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Abstract In this paper, the flow-shop sequence-dependent
group scheduling (FSDGS) problem is addressed with ref-
erence to the makespan minimization objective. In order to
effectively cope with the issue at hand, a hybrid metaheuris-
tic procedure integrating features from genetic algorithms
and random sampling search methods has been developed.
The proposed technique makes use of a matrix encoding able
to simultaneously manage the sequence of jobs within each
group and the sequence of groups to be processed along
the flow-shop manufacturing system. A well-known prob-
lem benchmark arisen from literature, made by two, three
and six-machine instances has been taken as reference for
both tuning the relevant parameters of the proposed proce-
dure and assessing performances of such approach against
the two most recent algorithms presented in the body of lit-
erature addressing the FSDGS issue. The obtained results,
also supported by a properly developed ANOVA analysis,
demonstrate the superiority of the proposed hybrid meta-
heuristic in tackling the FSDGS problem under investiga-
tion.
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Introduction

In the last decades several manufacturing companies have
benefited from implementing the production philosophy
based on cellular manufacturing systems (CMS). Cellular
manufacturing (CM) entails a production system wherein
parts needing similar technological processes are grouped in
distinct working cells. Benefits a firm may gather by imple-
menting a CM system should include reduction in setup time,
throughput time, tooling needs, and work-in-process inven-
tories, simplifiedflowof parts, and improved human relations
(Hyer and Wemmerloev 1989; Paredes et al. 1998; Shankar
and Vrat 1999). A manufacturing framework based on CMS
also facilitates successful implementation of modern man-
ufacturing technologies, such as computer integrated manu-
facturing, JIT production and flexiblemanufacturing systems
(Gallagher and Knight 1986). Though implementation of a
CMS may generate several advantages, it is undeniable that
designing and planning such a kind of manufacturing sys-
tems constitutes a demanding challenge. Indeed, configuring
a CMS entails a series of designing and planning phases,
such as cell formation problem, layout of CMS, production
planning in CMS, scheduling in CMS, etc.

Though cell formation problem has been gaining most of
the scientific attention (Mahmoodi and Dooley 1991; Logen-
dran et al. 1995; Soleymanpour et al. 2002; Baykasoglu
2004), benefits arising from the effective implementation
of scheduling in CMS have extensively been demonstrated
since Seventies (Hitomi and Ham 1976). In the design of
CMS, whether a perfect group formation is performed, dis-
similar machines that belong to the same cell have to process
a set of parts belonging to a specific part family (Logendran
and Sirikrai 2000). Therefore, a part family can be divided
into several groups so that each group needs similar setup
requirements (Schaller 2001). Hence, a group is a subset of a
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part family and each group includes a number of jobs. Since
jobs in the same group are similar, the setup time required
to change from one job to another is assumed to be negligi-
ble compared to the run time. Whereas, a measurable setup
time would be required to change from one group to another
because of the significant difference between the technolog-
ical requirements of two distinct groups.

The body of literature has frequently investigated the
Flow-Shop Group Scheduling (FSGS) problem, basically
due to the affinity between such theoretical model and many
real-world manufacturing situations. Whether setup times of
groups are sequence dependent, the problemmay be denoted
as flow shop sequence dependent group scheduling (FSDGS)
problem (Salmasi et al. 2011). Therefore, there exists a
clear advantage in processing together jobs belonging to the
same group, thus arranging the whole production schedule
through subsequent part families. In words, the decision-
making problem to be tackled consists in finding the opti-
mal sequence of groups and the optimal sequence of jobs
within each group, with reference to a certain performance
measure. However, since each feasible solution for a FSGS
problem may be described as a regular sequence of jobs to
be processed by each machine of the shop floor, such a prob-
lem still remains a permutation scheduling issue, like in the
traditional flow-shop model.

One of the first studies concerning the FSGS problem is
ascribable to Ham et al. (1985), who presented an optimizing
algorithm for minimizing the total completion time in a two-
machine group scheduling problem. Their work was further
developed by Logendran and Sriskandarajah (1993), who
demonstrated how a two-machine group scheduling problem
with no buffer and anticipatory setup is strongly NP-hard.
Two years later, Logendran et al. (1995) addressed the more
general case of a M-machine (M > 2) FSGS problem under
the total completion time viewpoint, proposing an efficient
heuristic solution algorithm.

Recent researches dealing with group technology appli-
cations in flow-shop manufacturing environments mainly
focus on the flow-shop sequence-dependent group schedul-
ing (FSDGS) problem, i.e. a particular case of the FSGS
issue in which the setup time required by a certain group of
jobs depends on the technological features of the previously
processed group. The growing interest towards such a variant
of the classical flow shop group scheduling problem is essen-
tially due to its undeniable industrial implications. Examples
of FSDGS problems arising from the real industrial prac-
tice regarded: Printed Circuit Board (PCBs) manufacturing
(Schaller et al. 2000; Pinedo 2012), label sticker manufactur-
ing (Lin and Liao 2003) and automotive production (Salmasi
et al. 2010). Recently, results of a case study revealed that
the group-based method can reduce the manufacturing lead
time because of the reducing of processing set-up efforts (Yu
et al. 2013).

