in a 2-D space, after mapping the pullet house loca-
tions onto the XY planar axis. The MESOM network starts
clustering at the largest capacity house. Each cluster only
represents one vehicle. Any house in a cluster should send
pullets to the vehicle of the corresponding cluster. During
learning, the network updates itself and creates a new cluster
when it exceeds the maximum distance or inordinate vehicle
capacity constraints. In this algorithm, two sub phases are
developed. Firstly, the splitting method and then multifactor
are used to cluster the pullet houses with splitting-coefficient
of centroid movement (ηxi j ) in order to completely utilize
the transportation.

Since the classical ESOM algorithm uses only the dis-
tance criterion for constructing the topology, in regards to
our problem, only distance information is not sufficient
for determining the clusters of houses. Therefore, Decham-
pai et al. (2013) apply the algorithm including additional
concerns with the qualification of several attributes such
as the capacity of each vehicle and the transportation dis-

tance criteria. These qualifications are to play an essen-
tial role for clustering the houses in order to be appropri-
ate for application in real problems. Therefore their method
was eventually known as Multifactor in the MESOM proce-
dure.

The MESOM algorithm can be explained step by step as
shown in Fig. 10.

Phase 2: Allocation and routing phase

According to the MESOMDE_G-Q-DVRP-FTD procedure,
after the clusters of pullet houses (Ck) are determined from
the first phase, the determination of routes is established in
this phase. The procedure for determining vehicle routing
is same as that of the DE_G-Q-DVRP-FTD algorithm pre-
sented in DE_G-Q-DVRP-FD section. When all pullets are
completely allocated to hen houses and the routes of pullet
transportation are assigned, Eq. (1) is also used to calculate
the total cost (TC) or objective function for each of n para-
meter vectors on iteration t .
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Table 2 Values of parameters
used in each data set

a One US dollar is
approximately 30 Baht

Data set Vehicle capacity
(units per vehicle)

Total number
of pullet houses
(houses)

Total number
of hen houses
(houses)

Rate for
vehicle renting
(Baht/vehicle/day)a

Fuel cost
(Baht/km)a

1 2300 20 60 2200 13.9

2 2300 20 80 2200 13.9

3 2300 30 60 2200 13.9

4 2300 30 80 2200 13.9

5 2300 40 60 2200 13.9

6 2300 40 80 2200 13.9

7 3600 20 60 2500 11.4

8 3600 20 80 2500 11.4

9 3600 30 60 2500 11.4

10 3600 30 80 2500 11.4

11 3600 40 60 2500 11.4

12 3600 40 80 2500 11.4

Table 3 Comparison of the
average number of vehicles used
and the average traveling
distance between the current
practices and using the
DE_G-Q-DVRP-FD and
MESOMDE_G-Q-DVRP-FD
algorithms for different data sets

Data
type

Average number of vehicles used Average travelling distance

Current
practice

DE_G-Q-
DVRP-FD

MESOMDE_G-
Q-DVRP-FD

Current
practice

DE_G-Q-
DVRP-FD

MESOMDE_G-
Q-DVRP-FD

1 31 30 28 2918 2817 2649

2 29 28 27 2908 2674 2640

3 39 38 35 4227 3590 3358

4 37 36 33 4035 3533 3284

5 50 47 42 5491 4496 4050

6 44 44 40 4311 4216 3841

7 29 26 22 2918 2527 2066

8 27 24 21 2908 2327 2033

9 36 35 29 4227 3354 2836

10 35 33 27 4039 3207 2706

11 48 44 35 5491 4263 3331

12 42 42 34 4311 4031 3279

Case study application

This researchwasmotivated by the interest of an egg industry
in northeastern Thailand. Currently, the daily production of
the firm is about 1,200,000 eggs with the total number of
laying hens in its houses about 1,500,000 hens. Presently,
the chicks are ordered weekly at 30,000–50,000 chicks from
hatcheries depending on egg demand volumes in the planning
horizon. The chicks are then moved to the 21 contracted
pullet-raising houses with different capacities ranging from
15,000 to 35,000 pullets per house. When the pullets are
17 weeks old, they are transferred to hen houses for laying
eggs, and hens will remain in the hen house until the age

of 75 weeks for egg production. The hen houses are located
within the radius of 50–100km from the pullet houses. To
transport the hens, the firm has a contract with a third-party
logistics provider using only 6-wheel vehicleswith a capacity
of 2300 hens. Presently, there are 82 contracted hen houses
with different capacities ranging from 5400 to 59,100 laying
hens per house.

