
J Intell Manuf (2017) 28:929–944
DOI 10.1007/s10845-014-1030-4

BFO: a hybrid bees algorithm for the multi-level capacitated
lot-sizing problem

Marcos Mansano Furlan · Maristela Oliveira Santos

Received: 11 November 2013 / Accepted: 20 December 2014 / Published online: 3 January 2015
© Springer Science+Business Media New York 2015

Abstract This paper presents a hybrid heuristic based
on the bees algorithm combined with the fix-and-optimize
heuristic to solve the multi-level capacitated lot-sizing prob-
lem. The bees algorithm can be used as a new method to
determine the sequence in which to apply the partition in
the fix-and-optimize approach. This new manner of choos-
ing the partition adds diversity to the solution pool and
yields different local optima solutions after some iterations.
The bees-and-fix-and-optimize (BFO) algorithm attempts to
avoid these local optima by performing random search in
accordance with the concept of bees algorithm. The BFO has
yielded good results for instances from the literature and, in
most cases, the results are superior to the best results provided
by approaches presented in recent literature. They show that
this construction concept is advantageous and illustrate the
efficiency of hybrid methods composed of matheuristics and
metaheuristics. Furthermore, the BFO approach is a general-
purpose heuristic that can be applied to solve other types of
production planning problems.

Keywords Lot-sizing problem · Multi-level problem · Bees
algorithm · Fix-and-optimize

Introduction

This paper addresses the multi-level capacitated lot-sizing
problem (MLCLSP) and presents a new general solution
method. The multi-level lot-sizing problem consists in deter-

M. M. Furlan (B) · M. O. Santos
Departamento de Matemática Aplicada e Estatística, Instituto
de CiênciasMatemáticas e de Computação , Universidade de São Paulo,
Caixa Postal 668, São Carlos, SP 13560-970, Brazil
e-mail: mafurlan@icmc.usp.br

M. O. Santos
e-mail: mari@icmc.usp.br

mining a production plan that supplies the demand for a num-
ber of products (final items) and/or their components without
exceeding the available production capacity. The demand for
final items and their components is specified in each period
of a finite planning horizon and backlogging is not allowed.
The objective is to minimize the setup, holding and overtime
costs. The setup time and cost of each item are considered
when determiningwhether to start production in anymachine
in a given period. This problem has been studied in-depth
and many models involving various features and assump-
tions have been proposed to solve it. Good reviews of the lot
sizing problem can be found in Pochet and Wolsey (2006)
and Jans and Degraeve (2007).

MLCLSP is a big bucket problem because more than one
product may be produced per period. In some problems, such
as small bucket problems, the planning horizon is divided into
very small periods and there is a limit on the number of items
that can be produced in one of these periods. Small bucket
problems include the discrete lot sizing problem (DLSP), the
continuous setup lot sizing problem (CSLP), the proportional
lot sizing and scheduling problem (PLSP) and the general lot
sizing and scheduling problem (GLSP). Drexl and Kimms
(1997) present and explain themain differences of the formal
models for small bucket problems.

Billington et al. (1983) proposed a mathematical formula-
tion that extended the formulation of the single-level capaci-
tated lot-sizing problem. Regarding computational complex-
ity, Bitran and Yanasse (1982) proved that the capacitated
lot-sizing problem is NP-hard andMaes et al. (1991) demon-
strated that the feasibility problem is NP-complete when
setup times are considered.Because of their complexity,most
of the solution approaches to solve them are heuristic- or
metaheuristic-based. Another reason for the success of such
approaches is their flexibility, which enables them to handle
large and complex problems (Jans and Degraeve 2007).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-014-1030-4&domain=pdf

930 J Intell Manuf (2017) 28:929–944

Tempelmeier andDerstroff (1996) combined aLagrangian
relaxation and a dynamic programming method to solve
problems containing up to 100 items and 16 periods. Stadtler
(2003) proposed a rolling horizon procedure based on a relax-
and-fix heuristic. This type ofmethod solves the problem iter-
atively using linear relaxation and decomposition schemes.
A reformulation based on the simple plant location problem
(SPL) was performed so that a tighter mathematical model
could be obtained. Akartunalı and Miller (2009) proposed a
framework that uses a relax-and-fixmethod to solve the same
problem and an LP-and-fix method to improve the solution
upper bound.

Almeder (2010) proposed a hybrid method that combines
ant colony optimization and the commercial LP/MIP solver
CPLEX to solve theMLCLSP. The author concluded that his
approach is superior to some others for small- and medium-
sized instances. For large instances, his hybrid method solu-
tion is among the best.

Helber and Sahling (2010) present a heuristic based
on mathematical formulation (matheuristic) which yielded
high-quality solutions for the MLCLSP while requiring low
computational time and outperforming some other algo-
rithms. That matheuristic was initially developed by Pochet
andWolsey (2006) who referred to it as Exchange. Sahling et
al. (2009) recalled it fix-and-optimize and proposed decom-
position schemes to use it to solve the MLCLSP with setup
carryover. In this method, a set of decision variables that
represent the binary setup variables is split into a finite num-
ber of disjunct subsets. In each iteration of the method, a
group of decision variables is fixed to the incumbent solu-
tion values, and only the variables of a chosen subset are
released to be optimized. Moreover, all real variables are
free to be optimized during the entire process. The fix-and-
optimize method as proposed by Helber and Sahling (2010)
uses a predefined sequence to release the subsets. If a bet-
ter solution has been found, it becomes the new incumbent
solution.

The fix-and-optimize algorithm tends to local optima
because it iteratively obtains the optimal (or nearly optimal)
solution and analyses only a subset of the decision variables.
The method is very similar to a local search based on the
mathematical model and can be used embedded in another
approach for this purpose, maintaining its advantages. More-
over, it is well known that it is hard to optimality solve
medium and large sized instances of MLCLSP. It can be
difficult to determine good solutions, in a limited computa-
tional time, when positive setup times are considered (Maes
et al. 1991).