Three comprehensive reviews involving the FSDGS prob-
lem have been proposed by Allahverdi et al. (1999), Cheng
et al. (2000), and Zhu and Wilhelm (2006), respectively.
Schaller et al. (2000) approached the problem of schedul-
ing part families with sequence dependent setup times and
jobs within each part family in a flow line manufacturing
cell with reference to the makespan minimization objective.
To this aim, authors tested several heuristics and compared
their performance against a set of lower bounds obtained
through a generalization of the machine-based bounding
method, commonly used for the regular flow-shop issue.
França et al. (2005) developed two evolutionary algorithms,
namely a Genetic Algorithm (GA) and a Memetic Algo-
rithm (MA) with a local search, for minimizing makespan
in a flow-shop manufacturing cell with sequence depen-
dent setups among families. After an extensive experimental
analysis, authors put in evidence the superiority of the pro-
posed procedures with respect to a set of well-known heuris-
tic algorithms coming from literature. Notably, the memetic
procedure slightly outperformed the GA-based technique.
Logendran et al. (2006) proposed three search algorithms
based on Tabu Search (TS) for solving industry-size two-
machine group scheduling problems with sequence depen-
dent setups times. They evaluated the quality of obtained
solutions through a properly developed lower boundmethod.
Hendizadeh et al. (2008) and Salmasi and Logendran (2008)
also investigated the use of TS-based algorithms for mini-
mizingmakespan in the more general case of the M-machine
FSDGSproblem.Celano et al. (2010) used theFSDGSmodel
with limited inter-operational buffer capacity for addressing
a scheduling problem truly observed in the inspection depart-
ment of a semiconductor manufacturing company. In order
to minimize the makespan, the authors developed a matrix-
encoding GA, whose effectiveness has been proven against
a TS and the heuristic proposed by Nawaz et al. (1983) for
the classical flow shop problem. Salmasi et al. (2010) pre-
sented a Mixed Integer Linear Programming (MILP) for-
mulation and two metaheuristic methods, namely a TS and
a Hybrid Ant Colony Optimization (HACO) algorithm, for
minimizing the total flow time in a FSDGS problem. Both
metaheuristics were tested over a wide range of test cases,
from which the superiority of the HACO procedure clearly
emerged. One year later Salmasi et al. (2011) investigated
the use of the HACO algorithm for minimizing makespan in
a FSDGS problem. A similar issue was addressed by Hajine-
jad et al. (2011), who succeeded in outperforming the HACO
approach by means of a Hybrid Particle Swarm Optimiza-
tion (HPSO) algorithm. Finally, Naderi and Salmasi (2012)
proposed two different MILP formulations, along with a
hybrid metaheuristic technique named GSA composed by
both genetic and simulated annealing algorithm, to cope with
the FSDGS issue in terms of total completion timeminimiza-
tion.
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These last two research contributions represent two mile-
stones in the field of the meta-heuristic optimization of
the FSDGS problem. Nevertheless, though the authors have
extensively demonstrated the effectiveness of their algo-
rithms, bothmethodsmay suffer from some limitations.With
reference to thePSO technique, it iswell-known that the basic
equations governing such method are suitable for continuous
optimization problems, and their use in discrete domains, like
permutation scheduling problems, could cause loss of infor-
mation, leading to a general weakening of the search strategy
(Marinakis andMarinaki 2013). In addition, whenever a PSO
is employed for addressing a permutation problem, it requires
a specific sorting procedure to transform a real coded solu-
tion into a permutation one, thus slowing down the overall
optimization procedure due to a higher computational bur-
den.

Every search algorithm needs to address the exploration
and exploitation of a search space. Exploration is the process
of visiting entirely new regions of a search space, whilst
exploitation is the process of visiting those regions of a search
spacewithin theneighborhoodof previously visitedpoints. In
order to be successful, evolutionary algorithms likeGAsneed
to establish a good ratio between exploration and exploita-
tion (Crepinsek et al. 2013); thus, integrating a simulated
annealing with a GA constitutes a challenging task that may
lead to unsatisfying results, especially when parameters of
both algorithms are not selected through an extensive tuning
analysis. Furthermore, a combined use of two metaheuristic
procedures could require a larger computational burden to
converge, thus affecting the global efficiency of the search
method.

In light of the aforementioned remarks, this paper aims to
present a novel metaheuristic procedure able to outperform
the latest optimization algorithms proposed in the field of
FSDGS problem. Since Zandieh and Karimi (2011) and Luo
et al. (2013) recently revealed the effectiveness of Genetic
Algorithms in solving group scheduling problems, and Gao
et al. (2006) and Meeran and Morshed (2012) demonstrated
as local searchmethodsmay strongly enhance the search abil-
ity of genetic algorithms, a proper GA powered by a specific
random sampling technique (RS) has been developed.

In order to outperform the two mentioned competitors in
addressing the FSDGS issue, namely HPSO and GSA, the
proposed metaheuristic algorithm makes full use of two dis-
tinct crossover operators, two mutation operators, as well as
elitism and diversity operators that work through a permuta-
tion encoding to avoid any premature convergence. In addi-
tion, a Biased Random Sampling (BRS) technique has been
embedded within the genetic framework as to enhance the
performance of the proposed method under both the quality
of solution and computational burden viewpoint.

The remainder of the paper is organized as follows: sec-
tion “Problem description” deals with the description of the

FSDGSproblem, section “The proposed hybrid genetic algo-
rithm” presents the structure and the operators of the pro-
posed metaheuristic procedure. Section “Experimental cali-
bration” reports the results of the calibration campaign per-
formed in order to properly set all the relevant parameters of
the algorithm. In section “Computational experiments and
results” an extensive comparison among the proposed opti-
mization procedure and the two latest algorithms presented
in the field of FSDGS problems is reported. Finally, section
“Conclusions” concludes the paper.

Problem description

In aFSDGSproblema set ofG groups of jobs (k = 1, . . . ,G)

has to be processed along a serialmanufacturing system char-
acterized by M (m = 1, . . . , M) workstations. Each group k
holds nk jobs ( j = 1, . . . , nk) and the total amount of jobs
to be processed along the system is equal to

∑G
k=1 nk = N .