To allocate hens to henhouses, thefirmcurrently considers
only two major factors, namely, distance between the pullet
houses and the hen houses and sizes of the hen houses. In
order to minimize the travelling distance of the vehicle, the
hen house with the shortest distance is given priority rather
than the size of the hen houses. In other words, the hen house
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with the shortest distance between the pullet house and the
hen house is chosen first. If there are more hen houses with
the same distance, the hen house will be selected in the order
of larger size. In the case where a hen house is only partially
filled, that hen house may be used in later weeks. The hen
house with the remaining capacity will be selected based on
the prescribed criterion. However, the simple practice of the
firmmay cause an inefficient allocation in the long run. Itmay
have some inherent disadvantages, especially an increase of
transportation distance charged at 13.9 units per kilometer.
It should be noted here that monetary unit in our paper is in
baht (assuming one US dollar is approximately 30 baht).

Numerical experiments

Since the case of this practical problem is very complex, it
cannot be solved by a simple calculation. For this reason,
the integration of a comprehensive decision support sys-
tem (DSS) is required. To solve the problem, the DE_G-
Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms
were developed using Matlab version 7.9.0.529 on AMD E-
450 APU with RadeonTM HD Graphics (1.65 GHz), with
4.00 GBytes of RAM. In order to test the model, recorded
data of hen allocation of the company during the year 2010–
2012was used to test the performance of the proposedDE_G-
Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD methods in
terms of total costs, consisting of fuel cost and vehicle renting
cost. Twelve sets of problems were generated based on three
types of data characteristics of the current practice in order
to evaluate the performance of the heuristics algorithms. The
three types of data characteristics were sizes of vehicles, total
number of pullet houses, and total number of hen houses. In
the real case, only one size of vehicle (i.e., 6-wheel vehicle
with 2300 units of capacity) is used. However, a 10-wheel
vehicle is another size of vehicle normally used in transport-
ing commodities and will be planned for use by the company
in the near future. Hence, in this study, two levels of vehicle
sizes were considered, low (i.e., 2300 pullets per vehicle) and
high (i.e., 3600 pullets per vehicle) to see if the 10-wheel
vehicle is more economical. For the two other parameters,
three levels of total number of pullet houses, low (i.e., 20 pul-
let houses), medium (i.e., 30 pullet houses), and high (i.e., 40
pullet houses), and two levels of total number of hen houses,
low (i.e., 60 hen houses) and high (i.e., 80 hen houses) are
considered. For each combination, ten test problems were
generated. The parameters for each combination are given in
Table 2.

To investigate the performance of the proposed DE_G-
Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms,
the relative improvement (RI) of the solutions obtained by
the algorithms with respect to those of the current practice
was determined by Eq. (2).
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Table 5 Average relative improvement results (%) from the DE_G-Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms for different data
sets

Data set Cost of vehicle utilization Fuel cost Total cost

DE_G-Q-
DVRP-FD

MESOMDE_G-
Q-DVRP-FD

DE_G-Q-DVRP-FD MESOMDE_G-
Q-DVRP-FD

DE_G-Q-
DVRP-FD

MESOMDE_G-
Q-DVRP-FD

1 3.23 11.29 3.46 9.23 3.31 10.52

2 4.14 6.55 8.06 9.22 5.66 7.59

3 3.08 10.00 15.08 20.57 7.95 14.30

4 2.97 11.62 12.44 18.61 6.84 14.47

5 6.40 16.20 18.11 26.24 11.20 20.31

6 0.00 10.00 2.20 10.91 0.84 10.35

7 11.03 25.52 13.39 29.20 11.78 26.68

8 11.11 20.74 19.98 30.10 14.03 23.82

9 3.06 18.61 20.66 32.91 9.19 23.60

10 5.43 22.29 20.61 33.00 10.66 25.98

11 8.33 27.08 22.37 39.33 13.15 31.28

12 0.24 19.76 6.49 23.94 2.23 21.10

Table 6 Comparison of the unit cost (unit/pullet) between the cur-
rent practice and using the DE_G-Q-DVRP-FD and MESOMDE_G-
Q-DVRP-FD algorithms for different types of vehicle

Data set Current
practice

DE_G-Q-
DVRP-FD

MESOMDE_G-
Q-DVRP-FD

6-wheel vehicle 1.80 1.69 1.57

10-wheel vehicle n/aa 1.57 1.30

a Currently, the case study company has not used this size of vehicle
yet

Let

RI = ((Scur − Sheu)/Scur ) × 100 (2)

where RI = the relative improvement (%) between Scur and
Sheu . Scur = the solution obtained from the current practice.
Sheu = the solution obtained from the proposed algorithms
(DE_G-Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD).