Wu et al. (2012) proposed a solution method based on
linear relaxation. By using the relax-and-fix partial solutions
and a rounding-based heuristic solution, their method yields
values for the decision variables and decides which variables
should be fixed. After these analyses, the fixed sub-problem

is solved using a mixed integer solver. These steps are per-
formed iteratively until a stopping criterionhas been satisfied.
The results were compared with those obtained by Akartu-
nalı and Miller (2009) and those obtained by the solver. In
these comparisons, the heuristic yielded better results inmost
instances considered and improved the average quality of the
solution.

Li et al. (2012) proposed a three-step heuristic to solve
the single and multi-level lot-sizing problems, both includ-
ing capacity constraints. The authors considered the prob-
lems with and without the use of joint setup costs, which are
the costs associated with the decision to produce items in
a given period and independent of the quantity and variety
of items produced. The proposed method includes an initial
step of treating the joint setup costs. Then, an initial solu-
tion is determined and subsequently improved. The results
were compared with those obtained using CPLEX 11.1 and
with the literature instances bounds. In both comparisons,
the proposed method yielded better results on average.

Several studies have considered other characteristics asso-
ciated with the MLCLSP as, for example, demand backlogs
(Toledo et al. 2013; Wu et al. 2013; Akartunalı and Miller
2009). These studies consider another set of tests proposed by
Akartunalı and Miller (2009), which imposes the necessity
of demand backlogs concerning. Wu et al. (2013) included
the setup carry-over feature, which was also considered by
Sahling et al. (2009). Goren et al. (2010) conducted a review
of genetic algorithms applied to solve lot-sizing problems by
grouping the studies according to the lot-sizing characteris-
tics considered and the genetic algorithm operators used.

This paper proposes a hybrid method to address the
MLCLSP by combining the fix-and-optimize heuristic with
the metaheuristic bees algorithm proposed by Pham et al.
(2005). According to Puchinger and Raidl (2005), the pro-
posed heuristic is categorized as an integrative method
because the fix-and-optimize heuristic is incorporated into
the bees algorithm. A survey of some important lines of
hybridization is presented in Blum et al. (2011). The authors
classified the methods according to the classes of the compo-
nent methods. Based on their classification, the BFO fits the
“hybridizing metaheuristics with (meta)heuristics” category.

A similar hybrid approach was developed by James
and Almada-Lobo (2011) to solve the single and paral-
lel machine capacitated lot-sizing and scheduling problems.
Their method is composed of two steps. In the first, the relax-
and-fix algorithm is used to construct an initial solution. In the
next step, the fix-and-optimize algorithm is used to improve
the initial solution by using period and product decomposi-
tions. The choice of partitions is probabilistic and the initial
chances are equal. A partition has a lower chance of being
selected again when it is applied more often than the current
partition. To escape from local optima, the method applies
a tool inspired by variable neighbourhood search (VNS),

123

J Intell Manuf (2017) 28:929–944 931

Fig. 1 Product structures. a
General structure. b Assembly
structure. c Serial structure

1

3

2

4

7

5

6

6 5 3 2

6413

1

2 3

654

6 4

2 1 5 3

1

2

3

4

2

(a) (b) (c)

which combines partitions with more periods. Once a better
solution has been found, the search returns to the initial parti-
tion sizes. The results were comparedwith literaturemethods
and the results of CPLEX 12.1. The method has shown supe-
rior performance for single machine instances. There were
some convergence difficulties for parallel machine instances
and the authors argue that they were caused by the increased
number of local minima and the inclusion of the machine
assignment problem.

The key idea of the BFO method is to use the fix-and-
optimize heuristic as the local search method for the bees
algorithm and therefore obtain the advantages of high solu-
tion quality, low computational time, and ability to avoid
local minima or reach higher quality local minima. This
approach differs from the method proposed by Helber and
Sahling (2010) in the manner the partitions are applied and
the number of stored incumbent solutions. In Helber and
Sahling (2010) only one solution is stored and the chosen
sequence of partitions is predicted. In contrast, the BFO has
a pool of solutions (bees) and the partitions implemented for
each bee are randomly selected from a set of possibilities.
Period and product decompositions was employed and three
different variants was developed based on these decompo-
sitions. The first uses only product decomposition, the sec-
ond uses only period decomposition and the third uses both
decompositions.

The paper is organized as follows: “Problem formula-
tion” section introduces the formulation of the MLCLSP;
“Hybrid method” section presents the proposed hybrid algo-
rithm and presents amore detailed explanation of the fix-and-
optimize heuristic, the bees algorithm, the construction of
initial solutions and the decomposition schemes employed;
“Computational experiment” section describes the computa-
tional experiments that demonstrate the high quality of solu-
tions; Finally, In section “Conclusion” draws some conclu-
sions and suggests some future work.

Problem formulation

The lot sizing problem consists in finding a production plan
thatminimizes the sumof setup costs, inventory holding costs

and overtime costs and meets demands of items in time. To
formulate the multi-level problem, a product structure rep-
resented by an acyclic graph whose nodes correspond to the
components and edges correspond to precedence relations is
considered. Figure 1 shows three types of product structures.
In Fig. 1a, there are two end items (1 and 2) and the other
items (3–7) are components. For example, the production of
one unit of item 1 requires six units of component 3 and five
units of component 4.

To better understand the MLCLSP mathematical model
presented below, consider the following sets, indices, para-
meters and variables.

Sets and indices

N Number of products (i ∈ {1, . . . , N});
M Number of resources (m ∈ {1, . . . , M});
T Planning horizon (t ∈ {1, . . . , T });
S(i) Set of successors of product i ;
A(i) Set of predecessors of product i ;
Km Set of products that require resource m.

Parameters

csi Setup cost of product i ;
hi Holding cost of product i per period;
ocm Overtime cost per unit of overtime for resource

m;
ri j Units of product i required for the production of

one unit of product j ;
dit External demand for product i in period t ;
ai Processing time per unit of product i ;
tsi Setup time for product i ;
Cmt Capacity of resource m in period t .