According to the group technology theory, jobs taking part
to a specific group are characterized by the same techno-
logical requirements and, as a consequence, setup times
between them can be ignored or, in alternative, included into
processing times. On the other hand, jobs that belong to dif-
ferent groups require different technological processes and,
for such a reason, setup times between groups themselves
sl,k (l, k ∈ 1, . . .,G|l �= k) cannot be ignored.

Similarly being done by previous researches addressing
the FSDGS issue, group setup operations are here assumed
to be anticipatory, i.e. they can be performed even if the first
job belonging to a group to be processed is still unavailable.
Furthermore, neither precedence relationships exist among
groups nor among jobs within the same group. Pre-emption
is not allowed, i.e. when a job starts to be processed, it must
be completed before leaving the workstation. Both group
and job passing is not allowed, i.e. they must visit in suc-
cession all the workstations of the manufacturing system.
Both groups and jobs must visit machines according to the
same order (sequence). All jobs are ready to be worked at
the beginning of the planning period, i.e. job release times
are equal to zero. Machines are continuously available dur-
ing the whole production session. Buffers between worksta-
tions have unlimited capacity. Jobs descriptors like process-
ing times and setup times are a-priori known. The objec-
tive function to be minimized coincides with the completion
time of the last job pertaining to the last group in the last
workstation.

The proposed hybrid genetic algorithm

As demonstrated by Schaller et al. (2000), minimizing
makespan in a FSDGS problem is NP-hard. Whenever a
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NP-hard combinatorial problem needs to be solved, meta-
heuristic algorithms may represent an effective and time-
saving alternative to other exhaustive approaches. Since
Celano et al. (2010) recently proved both the efficacy
and the efficiency of the genetic algorithm approach for
solving the FSDGS problem, a GA based optimization
procedure embedding a random sampling search tech-
nique has been proposed for tackling the problem under
investigation.

Generally, a GA works with a set of problem solutions
called population. At every iteration, a new population is
generated from the previous one by means of two opera-
tors, crossover and mutation, applied to solutions (chromo-
somes) selected on the basis of their fitness, i.e. the objec-
tive function value; thus, best solutions have greater chances
of being selected. Crossover operator generates new solu-
tions (offspring) by coalescing the structures of a couple
of existing ones (parents), while mutation operator brings
a change into the scheme of selected chromosomes, with the
aim to avoid any premature convergence into local optima.
The algorithm proceeds by evolving the population through
successive generations, until a given stopping criterion is
reached.

Whenever a real problem should be addressed through
an evolutionary algorithm, the choice of a proper encod-
ing scheme (i.e. the way a solution is represented by a
string of genes) plays a key role under both the quality of
solutions and the computational burden viewpoints (Costa
et al. 2013). In addition, a valid decoding procedure able to
transform a given string into a feasible solution should be
provided.

The following subsections deal with a detailed description
of the proposed GA-based optimization procedure, named
HGA, illustrating encoding/decoding strategies and genetic
operators adopted, as well as the random sampling local
search technique embedded in the algorithm for enhancing
search performances.

Problem encoding

Problem encoding is the way a given problem to be opti-
mized through a metaheuristic procedure can be represented
by means of a numerical chromosome. With reference to the
proposed HGA, a matrix-based encoding scheme has been
employed. Following the same notation adopted in the intro-
ductionSection, each solution is describedbya (G+1)×nmax

matrix, being nmax = maxGk=1 {nk}. The first G rows con-
sist of the permutation vectors πk indicating the sequence
of jobs within each group k, while the last row is the per-
mutation vector � representing the sequence of groups to be
processed:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

π1
1 , ...., π1

n1
...

πk
1 , ...., πk

nk
...

πG
1 ,....,πG

nG
�1,....,�G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

Hereinafter, row r (r = 1, 2, . . . ,G + 1) of the partitioned
matrix will be denoted as a sub-chromosome. Hence, a cer-
tain sub-chromosome r(r = 1, 2, . . . ,G) corresponds to the
sequence of jobs scheduledwithin group r ; sub-chromosome
r = G + 1 identifies the sequence � of groups. For sake of
clarity, a feasible solution for a problem in which G = 5
and nmax = 5 could be represented by the following [C1]
chromosome:

[C1] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 1 2 0 0
2 5 1 4 3
2 1 0 0 0
3 4 1 2 0
1 2 3 0 0
5 1 3 2 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

Sub-chromosomes from 1 to 5 hold the schedules of jobs
within each group (i.e., schedule 3-1-2 for group 1, sched-
ule 2-5-1-4-3 for group 2, schedule 2-1 for group 3, sched-
ule 3-4-1-2 for group 4, schedule 1-2-3 for group 5); sub-
chromosome r = G + 1 fixes the sequence of groups
� = 5-1-3-2-4. All the digits equal to zero do not take
part either to the solution decoding or to the genetic evo-
lutionary process. Once the problem encoding is defined, the
fitness function composed by Npop individuals pertaining to
the genetic population may be computed.

Crossover operator

Crossover operator allows the genetic material of two prop-
erly selected parents to be recombined to generate offspring.
The selection mechanism employed by the proposed HGA is
the well-known roulette wheel scheme (Michalewicz 1994),
which assigns to each solution a probability of being selected
inversely proportional to the makespan value. Once two
parent chromosomes have been selected, each couple of
sub-chromosomes belonging to the parent solutions under-
goes crossover according to an a-priori fixed probability,
hereinafter called pcr . Two crossover operators have been
adopted to recombine alleles within each couple of sub-
chromosomes: they are denoted byPosition Based Crossover
(PBC) and Two Point Crossover (TPC), respectively. Both
of these two operators have been largely adopted by liter-
ature within GAs applied to combinatorial problems (Gen
and Cheng 2000), (Celano et al. 2010), (Kim et al. 2003).
PBC generates offspring by considering the relative order in
which some alleles are positioned within the parents. Indeed,
it works on a couple of sub-chromosomes (P1) and (P2) as
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Fig. 1 Position based crossover (PBC)