The solution of each test problem representing the current
practice of the company and that using the proposed DE_G-

Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms
including the relative improvement were obtained for all test
problems of each combination. To demonstrate the efficiency
of the MESOMDE_G-Q-DVRP-FD algorithm on these two
cost components, Table 3 shows a comparisonof the results of
the current practice and those of the DE_G-Q-DVRP-FD and
MESOMDE_G-Q-DVRP-FD algorithms for each data set.
We can see that the MESOMDE_G-Q-DVRP-FD algorithm
yields the lowest number of vehicles used and the lowest
travel distances. Table 4 shows the best and the average val-
ues of each cost component including the total cost obtained
on 10 runs for each data set. Based on these results, the rel-
ative improvement values obtained for all test problems of
each data set are presented in Table 5. It can be seen that the
relative improvement of the total cost ranged from 7.59 to
31.28%, with an average of 19.17% for the MESOMDE_G-
Q-DVRP-FD algorithm, and 0.84–13.15%, with an average
of 8.07% for the DE_G-Q-DVRP-FD algorithm. Also, from
this table, it can be seen that both of the proposed algorithms
can reduce costs greatly, especially the fuel cost. However,
the proposedMESOMDE_G-Q-DVRP-FD algorithm gave a

Table 7 Paired sample test of the total cost between DE_G-Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms

Pair 1 Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95% confidence interval
of the difference

Lower Upper

Paired samples test

DE_G-Q-DVRP-FD -
MESOMDE_G-Q-
DVRP-FD

15796.25000 8934.54076 2579.17976 10119.51363 21472.98637 6.125 11 .000
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Table 8 Paired sample test of the total distance between DE_G-Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms

Pair 2 Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95% confidence interval
of the difference

Lower Upper

Paired samples test

DE_G-Q-DVRP-FD -
MESOMDE_G-Q-
DVRP-FD

413.49167 249.59337 72.05140 254.90761 572.07573 5.739 11 .000

Table 9 Paired sample test of the number of vehicles between DE_G-Q-DVRP-FD and MESOMDE_G-Q-DVRP-FD algorithms

Pair 3 Paired differences t df Sig. (2-tailed)

Mean Std. deviation Std. error mean 95% confidence interval
of the difference

Lower Upper

Paired samples test

DE_G-Q-DVRP-FD -
MESOMDE_G-Q-
DVRP-FD

4.49167 2.41866 0.69821 2.95492 6.02841 6.433 11 .000

Table 10 Computational results for each cost component including total cost for all data sets (thousands of Baht)*

Data set Cost of vehicle utilization Fuel cost Total cost

GNG MESOMDE_G-
Q-DVRP-FD

GNG MESOMDE_G-
Q-DVRP-FD

GNG MESOMDE_G-
Q-DVRP-FD

Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

1 88.00 88.00 55.00 60.50 23.53 24.32 32.73 36.82 111.53 112.32 87.73 97.32

2 88.00 88.00 57.20 59.62 27.35 28.78 35.74 36.70 115.35 116.78 92.94 96.32

3 110.00 110.00 70.40 77.22 25.54 29.48 44.22 46.67 135.54 139.48 114.62 123.89

4 110.00 110.00 66.00 71.94 23.71 24.80 42.56 45.65 133.71 134.80 108.56 117.59

5 121.00 121.00 83.60 92.18 45.67 49.37 52.39 56.30 166.67 170.37 135.99 148.48

6 121.00 121.00 81.40 87.12 26.26 27.55 50.25 53.39 147.26 148.55 131.65 140.51

7 130.00 130.00 70.00 73.33 34.11 34.87 32.08 32.43 164.11 164.87 102.08 105.77

8 130.00 130.00 67.50 70.00 32.69 34.27 30.91 31.65 162.69 164.27 98.41 101.65

9 162.50 162.50 87.50 87.50 28.19 29.56 39.46 40.63 190.69 192.06 126.96 128.13

10 162.50 162.50 82.50 85.00 25.15 26.12 37.73 38.44 187.65 188.62 120.23 123.44

11 217.50 217.50 137.50 138.33 48.43 50.55 59.72 60.88 265.93 268.05 197.22 199.22

12 217.50 217.50 127.50 127.50 34.49 36.81 55.03 56.21 251.99 254.31 182.53 183.71

Best = the best solution found among 10 runs for each data set
Mean = the average value on 10 runs for each data set

significantly lower cost for all cost components than the DE
algorithm (see paired samples tests in Tables 7, 8 and 9) since
the MESOMDE_G-Q-DVRP-FD was developed by consid-
ering both distance as the main factor and also the hen house
capacity in order to cluster pullet houses as pickup customers
and hen houses as delivery customers to reduce the travel
distance, while the maximum duration of a route constrain-

texists. Once the pullet houses and hen houses are clustered,
the differential evolution technique (DE) was developed for
determining routes for transferring pullets from the pullet
houses to the hen houses.