Decision variables

Omt Overtime quantity for resource m in period
t ;

Xit Amount of item i produced in period t ;
Ii t Inventory level of product i at the end of

period t ;

123

932 J Intell Manuf (2017) 28:929–944

Yit Setup decision variable for product i in
period t ;
(Yit = 1 , if Xit > 0
Yit = 0, otherwise.)

Consider Bit , an upper bound in the production amount
of item i in period t (Xit), which is defined as the cumulative
echelon demand. The echelon demand can be calculated as
Dit = dit + ∑

j∈S(i) Djt where dit is the external demand
and

∑
j∈S(i) Djt is the component demand. The cumulative

demand is calculated as follows: Bit = ∑T
π=t Diπ .

minimize Z =
N∑

i=1

T∑

t=1

(csi · Yit + hi · Ii t) +
M∑

m=1

T∑

t=1

ocm · Omt (1)

subject to: Ii,t−1 + Xit −
∑

j∈S(i)

ri j · X jt − Ii t = dit ∀i, t (2)

∑

i∈Km

(ai · Xit + tsi · Yit) ≤ Cmt + Omt ∀m, t (3)

Xit ≤ Bit · Yit ∀i, t (4)

Xit , Ii t ≥ 0 ∀i, t (5)

Yit ∈ {0, 1} ∀i, t (6)

The objective function (1) minimizes the sum of setup,
holding and overtime costs. Constraints (2) represent the
inventory balance constraints. Constraints (3) ensure that
the production and setup times do not exceed the capacity
increased by overtime. Because the overtime cost is high,
the solution tends to use the minimum necessary overtime.
A product can be produced at a given time t only when the
machine is prepared to produce it in the same period t , which
is guaranteed by constraints (4). Constraints (5) ensure that
the quantities produced and the inventories are positive. The
domain of the binary decision variables is treated in con-
straints (6).

It is well known that this formulation yields a poor LP
relaxation and is not adequate for the branch-and-bound
phase of a standardMIP solver. According to Stadtler (2003),
several reformulations proposed in the literature can yield
tighter relaxations. Here, the SPL reformulation (Stadtler
2003) is used to improve the solution quality of the solver.

Hybrid method

This section presents a hybrid method that attempts to avoid
local minima, based on BA fashion, and maintain the fix-
and-optimize benefits. The fix-and-optimize approach can be
considered a local search procedure in which the application

of different partitions to an incumbent solution produces dif-
ferent neighbourhoods. The BFO uses the fix-and-optimize
heuristic to perform the BA local search. This type of com-
position enables the BFO to solve the sub-problems quickly
and avoid local minima by using the random search from
the BA framework. In this paper, the performance of this
type of hybridization applied to the problem is investigated,
because the literature lacks an approach by which partitions
are chosen in a non-deterministic manner. In the following
subsections, the initial solution, the fix-and-optimize heuris-
tic, the decomposition schemes, the bees algorithm and the
proposed method are presented.

Initial solution

To obtain an initial solution three different procedures are
considered. The first procedure consists of the lot-for-lot
(LFL) approach, i.e. each product i is produced in each period
t to supply the demand. The initial population is homoge-
neous because the same solution is replicated and the ran-
dom choice of partitions adds the characteristics necessary
to obtain different final solutions.

The second method uses the populate function available
in the CPLEX framework. This function solves one problem
until a predefinednumber of integer solutions has been found.
To avoid long run times to find the initial solutions, a run time
limit equal to 10%of theBFO time limit is used. If necessary,
the pool of solutions is fulfilled with LFL solutions.

The third procedure is a greedy random constructive
heuristic, which is a modified version of the LPH1 proce-
dure proposed by Maes et al. (1991). At each iteration of the
LPH1 procedure, the solution of the current LP relaxation
is used to select the setup variable to be fixed. If the value
of the selected variable is an integer, the algorithm fixes it
and moves to the next iteration without resolving the LP
relaxation. Otherwise, this variable is fixed to one and the
LP relaxation is resolved. Algorithm 1 provides the pseudo-
code for this constructive procedure, which is referred to as a
Greedy Randomly Round Constructive Heuristic (GRRCH).

123

J Intell Manuf (2017) 28:929–944 933

⇒

1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i ⇒

1 2 3 4 5 6 7
1 1 1 0 1 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i ⇒

1 2 3 4 5 6 7
1 0 1 0 1 1 1 1
2 1 0 1 1 1 1 0
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i

⇑ ⇓

⇐

1 2 3 4 5 6 7
1 0 1 0 1 1 1 1
2 1 0 1 1 1 1 0
3 1 0 1 0 1 1 1
4 0 1 1 1 1 0 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i ⇐

1 2 3 4 5 6 7
1 0 1 0 1 1 1 1
2 1 0 1 1 1 1 0
3 1 0 1 0 1 1 1
4 0 1 1 1 1 0 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i ⇐

1 2 3 4 5 6 7
1 0 1 0 1 1 1 1
2 1 0 1 1 1 1 0
3 1 0 1 0 1 1 1
4 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1

t

i

(a) (b) (c)

(d) (e) (f)

Fig. 2 Fix-and-optimize steps with product decomposition. a Release product 1. b Release product 2. c Release product 3. d Release product 6.
e Release product 5. f Release product 4.