Fig. 2 Two point crossover (TPC)

follows: 1) one or more alleles are randomly selected; 2)
selected alleles of parent 1 (P1) are reordered in offspring
1 (O1) as they appear within parent 2 (P2); 3) remaining
elements are positioned in the sequence by copying directly
from parent 1 the unselected alleles. The same procedure
is applied to the second parent, namely parent 2, to obtain
offspring (O2). Figure 1 shows application of PBC to a cou-
ple of parents where alleles in positions {1}, {4}, {5}, and
{7} have been selected. As far as the TPC method is con-
cerned, two positions are randomly selected and each sub-
chromosome parent is divided into three blocks of alleles:
both first and third block are copied directly in the corre-
sponding offspring, while the alleles belonging to the middle
block are reordered within the offspring in the same order
as they appear in the other parents (see Fig. 2). A “fair coin
toss” probability equal to 0.5 has been chosen for selecting
either PBC or TPC crossover.

Mutation operator

After a new population has been generated by means of
crossover, mutation operator is applied according to an a-
priori fixed probability pm .Whethermutation occurs, a chro-
mosome is randomly chosen from the population; within

such chromosome, a sub-chromosome is randomly selected
for mutation. Two kind of operators have been adopted in
the present research: an Allele Swapping Operator (ASO),
which performs an exchange of two randomly selected alle-
les of the sub-chromosome; and a Block Swapping Operator
(BSO), which performs a block exchange (see Fig. 3). A
“fair coin toss” probability equal to 0.5 has been chosen for
selecting either ASO or BSO mutation operator.

Elitism and diversity operators

To avoid any loss of the current best genetic information, the
survival of the two fittest individual within the population is
ensured by an elitist strategy, generation by generation. In
addition, a population diversity control technique has been
embedded within the proposed optimization procedure, in
order to mutate those identical chromosomes exceeding a
pre-selected value Dmax . In the present research, a Dmax

value equal to 2 has been selected, thus avoiding to havemore
than two identical solutions within the current population.

Local search and termination rule

In order to improve the performances of the proposed meta-
heuristic procedure, a Biased Random Sampling (BRS)
search scheme (Baker andTrietsch 2009) has been embedded
within the evolutionary optimization strategy of the proposed
HGA. Such procedure operates only on a sub-population,
whose size is equal to Nbest < NPOP , which includes just
the best individuals obtained after each generation. For each
generic chromosome Cs (s ∈ 1, 2, . . . , Nbest ), a sample of
NBRS neighbour solutions is generated by modifying the
sequence � of groups related to Cs . In the present research
NBRS has been set equal to 4. Each neighbour chromosome
NCi

s (i = 1, 2, . . . , NBRS) ofCs , holds a sequence of groups

(hereinafter denoted as �
i
) obtained as follows. The first

group �
i
1 is drawn by the genes of � according to the fol-

lowing distribution of probability:

p1,k = αk · 1
∑

k αk
k = 1, 2, . . . ,G (3)

where, p1,k is the probability to select �k , i.e. the k-th group

of sequence �, as first element of �
i
. Such probability is

defined as “biased” since it favours the first group of� to the
second, the second to the third, and so on. The parameter α is
used to control how the probability decreases when moving
from one group of � to another. For the proposed HGA, a
value of α = 0.8 has been selected. Thus, supposing to have

G = 5, the first element of the new sub-chromosome�
i
will

be drawn from � according to the probabilities reported in
Table 1.
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Fig. 3 a Allele swapping (ASO) and b block swapping (BSO) mutation operators

Table 1 RS probability distribution for G = 5, α = 0.8

k 1 2 3 4 5

p1,k 0.297 0.238 0.190 0.152 0.122

Once�
i
1 has been drawn, the second group, i.e.�

i
2, will be

extracted from the remaining ones of � in a similar fashion.

More in general, the j-th group of �
i
will be drawn from

the remaining elements of � on the basis of the following
distribution of probability:

p j,k = αk · 1
∑

k αk
k = 1, 2, ...,G + 1 − j (4)

With this structure, the first job on � has the highest proba-
bility of being selected, the second job has the second highest
probability, and so on. In addition, the probabilities decrease
in a geometric manner, but the nature of the decrease can be
controlled by selecting the parameter α.

Hence, a new candidate solution generated through BRS
method may generally differ from the seed chromosome Cs

formore than a couple of genes. Therefore, the proposedBRS
allows performing both an exploration and an exploitation
phase on the seed sequence, thus reducing the risk for the
GA of being trapped into local optima.

After a total of NBRS solutions are originated from chro-
mosome Cs , the best one is used for replacing Cs in the
current population, whether it leads to a better makespan
value. Such procedure is executed for all the Nbest individ-
uals originally selected. Once the local search mechanism is
completed, the new obtained population drive the next gen-
eration cycle.

The termination rule of the proposed HGA consists in
N · M seconds of CPU time, similarly being done by Naderi
and Salmasi (2012). During the experimental calibration
phase, properly discussed in the following section, it has been
observed that such time limit guarantees a satisfactory con-
vergence path towards the local optimum, regardless of the
adopted parameters.