To demonstrate if the 10 wheel vehicle is more econom-
ical, Table 6 shows a comparison of cost per pullet trans-
ported between the two sizes of vehicles. We can see that the
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Table 11 The difference (%gap) between the GNG and
MESOMDE_G-Q-DVRP-FD algorithms of different data sets

Data set %gap

Cost of vehicle utilization Fuel costTotalcost

1 45.45 −33.95 15.41

2 47.60 −21.58 21.24

3 42.45 −36.83 12.58

4 52.91 −45.67 14.64

5 31.26 −12.31 14.74

6 38.89 −48.40 5.72

7 77.28 7.52 55.88

8 85.71 8.28 61.60

9 85.71 −27.25 49.89

10 91.18 −32.05 52.80

11 57.23 −16.97 34.55

12 70.59 −34.51 38.43

10-wheel vehicle yields the lower cost per unit transported
for both proposed algorithms, and the MESOMDE_G-Q-
DVRP-FD gives the lowest cost per unit transported.

Moreover, to investigate the efficiency of the MESOM-
DE_G-Q-DVRP-FD, it was compared with the benchmark
problem reported in the literature. The method is Growing
Neural Gas (GNG) proposed by Boonmee et al. (2013) (See
“Appendix”). The GNG was developed to transfer pullets to
hen houses by determining the centroid of hen houses before
determining the routes. The objective of their study is to min-
imize the total cost consisting of house renting from farmer,
hen transportation costs, and losses from mixing hens at dif-
ferent age. In order to obtain results that are comparable to the

GNG algorithm and to represent the problem, we generate 6
new data types to replace to data sets 7–12. The comparison
of the results of the GNG and those of the MESOMDE_G-
Q-DVRP-FD algorithms for each data set shows in Table 10.
In this table, the best and the average values of each cost
component including the total cost obtained on 10 runs for
each data set were presented. Based on these results, the dif-
ference (%gap) between two algorithms determined by Eq.
(3) was obtained for all test problems of each data set and
presented in Table 11.

Let

%gap = ((SGNG − Sheu)/Sheu) × 100 (3)

where %gap the percentage of the difference between SGNG

and Sheu . SGNG the solution obtained from the GNG algo-
rithm. Sheu the solution obtained from the proposed algo-
rithm (MESOMDE_G-Q-DVRP-FD).

From Tables 10 and 11, it can be seen that the MESOMD-
E_G-Q-DVRP-FD algorithm yields a significantly lower
total cost, especially vehicle utilization cost since the
MESOMDE_G-Q-DVRP-FD algorithm was developed for
both pickup and delivery services in the same route. How-
ever, in most instances, the vehicles may travel more dis-
tance resulting in high fuel cost (see Table 12). In contrast,
the GNG algorithm gives lower fuel cost since the algorithm
mainly focuses on the short distance rather than the number of
vehicles used in the system. Furthermore, when considering
the total costs, theMESOMDE_G-Q-DVRP-FD algorithm is
more efficient compared to the GNG algorithm which gives
lower total cost than the GNG algorithm ranging from 5.72
to 61.60%, with an average of 31.46%.

Table 12 Comparison of the average number of vehicles used and the average traveling distance between theGNGandMESOMDE_G-Q-DVRP-FD
algorithms for different data sets

Data type Average number of vehicles used Average travelling distance

Current practice GNG MESOMDE_G-Q-DVRP-FD Current practice GNG MESOMDE_G-Q-DVRP-FD

1 31 40 28 2918 1750 2649

2 29 40 27 2908 2071 2640

3 39 50 35 4227 2121 3358

4 37 50 33 4035 1784 3284

5 50 55 42 5491 3552 4050

6 44 55 40 4311 1982 3841

7 39 52 29 3220 2510 2845

8 40 52 28 3062 2466 2776

9 46 65 35 4014 2127 3563

10 48 65 34 3864 1880 3372

11 65 87 55 5595 3638 5340

12 68 87 51 5211 2649 4930
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Conclusions and discussion