Algorithm 1: The GRRCH pseudo-code

Given k (the number of variables to be fixed in each iteration);1
Given α (the setup variables selection interval for the round2
method);
Solve the LP relaxation;3
while Any relaxed variable remains do4

Find the maximum non-integer setup value (Ymax);5
Select all setup variables that differ by at most α from Ymax ,6
i.e., C = {Yit | Yit + α >= Ymax ∀i, t};
Randomly select k setup variables from C ;7
Switch their values to one and fix them all;8
Resolve the LP relaxation using the fixed variables;9
if the problem is infeasible then10

Release the variables fixed in this iteration;11

end12
if Any non-fixed variable has an integer value then13

Fix this variable;14

end15
if The current solution requires more overtime than the initial16
solution determined by the LFL approach then

Release all variables fixed to zero;17

end18

end19

Fix-and-optimize heuristic

This section describes the fix-and-optimize heuristic pro-
posed by Sahling et al. (2009) and illustrates it with a small
example. The basic idea of the heuristic is to iteratively solve
a series of MIP sub-problems derived from the overall MIP
problem. In each iteration, a set of integer variables is fixed
and the sub-problem is solved. This strategy reduces the num-
ber of integer variables in the remaining MIP in each itera-
tion. Thus, the execution time of the remaining sub-problem
is expected to be shorter because fewer binary variables are
released.

The fix-and-optimize heuristic can be considered a local
search method that, given an incumbent solution, attempts
to iteratively find better solutions. Consider that integer vari-
ables (Q) have been decomposed into R subsets (Qr ∀r =
1, . . . , R), where Q = Q1∪. . .∪QR and Q1∩. . .∩QR = ∅.
In each iteration, one subset is released and the remaining
variables are fixed to the incumbent values. For example, in
the first step, Q1 is released and Q2∪, . . . ,∪QR is fixed; in
the second step, Q2 is released and Q1 ∪ Q3∪, . . . ,∪QR

is fixed, and so forth. Once a better solution has been deter-
mined, the incumbent solution is updated and all partitions
can be used again. If all partitions have been tried and there
has been no improvement, then the heuristic ends.

Figure 2 shows an example of a fix-and-optimize algo-
rithm applied to the problem addressed in Section “Problem
formulation”. Each cell represents a decision variable (Yit),
each table represents a solution and each color represents a
state of variable Yit . If the cell’s color is light gray, then the
integer variable is fixed. Conversely, if the cell’s color is dark
gray, then the variable is “free” to be optimized. In this exam-
ple, the product decomposition is considered and the sub-
sets are used in an incremental sequence. However, another
decomposition can be introduced and different sequences can
be used. Each table represents one iteration of the algorithm
and in each iteration, only the integer variables are fixed and
the other variables are optimized. Figure 2a shows the situ-
ation in which the setup variables for product 1 (Y1t ∀t) are
released to be optimized and the remaining binary variables
are fixed to their incumbent values.

The procedure is repeated until a local minimum has been
reached or another stop criterion has been met. Because this
approach is deterministic, it may lead to a poor local mini-
mum for difficult instances. James and Almada-Lobo (2011)
developed a stochastic MIP-based local search improvement

123

934 J Intell Manuf (2017) 28:929–944

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 1
2 2
3 3
4 4
5 5
6 6

t t

i i

Fig. 3 Example of a period decomposition

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 1
2 2
3 3
4 4
5 5
6 6

t t

i i

Fig. 4 Example of a product decomposition

heuristic that attempts to improve any given feasible solution.
The key idea is to solve a series of sub-problems randomly
selected using an iterative fix-and-optimize approach. In the
approach proposed by the authors, local minima are avoided.
Here, a similar process that attempts to avoid the same draw-
back is used.

For a detailed description of this heuristic the reader is
referred to Helber and Sahling (2010).

Decomposition schemes

This paper proposes a period decomposition that considers
setup decisions of two successive periods to be released at
each partition. This implies that overlapping between two
consecutive partitions is considered. A product decomposi-
tion proposed by Helber and Sahling (2010) is also used.
In this case, the setup decisions for only one product are
released for each partition throughout the planning horizon,
i.e., the number of partitions is equal to the number of prod-
ucts, therefore there is no overlapping in this decomposition.
Figures 3 and 4 illustrate two successive partitions for both
decompositions.

As in Helber and Sahling (2010), the decomposition types
are combined in the following three variants of the hybrid
heuristic: the BFO-P1 variant uses only the product decom-
position, the BFO-P2 variant uses the period decomposition
and the BFO-P3 uses product and period decompositions
randomly selected.

Bees algorithm

Many solution approaches based on the food foraging behav-
iour of honey bees have been proposed to address prob-
lems that include constrained optimization, supplier selec-

tion and dynamic optimization problems. Examples of opti-
mization problems tackled by these methods are: dynamic
optimization problem (Castellani et al. 2012), job scheduling
problems (Pham et al. 2007), constrained optimization prob-
lems (Brajevic and Tuba 2013), process planning problem
(Wen et al. 2014), supplier selection-order allocation (Jain
et al. 2013), production control systems (Ajorlou and Shams
2013), among others. The bees algorithm (BA) proposed by
Pham et al. (2005) was chosen.

The idea of theBA is based on the food foraging behaviour
of honey bees. The swarm’s objective is to maximize the
food obtained by considering the distance from the food sites
(sources or patches) and the facility of food purchase. In the
first phase, scout bees are randomly sent to find food sites.
When these bees return to the hive, they deposit the nectar and
go to the “dance floor” to perform a dance called the “waggle
dance”. This dance indicates the direction inwhich the flower
source has been found, the distance from the hive to the food
source and the quantity of food. Using this information the
hive sends bees to the sites such that more bees are sent to
the more promising food sources.

In optimization terms, each bee represents a possible solu-
tion to a given problem and the bee’s search is performed
in two phases. In the first phase, a random search is per-
formed and the sites are defined. In the second phase, a num-
ber of sites is selected according to the method parameters
and local searches aremade at each site to improve their solu-
tion. Conversely, a random search is performed at the other
sites to maintain diversity and reach better ones. The fix-and-
optimize decomposition scheme was chosen to perform the
local searches due to its efficiency.