Pseudo-code of HGA optimization strategy

To sum up, the whole optimization strategy followed by the
proposedHGAcan be illustrated through the following steps:

Step 1: Initialization of parameters Npop, pcr , pm, Dmax ,

Nbest , NBRS, α;
Step 2: Generation: Npop chromosomes composing the ini-

tial population are randomly generated;
Step 3: Selection andCrossover: two individuals are selected

according to the roulette-wheel selection criterion. If
probability of crossover pcr is satisfied then Position
Based or Two Point Crossover is applied to generate
offspring, else the two individuals are copied into
the new population. If crossover is applied, the two
best chromosomes individuated between parents and
offspring are placed into the new population;

Step 4: Mutation: each individual of the population gets
mutated if probability of mutation pm is satis-
fied. Mutation operator may be randomly chosen
between: Allele Swapping and Block Swapping;

Step 5: Population control: a mutation operator is applied to
those duplicates of a given chromosome exceeding
Dmax ;

Step 6: Local search: application of BRS procedure to the
Nbest best individuals of the population;

Step 7: Replacement: Updating of the current population
due to BRS;

Step 8: Exit criterion: if exit criterion is encountered then
Stop algorithm, else go to Step 3.

Experimental calibration

A proper calibration phase has been carried out, with the
aim of selecting a suitable set of parameters for the pro-
posed HGA. To this end, the same test problem specifica-
tions proposed by Salmasi et al. (2011) have been taken into
account. Basically, three distinct benchmarks of problems
characterized by different numbers of machines, i.e. 2, 3,
and 6, respectively, have been generated. For each bench-
mark, three distinct factors, namely number of groups, num-
ber of jobs within each group and setup times of groups on
each machine have been combined as to obtain a full facto-
rial experimental plan as shown in Tables 2, 3 and 4, where
symbol U[a, b] denotes a value extracted by a uniform dis-
tribution between a and b.

It is worth noting that a total of 27 + 81 + 27 =
135 separate instances describing a consistent data set for
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Table 2 Benchmark of instances for the FDSGS problem with 2
machines

Factor Level Value

Number of
groups

1 U [1,5]
2 U [6,10]

3 U [11,16]

Number of jobs
in a group

1 U [2,4]
2 U [5,7]

3 U [8,10]

Setup times of
machine Mi

1 M1 → U [1,50] M2 → U [17,67]
2 M1 → U [1,50] M2 → U [1,50]

3 M1 → U [17,67] M2 → U [1,50]

calibrating the HGA procedure have been generated. All
instances have been created by extracting job processing
times according to a uniform distribution in the range
[1,20].

The calibration phase has been executed in order to prop-
erly tune the following four parameters characterizing the
developed HGA, i.e.: population size (Npop), crossover and
mutation probabilities (pcr , pm), size of the sub-population
to be modified through BRS procedure (Nbest ). For each
parameter, three different levels have been taken into account,
as illustrated in Table 5, thus generating a total of 34 = 81
different configurations of the proposed metaheuristic algo-
rithm. For each instance, all the provided algorithm config-
urations have been tested. Therefore, a total of 135 · 81 =
10, 935 runs have been considered.

In order to identify the best combination of values for
the aforementioned parameters, an ANOVA analysis (Mont-

gomery 2008) has been performed by means of Design
Expert� 7.0.0 version commercial tool. The response vari-
able studied was the Relative Percentage Deviation (RPD),
calculated according to the following formula:

RPD = 100 · HGAsol − BESTsol
BESTsol

(5)

where HGAsol is themakespan found by theHGAprocedure
running a specific combination of parameters, and BESTsol
is the best solution over the whole set of results concern-
ing the same instance. The proposed GA has been coded in
MATLAB� language and executed on a 2GB RAM virtual
machine embedded on a workstation powered by two quad-
core 2,39 GHz processors.

Figures 4, 5, 6 and 7 report the means plots with LSD
intervals at 95% confidence level obtained for each one of
the tuned parameters.

Figure 4 shows that the best value of population size
(Npop) among those tested is 70. By Fig. 5 it can be infered
that crossover probability (pcr ) should be set to 0.9. Though
it is not statistically significant, as shown in Fig. 6, muta-
tion probability was set to 0.1. Finally, Fig. 7 suggests that
only the best 30% individuals of each population should be
subjected to BRS procedure.

The lack of a statistically significant difference among
levels concerning pm may be easily explained if the matrix
encoding scheme is taken into account. In fact, each chromo-
some is mainly composed by job sub-chromosomes while
just one sub-chromosome holds the sequence of groups.
Therefore, there is a higher probability of applying the muta-
tion operator to a job sub-chromosome instead of the � vec-
tor; thus, being jobs within each group quite similar, different
pm levels should not influence the response variable.

Table 3 Benchmark of
instances for the FDSGS
problem with 3 machines

Factor Level Value

Number of groups 1 U [1,5]

2 U [6,10]

3 U [11,16]

Number of jobs in a group 1 U [2,4]

2 U [5,7]

3 U [8,10]

Setup times of machine Mi 1 M1 → U [1,50] M2 → U [17,67] M3 → U [45,95]

2 M1 → U [17,67] M2 → U [17,67] M3 → U [17,67]

3 M1 → U [45,95] M2 → U [17,67] M3 → U [1,50]

4 M1 → U [1,50] M2 → U [17,67] M3 → U [17,67]

5 M1 → U [1,50] M2 → U [17,67] M3 → U [1,50]

6 M1 → U [17,67] M2 → U [17,67] M3 → U [45,95]

7 M1 → U [17,67] M2 → U [17,67] M3 → U [1,50]

8 M1 → U [45,95] M2 → U [17,67] M3 → U [45,95]

9 M1 → U [45,95] M2 → U [17,67] M3 → U [17,67]
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Table 5 Experimental calibration of proposed HGA

Parameter Notation No. of levels Levels

Population size Npop 3 (30, 50, 70)

Crossover
probability

pcr 3 (0.5, 0.7, 0.9)

Mutation
probability

pm 3 (0.05, 0.1, 0.2)

Number of
individuals
subjected to
BRS
procedure

Nbest 3 (0.3 · Npop, 0.5·
Npop, Npop)

Fig. 4 Means plot with 95% LSD intervals obtained for Npop para-
meter

Fig. 5 Means plot with 95%LSD intervals obtained for pcr parameter

Computational experiments and results

After the best combination of parameters has been selected
for the proposed HGA, an extensive comparative campaign
has been performed with the aim of assessing the developed
metaheuristic procedure against the two most recent meth-
ods arisen from the relevant literature in the field of FSDGS
scheduling. In the following paragraphs, a brief description
of such algorithms is reported.