In this paper, we propose new methods to solve the prob-
lem of hen allocation to hen houses with the objective of
minimizing the total cost consisting of two cost compo-
nents, cost of vehicle utilization and fuel cost. Then, the
problem is known as the G-Q-DVRP with consideration of
flexibility of mixing pickup and delivery services and the
maximum duration of a route constraint. To solve the prob-
lem, two heuristic algorithms were developed. The DE_G-
Q-DVRP-FD algorithm uses the differential evolution tech-
nique (DE). Since the problem considered is very compli-
cated, the DE_G-Q-DVRP-FD was modified as a two-phase
algorithm called MESOMDE_G-Q-DVRP-FD. In the first
phase, clustering of pullet houses was determined before
allocating pullets to the hen houses efficiently. The con-
cept of SOM, which is a data-clustering method to find
groups of pullet houses for the transportation management
system, is introduced. Once the pullet houses are clustered
in the first phase, the differential evolution technique (DE)
developed in the DE_G-Q-DVRP-FD algorithm was then
used in the second phase for determining routes for trans-
ferring pullets from the pullet houses to the hen houses.
The performance of the proposed algorithms was measured
using the relative improvement (RI), which compares the
total cost. The results obtained from this study show that
the MESOMDE_G-Q-DVRP-FD algorithm provided better
total cost values than the firm’s current practice by 7.59–
31.28% (with an average of 19.17%), and 0.84–13.15%
(with an average of 8.07%) better than the DE_G-Q-DVRP-
FD algorithm. Paired sample tests were also performed to
compare the cost per unit transported between the two sizes
of vehicles of the proposed algorithms and the current prac-
tice. Results of the tests showed that the 10-wheel vehicle
yields the lower cost per unit transported for both proposed
algorithms, and the MESOMDE_G-Q-DVRP-FD algorithm
gives the lowest cost per unit transported. Additionally,
the MESOMDE_G-Q-DVRP-FD was compared with the

benchmark problem named Growing Neural Gas (GNG).
The experimental results reveal that the MESOMDE_G-
Q-DVRP-FD algorithm is more efficient compared to the
GNG algorithm. Therefore, the MESOMDE_G-Q-DVRP-
FD algorithm can be used efficiently to solve the problem
of pullet transportation to hen houses. This will help the egg
industry reduce the total cost resulting in sustainable produc-
tion.

The proposedMESOMDE_G-Q-DVRP-FDmethod is not
only useful for reducing the total cost when compared to
the current practice, but also for efficient management of a
poultry production system. Furthermore, the method of this
research should prove beneficial to other similar agro-food
sectors and other sectors concerned in transportation of com-
modities in Thailand and around the world. Therefore, there
is still a great opportunity to extend our work in many areas.
Our planned future work will be to improve the routes from
pullet houses to hen houses in order to minimize the trans-
portation cost with consideration of fleet sizes. Another valu-
able avenue for future research is to consider someother para-
meters of the problemas fuzzyvariables, such as eggdemand,
fuel cost, speed of vehicles due to road conditions and fleet
sizes.We believe that this can add to the ability of our system
to model real world problems and will be a valuable exten-
sion. Additionally, although the MESOMDE_G-Q-DVRP-
FD algorithm has shown an outstanding ability to solve the
problem at hand, there is a possibility for other researchers
to use hybrid methods or other meta-heuristics to solve the
same problem or to design an exact method to compare the
strength of various approaches in solving the problem of this
nature. Furthermore, the consideration of multiple objective
functions may be interesting.
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Appendix

1. begin 

2. Locations of hen houses are represented with 2-D vector ix from mapping

3. Create two prototype nodes 1w and 2w with random initialization

4. for 2 : tl nw=

5. for 1: maxk λ=

6. Randomly select an input vector ix

7. Find nodes aw and bw corresponding to 2 2 2|| || || || || ||i a i b i lx w x w x w− ≤ − ≤ ≤ −

8. Update 2|| ||a a i aerror error x w← + −

9. Move node aw and its topological neighbors (nodes connected to aw ) toward ix :

( )a a w i aw w x wε← + −

( ) ( )n n n i n aw w x w n neighbors wε← + − ∀ ∈

10. if Edge between aw and bw ( ,a bedge ) does not exist then

create edge between aw and bw ( ,a bedge ) 

endif

11. , 0a bage ← and ( , ) ( , ) 1 ( )a n a n aage age n neighbors w← + ∀ ∈

12. Remove all edges with an age larger than maxage and nodes with no edges

13. endfor

14. Determine the node c with the largest error and the neighbor node d of c with the largest error

15. Insert the new node e between c and d: ( ) / 2e c dw w w← +

16. Update the number of nodes: 1l l← +

17. Create edges: ,c eedge , ,d eedge and remove ,c dedge

18. c cerror errorα← × , d derror errorα← × and e cerror error←

19. Decrease all errors of all nodes l: l lerror errorβ← ×

20. endfor

21. end;
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