The BA was initially constructed for continuous prob-
lems; however some papers have proposed its use to solve
combinatorial problems. Özbakir et al. (2010) used the BA
to solve the generalized assignment problem and Dereli and
Das (2011) proposed using it to solve the container loading
problem. Algorithm 2 shows a basic bees algorithm pseudo-
code for the algorithm proposed by Pham et al. (2005).

The bees algorithm has the following parameters: nb is
the number of scout bees, mb is the number of scout bees
chosen for the local search, eb is the number of best scout
bees chosen for amore intense local search,nep is the number
of flower bees sent to follow the “eb” best scout bees, and
nsp is the number of flower bees sent to follow the “mb−eb”
other selected scout bees.

Main procedure

The main procedure defines the proposed method. The
method starts by populating the pool of solutions (bees)
using the preselected method. The number of bees, the bees
selected to attend the local search and other parameters are

123

J Intell Manuf (2017) 28:929–944 935

Algorithm 2: Basic bees algorithm pseudo-code

Initiate with random solutions;1
Evaluate and classify these solutions;2
while stopping criteria are not met do3

Randomly select “mb” scout bees (sites);4
Recruit bees to perform local search in the selected sites5
(amount of bees is defined according to their promise) and
evaluate their fitness;
Select the best bee from each site;6
Assign the remaining bees to perform the random search and7
evaluate their fitness;
Classify the new population;8

end9

also predetermined and must be adjusted according to the
problem addressed. Given the pool of solutions, the bee algo-
rithm starts by applying the fix-and-optimize partitions as its
local search method.

In each local search iteration, the method apply at most
“nep” (best sites) or “nsp” (others) partitions randomly cho-
sen to the incumbent solution and iteratively solve one sub-
problem for each partition. Once a superior solution has been
found, the local search procedure stops, the new incumbent
solution returns and all the partitions used are available for
this site again, i.e., all partitions are considered for the new
incumbent. Otherwise, the procedure stops without deter-
mining a new solution. The local search can be used until the
incumbent solution does not have any available partitions to
apply. Figure 5 illustrates one iteration of the local search
procedure for a given solution.

The random search procedure is applied only when a site
does not have any partitions to be used (a local minimum
has been attained). The aim of this procedure is to avoid
the local minima obtained by the decomposition scheme in
the local search approach. It releases the RP% setup vari-
ables randomly selected to be optimized, given that RP is
the release percentage used by the random search. If a supe-
rior solution is found after the random search procedure,
the local search procedure restarts with all partitions for this
site.

The BFO algorithm continues until all the bees have made
all possible local searches, i.e. after the random search proce-
dure has been applied. The BFO also limit total time (Tmax),
number of iterations (lmax) and time to solve each sub-
problem.The time limit (in seconds) to solve the sub-problem
is proportional to the number of “free” setup variables and is
set using a multiplier β (T L = | f ree variables| ∗ β).

Algorithm 3 introduces the BFO pseudo-code, which
shows the main steps of this approach. First, the initial pop-
ulation of scout bees is determined using one out of the three
policies mentioned above (line 1). In the LFL approach, the
deterministic solution is copied to fill the pool of initial solu-
tions. At each iteration, the BFO chose at mostmb scout bees

Algorithm 3: BFO pseudo-code

Create the initial population of scout bees (nb solutions) using1
the LFL policy, the CPLEX populate method or the GRRCH
procedure;
Classify the scout bees according to the solution quality;2
while l < lmax and there are bees with unused partitions and3
time ≤ Tmax do

Randomly choose “mb” scout bees to perform the local4
search into among the bees with partitions available;
for Each chosen scout bee do5

if this solution is one of the eb best solutions then6
Randomly choose nep available partitions to be7
applied (recruit bees);
Do a local search with the chosen partitions;8
Remove the partition from the unused set of this scout9
bee;

else10
Randomly choose nsp available partitions to be11
applied (recruit bees);
Do a local search with the chosen partitions;12
Remove the partition from the unused set of this scout13
bee;

end14
if a better solution has been found then15

Store the new solution as the scout bee;16
Reset the partition set including each applied partition;17

end18

end19
for each random bee (local minima) do20

Randomly choose RP% of the setup variables to be21
released;
Do a random search using the chosen released setup22
variables;
if a better solution has been found then23

Reset the partition set including each applied partition;24

end25

end26
Classify the new population according to the solution quality;27

end28
Return the best solution found;29

to perform the local search (line 4). Only non-random bees,
i.e. bees with unused partitions can be subjected to the local
search. After this step, nep or nsp partitions are chosen to
perform the local search, in which the number of partitions
depends on the solution quality: nep partitions are chosen
for the eb best solutions and nsp partitions are chosen for
the mb − eb other solutions (lines 6–14). If a site does not
have nep or nsp partitions to be applied, the method uses all
the available partitions. The best solutions found by the local
search procedure are stored as the new population of scout
bees (each best solution overwrites its own scout bee) (lines
15–18). Finally, random searches are performed for each ran-
dom beewith no available partitions and if a better solution is
found, this random bee returns to the scout bees group (lines
20–26). The BFO returns the best solution found in the last
iteration because the solutions do not become worse (line 9).

123

936 J Intell Manuf (2017) 28:929–944

Has the
solution
improve?

Has the
solution
improve?

Has the
solution
improve?

No

Yes

No

No

Randomly
choose a partition

Randomly
choose a partition

Randomly
choose a partition

nep or nsp

partitions

Final solution

Initial solution

Yes

Yes

Fig. 5 Local search scheme proposed

Computational experiments

This section reports on some computational experiments per-
formed in the test sets of Tempelmeier and Derstroff (1996)
and Stadtler and Sürie (2000). It discusses the benefits and
disadvantages of the BFO in comparison with three other
heuristics (from Helber and Sahling (2010); Tempelmeier
and Derstroff (1996) and Stadtler (2003)) and the standard
LP/MIP solver CPLEX 12.2.

The proposed algorithm is coded in C++ and runs on
2.8GHz Intel Pentium i5 with 4GB of memory. The CPLEX
use is limited to only one thread, since the other methods use
only one. Each variant of the proposed heuristic was run 5
times for each test problem.