123



J Intell Manuf (2017) 28:1269–1283 1277

Fig. 6 Means plot with 95% LSD intervals obtained for pm parameter

Fig. 7 Means plot with 95% LSD intervals obtained for Nbest para-
meter

– The Hybrid Particle Swarm Optimization algorithm
(HPSO) devised by Salmasi et al. (2011). Such method
employs a real number matrix-encoding scheme and
makes full use of a properly-developed transformation
procedure able to convert the components of each solu-
tion to integer numbers, so to obtain the sequence of
groups and jobs within groups to be scheduled. Further-
more, the authors equipped the algorithm with a neigh-
borhood search strategy, called individual enhancement,
aimed to improve the search mechanism by balancing
exploration and exploitation phases.

– The metaheuristic procedure hybridizing Genetic and
Simulated Annealing algorithms (hereinafter coded as
GSA) proposed by Naderi and Salmasi (2012). Similarly
to the proposed HGA, such algorithm works by a matrix-
encoding based on integer numbers. It employs a twofold
optimization strategy: a genetic algorithm is used to find
the sequence of groups, while a simulated annealing-
based local search engine drives the search towards better
job sequences.

The comparative campaign has been performed on the basis
of the same test problem specifications employed in the cal-
ibration phase. This time, however, two distinct replicates

have been randomly generated for each problem of the pro-
posed benchmark. Therefore, a total of 54+162+54 = 270
separate instances have been created. The overall set of
instances has been solved by means of the three mentioned
optimization procedures, namely HGA, HPSO and GSA.
Thus, a total of 270 · 3 = 810 runs have been taken into
account. Stopping criterion was set to N ·M seconds of CPU
time for all algorithms tested. The key performance indicator
used to compare the alternative metaheuristics is the Relative
Percentage Deviation (RPD), calculated as follows:

RPD = 100 · ALGsol − BESTsol
BESTsol

(6)

where ALGsol is the solution provided by a given algorithm
with reference to a certain instance and BESTsol is the low-
est makespan value among those obtained by the executed
optimization procedures.

In the following sub-sections, obtained results with refer-
ence to two-, three- and six-machine problems, are reported,
respectively.

Comparison for two-machine problems

As far as two-machine problems are concerned, three levels
for each experimental factor (i.e., number of groups, number
of jobs within groups and setup times) have been combined
as reported in Table 2. For each problem configuration, two
separate instances have been randomly generated. Thus, a
total of 54 test problems have been solved by each one of the
tested metaheuristic procedures.

Table 6 reports the average RPDs obtained by the algo-
rithms, along with a performance index, hereinafter coded as
Nopt , denoting the number of times (out of two) each opti-
mization procedure achieves the best solution among those
provided by the three metaheuristics, for a specific problem
configuration.

The obtained results highlight the effectiveness of both
HGA and HPSO algorithms in solving the instances embed-
ded in the proposed benchmark. A slight outperformance of
the proposed hybrid genetic algorithm can be noticed. HGA
ensures the lowest averageRPD and reaches the best solution
42 times out of 54, thus overcoming both HPSO, whose Nopt

is equal to 41, and GSA, that finds the minimum makespan
value in just 24 test problems out of 54.

In order to infer some statistical conclusion over the dif-
ference observed among the tested algorithms, an ANOVA
analysis has been performed through Design Expert� 7.0.0
version commercial tool, calculating LSD intervals at 95%
confidence level for theRPDs connected to each optimization
procedure. The corresponding chart is reported in Fig. 8.

The chart clearly shows the superiority ofHGAandHPSO
algorithms compared to GSA. Even though the average RPD
value reported by the proposed hybrid genetic algorithm is
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Table 6 Average RPD and Nopt values for two-machine problems

Level of factors Average RPD Nopt

Number
of groups

Number of
jobs in a group

Setup times of
machine Mi

HGA HPSO GSA HGA HPSO GSA

1 1 1 0.000 0.000 0.000 2 2 2

1 1 2 0.000 0.000 0.000 2 2 2

1 1 3 0.000 0.000 0.000 2 2 2

1 2 1 0.000 0.000 0.000 2 2 2

1 2 2 0.000 0.000 0.000 2 2 2

1 2 3 0.000 0.000 0.000 2 2 2

1 3 1 0.000 0.000 0.000 2 2 2

1 3 2 0.000 0.000 0.000 2 2 2

1 3 3 0.000 0.000 0.000 2 2 2

2 1 1 0.000 0.000 0.681 2 2 1

2 1 2 0.000 0.565 0.706 2 1 1

2 1 3 0.220 0.107 3.294 1 1 1

2 2 1 0.309 0.000 2.222 1 2 1

2 2 2 0.135 0.000 2.652 1 2 0

2 2 3 0.105 0.000 3.809 1 2 0

2 3 1 0.473 0.000 2.062 1 2 1

2 3 2 0.000 0.000 0.227 2 2 1

2 3 3 0.194 0.000 1.507 1 2 0

3 1 1 0.731 3.063 11.406 1 1 0

3 1 2 0.985 0.268 9.803 1 1 0

3 1 3 0.000 1.663 8.195 2 0 0

3 2 1 0.000 2.168 6.922 2 1 0

3 2 2 0.774 0.935 9.397 1 1 0

3 2 3 1.244 0.000 4.583 0 2 0

3 3 1 0.545 0.331 3.328 1 1 0

3 3 2 0.000 1.718 4.323 2 0 0

3 3 3 0.000 1.997 5.729 2 0 0

Average/Total 0.212 0.475 2.994 42 41 24

Fig. 8 Means plot with 95% LSD intervals obtained for 2-machine
problems

lower than that obtained by HPSO procedure, such a differ-
ence cannot be considered statistically significant, as theLSD
intervals of the two algorithms are partially overlapped. On

the other hand, the narrowdifference of performance between
the two algorithms should depend on the poor computational
complexity of the instances handled in the proposed bench-
mark of problems.