The parameter values used in the computational experi-
ments were set empirically as follows: Tmax = 600 seconds
(total time limit), lmax = 10, 000 (maximum number of iter-
ations),α = 0.5 (interval length of rounding for the construc-
tive heuristic), β = 0.1 second/released variable (multiplier
for the time limit for solving the sub-problem), nb = 4 (num-
ber of scout bees),mb = 2 (number of scout bees chosen for
the local search), eb = 1 (number of best scout bees chosen
for a more in-depth local search), nep = 5 (number of bees
recruited for the “eb” best sites), nsp = 2 (number of bees
recruited for the “mb-eb” other sites) and RP = 20 (release
percentage used for the random search).

Table 1 shows some characteristics of the test sets, which
include assembly and general product structures containing

123

J Intell Manuf (2017) 28:929–944 937

Table 1 Parameters of the Tempelmeier and Derstroff (1996)* and
Stadtler and Sürie (2000)** test sets

Test set No.
products

No.
periods

No.
resources

Setup
times
profiles

No. test
instances

A+** 10 24 3 No 120

B+** 10 24 3 Yes 312

C* 40 16 6 No 180

D* 40 16 6 Yes 80

C+** 40 48 6 No 10

D+** 40 48 6 Yes 10

E+** 100 48 10 No 10

10–40 products and a planning horizon between 16 and 24
periods. Test sets C+, D+ and E+ (Stadtler and Sürie 2000)
were also considered. Although not commonly used in the
literature, these data were used to verify the asymptotic per-
formance of the BFO in comparison with CPLEX.

Results

This section provides the computational results of the test sets
described in Table 1. For the four first test set and for each
solution method, the tables below show the average percep-
tual deviation (Gap) between the upper bound reported by the
authors and the average best solution obtained by each solu-
tion method (Gap = 100 ∗ f easible solution − upper bound

upper bound),
the average improvement from the initial solution to the final
solution obtained by the proposed algorithm (Improv.), the
standard deviation calculated using all instances from the test
set (SD), the percentage of the feasible solutions (Feas), the
average solution time in seconds (Time(s)) and the solution
time limit in seconds (Limit(s)).

These computational tests aim to verify the performance,
compare results with those of approaches from the literature
and ascertain the reliability using the standard deviations and
performance charts.

For the four first test sets, the BFO results is compared
with the best fix-and-optimize version by Helber and Sahling
(2010) (HS-FO4), which uses a product-oriented decomposi-
tion first, then a resource-oriented decomposition and finally
a process-oriented decomposition (variant 4). The BFO solu-
tions is also compared with the results reported by Helber
and Sahling (2010) for the lagrangian decompositionmethod
developed by Tempelmeier and Derstroff (1996) (TDH) and
the rolling horizonmethod proposed by Stadtler (2003) (Sta).

The three heuristics were run by Helber and Sahling
(2010) on a 2.13 GHz Intel Pentium Core 2 of 4GB mem-
ory, whereas the BFO was run on a different computer, as
mentioned above. The tables also provide the results of the
proposedmethodusing eachof the three initial solution popu-

lations. The variants of the hybridmethod areBFO-P1,which
uses only the product decomposition, BFO-P2, which uses
the period decomposition, and BFO-P3, which uses product
and period decompositions randomly selected.

For test sets C+, D+ and E+, the performance of the BFO
variants is briefly compared with that of CPLEX. The com-
putational time limit was set to 3,600 seconds, since the plan-
ning horizon of such instances are larger and harder to solve.
The computational performance of the test sets is addressed
in Section “Additional computational tests”.

Table 2 provides the results of the threemethods for test set
A+. In this set, only 108 out of 120 instances have at least one
known solution that does not require overtime. The numbers
without brackets were calculated considering only the feasi-
ble solutions that do not require overtime and the numbers
with brackets were calculated considering all solutions.

Regarding the quality of the solutions of the upper bound
(gaps), Table 2 shows that the HS-FO4 method obtains solu-
tions that are, on average, superior to those obtained by the
BFO method with product decomposition in all cases. How-
ever, for other variants of the hybrid method, the solutions
are better. When the Sta and TDH heuristics is considered,
all versions of the hybrid method performed better.

In contrast, the BFO requires more computational time
than HS-FO4 and TDH to solve the problem. In relative
terms, the BFO-P2 and BFO-P3 methods require signifi-
cantly more time than HS-FO4, however, in absolute terms,
the computational time required for this test set is short. The
standard deviation (SD) indicates that the BFO results have
a small dispersion, i.e. the differences in the solution quality
among different instances and runs are relatively small.

The average computational times are not significantly dif-
ferent for the solutions with and without infeasible instances
(those that use overtime). In Table 2, the gaps and solu-
tion times are very similar for each initial population. These
results show that, in this test set, the different methods for
constructing the initial population donot disturb the proposed
hybrid search method, suggesting that the method is stable.
The improvement values obtained for test set A+ show the
differences in the quality of the solutions yielded by each
procedure used to produce initial solutions. LFL procedure
generates solutions improved in almost 50%,CPLEX returns
superior solutions andGRRCH returns solutionswith quality
between those returned by the other methods. These results
show that the BFO improvement over the initial population
is significant (over 20%).

The results of all variants of the hybrid method for the
B+ test set show the same tendency observed in Table 2. In
Table 3, some negative average percentage deviations can
be found, indicating improvements over the literature upper
bounds. For example, the BFO-P3 method with initial solu-
tions obtained using the GRRCH approach yields, on aver-
age, an improvement of 0.42%. For the B+ test set, small

123

938 J Intell Manuf (2017) 28:929–944

Table 2 Results for the A+ test set: a summary of the solutions

Init. Sol. Method Gap (%) Improv. (%) SD (%) Feas (%) Time (s) Limit (s)

CPLEX 0.93 (0.81) # 1.68 (1.64) 100.00 (90.00) 600.00 (600) 600

TDH 13.19 # # 100.00 0.08 #

Sta 4.14 # # 99.07 13.49 14

LFL HS-FO4 0.78 # # 100.00 6.38 #

LFL BFO-P1 1.58 (1.47) 48.40 (46.39) 1.62 (1.59) 100.00 (90.00) 12.07 (12.19) 600

BFO-P2 0.39 (0.33) 49.04 (47.01) 1.35 (1.31) 100.00 (90.00) 25.15 (25.12) 600

BFO-P3 0.17 (0.12) 49.15 (47.11) 1.35 (1.30) 100.00 (90.00) 25.06 (25.03) 600

CPLEX BFO-P1 1.71 (1.59) 23.21 (22.08) 1.70 (1.68) 100.00 (90.00) 11.49 (11.48) 600

BFO-P2 0.30 (0.27) 24.31 (23.12) 1.32 (1.27) 100.00 (90.00) 24.48 (24.37) 600

BFO-P3 0.18 (0.13) 24.40 (23.22) 1.32 (1.27) 100.00 (90.00) 24.94 (24.94) 600

GRRCH BFO-P1 1.67 (1.55) 36.68 (34.77) 1.77 (1.73) 100.00 (90.00) 11.25 (11.19) 600

BFO-P2 0.33 (0.27) 37.56 (35.62) 1.28 (1.24) 100.00 (90.00) 24.14 (24.13) 600

BFO-P3 0.20 (0.15) 37.64 (35.70) 1.28 (1.24) 100.00 (90.00) 24.71 (24.82) 600

Table 3 Results for the B+ test set: a summary of the solutions

Init. Sol. Method Gap (%) Improv. (%) SD (%) Feas (%) Time (s) Limit (s)

CPLEX 0.62 # 1.95 98.08 600.00 600

TDH 12.52 # # 100.00 0.08 #

Sta 4.11 # # 84.62 13.50 22

LFL HS-FO4 0.41 # # 100.00 8.40 #

LFL BFO-P1 1.14 49.28 1.85 100.00 13.11 600

BFO-P2 −0.19 49.98 1.68 100.00 27.20 600

BFO-P3 −0.40 50.08 1.65 100.00 27.09 600

CPLEX BFO-P1 1.10 10.64 1.68 100.00 17.54 600

BFO-P2 −0.36 11.93 1.68 100.00 31.61 600

BFO-P3 −0.48 12.03 1.67 100.00 34.01 600

GRRCH BFO-P1 1.25 36.50 1.85 100.00 12.23 600

BFO-P2 −0.19 37.45 1.67 100.00 24.80 600

BFO-P3 −0.42 37.59 1.64 100.00 26.71 600

gaps and standard deviations show the good performance
and stability of the BFO.

Table 4 shows that all variants of the hybrid heuristic
outperformed all the other heuristics and the solution time
required by all heuristics is higher. A possible explanation
is that the number of products increased in comparison to
the numbers for test sets A+ and B+, increasing both prob-
lem size and number of possible solutions. The negative gaps
indicate improvements and they are similar in Tables 2 and 3.

Finally, Table 5 shows that the solution quality for the
hybrid heuristic applied to test set D and the improvement
values are similar to those obtained for test set C (Table 4).
However, for a few instances with unknown feasible solu-
tions, theBFO-P1method yields poor-quality solutionswhen
the GRRCH procedure is used to obtain the initial solutions,
which explains the difference between the gap values cal-

culated including and excluding such instances (0.90 and
6.60%). According to the literature upper bound, 90% of
the instances from test set D have a known solution that does
not require overtime. However in many cases, the BFO fea-
sible percentage values are higher than 90%. High values for
the standard deviation may indicate that the BFOmethod has
yielded both poor and good solutions.

Figures 6, 7, 8 and 9 show the convergence curves for the
BFO-P1 method, which uses the LFL, CPLEX and GRRCH
initial solutions and two runs for one hard instance of test
set D. This instance has a general acyclic structure with a
profile of 90% resource utilization (for more details, see
instance code DG012132 on page 4 of Stadtler and Sürie
(2000)). These curves show that the BFO variants converge
very rapidly (Fig. 6 for the first run and Fig. 7 for the second
run). All the BFO variants continue to improve the solutions

123

J Intell Manuf (2017) 28:929–944 939

Table 4 Results for the C test set: a summary of the solutions

Init. Sol. Method Gap (%) Improv. (%) SD (%) Feas (%) Time (s) Limit (s)

CPLEX 1.69 (1.30) # 1.99 (1.86) 100.00 (73.33) 600.00 (600.00) 600

TDH 6.76 # # 100.00 0.43 #

Sta 2.14 # # 99.24 279.21 263

LFL HS-FO4 1.61 # # 100.00 40.90 #

LFL BFO-P1 0.02 (−0.05) 50.09 (41.67) 1.63 (1.47) 100.00 (73.33) 163.55 (168.88) 600

BFO-P2 −0.94 (−0.85) 50.59 (42.10) 1.35 (1.25) 100.00 (73.33) 563.75 (563.92) 600

BFO-P3 −1.65 (−1.40) 50.93 (42.37) 1.34 (1.34) 100.00 (73.33) 525.84 (532.10) 600

CPLEX BFO-P1 0.10 (0.00) 27.53 (22.22) 1.75 (1.59) 100.00 (73.33) 157.69 (161.68) 600

BFO-P2 −1.40 (−1.21) 28.63 (23.12) 1.32 (1.30) 100.00 (73.33) 541.91 (542.28) 600

BFO-P3 −1.72 (−1.47) 28.86 (23.31) 1.37 (1.38) 100.00 (73.33) 520.65 (524.87) 600

GRRCH BFO-P1 −0.05 (−0.11) 32.44 (25.93) 1.66 (1.49) 100.00 (73.33) 158.58 (161.37) 600

BFO-P2 −1.37 (−1.19) 33.34 (26.69) 1.32 (1.29) 100.00 (73.33) 543.65 (544.07) 600

BFO-P3 −1.77 (−1.51) 33.61 (26.91) 1.39 (1.40) 100.00 (73.33) 510.94 (516.23) 600

Table 5 Results for the D test set: a summary of the solutions

Init. Sol. Method Gap (%) Improv. (%) SD (%) Feas (%) Time (s) Limit (s)