Comparison for three-machine problems

As concerns the three-machine problems, a total of 162 sepa-
rate test cases have been solved by each metaheuristic proce-
dure. Such instances have been generated by combining three
levels for the number of groups, three levels for the number
of jobs within each group, and nine levels for setup times
as reported in Table 3. For each combination, two random
replicates have been created.

The average RPDs as well as the values of Nopt obtained
by the three algorithms tested are reported in Table 7.
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Table 7 Average RPD and Nopt values for three-machine problems

Level of factors Average RPD Nopt

Number
of groups

Number of
jobs in a group

Setup times of
machine Mi

HGA HPSO GSA HGA HPSO GSA

1 1 1 0.000 0.000 0.000 2 2 2

1 1 2 0.000 0.000 0.000 2 2 2

1 1 3 0.000 0.000 0.000 2 2 2

1 1 4 0.000 0.000 0.000 2 2 2

1 1 5 0.000 0.000 0.000 2 2 2

1 1 6 0.000 0.000 0.000 2 2 2

1 1 7 0.000 0.000 0.000 2 2 2

1 1 8 0.000 0.000 0.000 2 2 2

1 1 9 0.000 0.000 0.000 2 2 2

1 2 1 0.000 0.000 0.000 2 2 2

1 2 2 0.000 0.000 0.000 2 2 2

1 2 3 0.000 0.766 0.000 2 1 2

1 2 4 0.000 0.000 0.000 2 2 2

1 2 5 0.000 0.000 0.000 2 2 2

1 2 6 0.000 0.000 0.000 2 2 2

1 2 7 0.000 0.095 0.284 2 1 1

1 2 8 0.000 0.000 0.000 2 2 2

1 2 9 0.000 0.000 0.000 2 2 2

1 3 1 0.000 0.195 0.000 2 1 2

1 3 2 0.000 0.209 0.000 2 1 2

1 3 3 0.110 0.000 0.881 1 2 1

1 3 4 0.000 0.000 0.000 2 2 2

1 3 5 0.000 0.422 0.422 2 1 1

1 3 6 0.000 0.000 0.000 2 2 2

1 3 7 0.000 0.115 0.000 2 1 2

1 3 8 0.000 0.000 0.000 2 2 2

1 3 9 0.000 0.405 0.202 2 1 1

2 1 1 0.383 0.000 2.423 1 2 1

2 1 2 0.000 0.000 2.642 2 2 0

2 1 3 0.123 0.000 2.176 1 2 0

2 1 4 0.813 0.000 1.951 1 2 1

2 1 5 0.000 0.000 3.476 2 2 0

2 1 6 0.000 0.000 0.097 2 2 1

2 1 7 0.763 0.000 0.000 1 2 2

2 1 8 0.000 0.000 3.502 2 2 1

2 1 9 0.000 0.000 0.000 2 2 2

2 2 1 0.000 0.000 0.638 2 2 1

2 2 2 0.350 0.133 0.117 1 1 1

2 2 3 0.000 0.321 1.716 2 1 0

2 2 4 0.000 0.126 1.667 2 1 0

2 2 5 0.000 0.000 2.964 2 2 0

2 2 6 0.000 0.000 0.454 2 2 1

2 2 7 0.000 0.224 1.683 2 1 0

2 2 8 0.000 0.624 0.841 2 0 0

2 2 9 0.000 0.362 1.027 2 1 1
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Table 7 continued

Level of factors Average RPD Nopt

Number
of groups

Number of
jobs in a group

Setup times of
machine Mi

HGA HPSO GSA HGA HPSO GSA

2 3 1 0.067 0.000 2.787 1 2 0

2 3 2 0.000 0.525 0.700 2 0 0

2 3 3 0.138 0.138 0.000 1 1 2

2 3 4 0.000 0.389 1.495 2 0 0

2 3 5 0.000 0.336 1.585 2 0 0

2 3 6 0.000 0.000 0.810 2 2 0

2 3 7 0.000 0.342 1.534 2 1 0

2 3 8 0.000 0.000 0.000 2 2 2

2 3 9 0.000 0.000 0.047 2 2 1

3 1 1 0.630 0.382 4.758 0 1 1

3 1 2 0.000 2.019 6.762 2 0 0

3 1 3 0.000 1.605 7.289 2 1 0

3 1 4 0.000 0.514 5.272 2 0 0

3 1 5 0.000 2.233 5.369 2 0 0

3 1 6 0.000 1.619 9.086 2 0 0

3 1 7 0.600 0.712 6.417 1 1 0

3 1 8 0.000 1.709 4.923 2 0 0

3 1 9 0.000 1.023 6.037 2 0 0

3 2 1 0.000 0.947 6.541 2 0 0

3 2 2 0.000 0.933 6.214 2 0 0

3 2 3 0.000 2.121 6.002 2 0 0

3 2 4 0.000 2.318 5.979 2 0 0

3 2 5 0.000 2.205 5.559 2 0 0

3 2 6 0.000 2.390 6.656 2 0 0

3 2 7 0.000 1.752 6.213 2 0 0

3 2 8 0.000 0.547 4.249 2 0 0

3 2 9 0.359 1.250 5.497 1 1 0

3 3 1 0.120 0.470 3.822 1 1 0

3 3 2 0.187 0.135 2.046 1 1 0

3 3 3 0.260 0.577 4.772 1 1 0

3 3 4 0.000 0.987 3.229 2 0 0

3 3 5 1.132 0.533 4.220 1 1 0

3 3 6 0.000 0.871 2.069 2 0 0

3 3 7 0.209 0.881 3.660 1 1 0

3 3 8 0.000 0.923 3.407 2 0 0

3 3 9 0.000 1.050 4.025 2 0 0

Average/Total 0.077 0.474 2.200 145 95 68

This time HGA procedure clearly outperforms both of the
metaheuristic procedures taken as competitors. The proposed
hybrid genetic algorithm by far assures the lowest average
RPD, also gathering the best makespan value 145 out of 162
times, equal to 89.5% of the tested instances. The Nopt value
achieved by HPSO is equal to 95, while GSA finds the best
solution only 68 times. Figure 9 reports the means plot with
95% confidence level LSD intervals, confirming the supe-

riority of the HGA-based approach under a statistical view-
point.

Comparison for six-machine problems

With regards to six-machine problems, 54 different instances
have been generated by combining three levels for each
experimental factor, as reported in Table 4, and by testing two
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replicates for each problemconfiguration.AverageRPDs and
Nopt values are reported in Table 8.

Fig. 9 Means plot with 95% LSD intervals obtained for 3-machine
problems

Again, obtained results emphasize the effectiveness of
HGA in tackling six-machine FSDGS problems as well. The
developed metaheuristic achieves the best performance both
in terms of average RPD and total amount of Nopt , finding
the best solution in 43 out of 54 instances. It outperforms
both HPSO and GSA, whose values of Nopt are 34 and 20,
respectively.

The superiority of performance of the proposed HGA is
statistically significant, as shown by themeans plotwith 95%
LSD interval illustrated in Fig. 10.

Conclusions

In this paper, a properly developed hybrid genetic algorithm
integrating features from random sampling search methods
(HGA) has been employed for the makespan minimization

Table 8 Average RPD and Nopt values for six-machine problems

Level of factors Average RPD Nopt

Number
of groups

Number of
jobs in a group

Setup times of
machine Mi

HGA HPSO GSA HGA HPSO GSA

1 1 1 0.000 0.000 0.000 2 2 2

1 1 2 0.000 0.000 0.000 2 2 2

1 1 3 0.000 0.000 0.000 2 2 2

1 2 1 0.000 0.000 0.000 2 2 2

1 2 2 0.000 0.000 0.000 2 2 2

1 2 3 0.000 0.000 0.000 2 2 2

1 3 1 0.000 0.000 0.000 2 2 2

1 3 2 0.000 0.234 1.245 2 1 0

1 3 3 0.039 0.000 0.000 1 2 2

2 1 1 0.000 0.000 0.000 2 2 2

2 1 2 0.431 0.000 0.323 1 2 1

2 1 3 0.103 0.000 0.686 0 2 0

2 2 1 0.000 0.000 0.094 2 2 1

2 2 2 0.000 1.291 3.038 2 0 0

2 2 3 0.000 0.109 0.544 2 0 0

2 3 1 0.000 0.000 0.531 2 2 0

2 3 2 0.000 0.507 0.984 2 0 0

2 3 3 0.000 0.296 0.808 2 0 0

3 1 1 0.135 0.317 1.621 1 1 0

3 1 2 0.312 1.326 8.213 1 1 0

3 1 3 0.000 0.541 1.123 2 0 0

3 2 1 0.050 0.201 1.537 1 1 0

3 2 2 0.608 1.481 4.771 1 1 0

3 2 3 0.085 0.186 1.195 1 1 0

3 3 1 0.058 0.000 1.478 0 2 0

3 3 2 0.000 1.689 1.855 2 0 0

3 3 3 0.000 1.072 1.531 2 0 0

Average/Total 0.067 0.343 1.169 43 34 20
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Fig. 10 Means plot with 95% LSD intervals obtained for 6-machine
problems

in a flow shop sequence-dependent group scheduling prob-
lem. The proposed techniquemakes use of amatrix-encoding
scheme able to simultaneously define the sequence of groups
as well as the sequence of jobs within each group to be
processed along the manufacturing system. It combines two
distinct crossover operators as well as two mutation tech-
niques and employs a diversity control operator aiming to
limit the number of duplicates within each population. Fur-
thermore, the optimization strategy of the proposed pro-
cedure is enhanced by a biased-random sampling search
scheme, which investigates the neighborhood of the most
promising solutions included into each population.

After an extensive calibration phase, the best combination
of parameters for the proposed algorithm has been selected.
Then, a comparison campaign based on three separate bench-
marks arisen from literature involving two-, three- and six-
machine problems has been fulfilled in order to test the per-
formance of HGA with respect to the two most recent meta-
heuristic procedures presented by literature in the field of
FSDGS scheduling problems. To this aim, anANOVA analy-
sis focusing on a statistical validation of the obtained out-
comes has been performed.Numerical results highlighted the
effectiveness of HGA in approaching the proposed schedul-
ing problem, thus outperforming the two competitors for each
benchmark of problems.

Future research should involve the application of the
developed HGA to other variants of the flow-shop group
scheduling issue, or to hybrid flow-shops manufacturing sys-
tems, as well. Another application of the proposed meta-
heuristics could encompass the FSDGSproblemswith block-
ing constraints. Finally, the implementation of alternative
local search schemes to be integrated with a metaheuristic
algorithm may be tackled.
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