CPLEX 2.25 (0.96) # 10.85 (11.81) 97.22 (88.75) 600.00 (600.00) 600

TDH 5.68 # # 100.00 0.28 #

Sta 6.99 # # 88.89 76.73 81

LFL HS-FO4 2.17 # # 100.00 34.40 #

LFL BFO-P1 0.96 (1.08) 55.90 (59.42) 2.29 (14.65) 100.00 (91.00) 99.32 (115.80) 600

BFO-P2 −1.14 (−3.91) 56.86 (60.53) 1.82 (10.93) 100.00 (92.50) 481.07 (487.67) 600

BFO-P3 −1.31 (−3.94) 56.93 (60.59) 1.97 (10.55) 100.00 (92.25) 429.30 (441.44) 600

CPLEX BFO-P1 0.90 (2.51) 22.74 (27.50) 2.22 (20.92) 100.00 (91.25) 134.09 (157.74) 600

BFO-P2 −1.20 (−1.01) 24.92 (29.95) 1.82 (18.32) 100.00 (91.75) 439.81 (455.82) 600

BFO-P3 −1.33 (−1.36) 24.67 (29.79) 1.93 (16.59) 100.00 (92.25) 418.60 (436.74) 600

GRRCH BFO-P1 0.90 (6.60) 36.72 (40.32) 2.26 (34.39) 100.00 (90.00) 96.53 (119.80) 600

BFO-P2 −1.20 (−1.92) 38.07 (42.55) 1.87 (18.28) 100.00 (92.00) 462.90 (472.78) 600

BFO-P3 −1.38 (−2.59) 38.18 (42.71) 1.91 (13.10) 100.00 (91.50) 411.19 (427.13) 600

in steps, as shown in Figs. 8 and 9. A step which appears in
a curve after a long time without improvement demonstrates
the overlap of a local optima. The BFO-P2 and BFO-P3 vari-
ants exhibited a similar behaviour with better improvement
values, as shown in Tables 2 , 3 , 4 and 5.

The charts of Figs. 10, 11, 12 and 13 show the performance
curves of the proposed heuristic in comparison to the perfor-
mance of CPLEX. This metric of comparison was proposed
byDolan andMoré (2002).The chartswere constructedusing
the normalization of the solutions obtained by each approach
and the best solution found in each instance. Given a set of
solution approaches (S), a set of instances (P) and a met-
ric of evaluation (t), it is possible to define the quality of
a particular solution approach s for a given instance p as
rps = tps

min{tps : s∈S} . With this value, the probability that each
solution approach will perform better or equal to τ can be

calculated as ps(τ) = |p∈P: rps≤τ |
N P , where NP is the num-

ber of instances considered. In the charts below the abscissa
gives the τ values and the ordinate gives the probabilities
of obtaining a solution whose quality is better than or equal
to τ . For example, in Fig. 10 the MIP solver line crosses
the abscissa value of 1.02 above 70%, indicating that this
tool has a probability equal to 70% of obtaining a solution
with maximum deviation of 2% in comparison with the best
solution of the approaches analyzed.

Figure 10 shows that CPLEX (MIP) has a greater num-
ber of superior solutions in class A+ (performance values
with τ = 1), but its performance curve is quickly domi-
nated by those of the proposed method variants. Such result
shows that the BFO provides high-quality solutions more
often. In addition, the probability that the BFO will obtain
a solution whose deviation is lower than 2% from the best

123

940 J Intell Manuf (2017) 28:929–944

Fig. 6 Convergence curves for
the BFO-P1 heuristic using the
LFL, CPLEX and GRRCH
initial solutions for the complete
first run

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400

S
o

lu
ti

o
n

 V
al

u
e

(M
ill

io
n

s)

Time (s)

BFO - P1 - LFL
BFO - P1 - Cplex
BFO - P1 - GRRCH
Upper Bound

Fig. 7 Convergence curves for
the BFO-P1 heuristic using
LFL, CPLEX and GRRCH
initial solutions for the complete
second run

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350 400 450 500 550

S
o

lu
ti

o
n

 V
al

u
e

(M
ill

io
n

s)

Time (s)

BFO - P1 - LFL
BFO - P1 - Cplex
BFO - P1 - GRRCH
Upper Bound

Fig. 8 Convergence curves for
the BFO-P1 heuristic using the
LFL, CPLEX and GRRCH
initial solutions for the first run
after 50s

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

50 100 150 200 250 300 350 400

S
o

lu
ti

o
n

 V
al

u
e

(M
ill

io
n

s)

Time (s)

BFO - P1 - LFL
BFO - P1 - Cplex
BFO - P1 - GRRCH
Upper Bound

123

J Intell Manuf (2017) 28:929–944 941

Fig. 9 Convergence curves for
the BFO-P1 heuristic using the
LFL, CPLEX and GRRCH
initial solutions for the second
run after 50s

2.5

3

3.5

4

4.5

5

5.5

6

6.5

50 100 150 200 250 300 350 400 450 500 550

S
o

lu
ti

o
n

 V
al

u
e

(M
ill

io
n

s)

Time (s)

BFO - P1 - LFL
BFO - P1 - Cplex
BFO - P1 - GRRCH
Upper Bound

Fig. 10 Evaluation of the performance of BFO variants and CPLEX for test set A+

Fig. 11 Evaluation of the performance of BFO variants and CPLEX to test set B+

123

942 J Intell Manuf (2017) 28:929–944

Fig. 12 Evaluation of the performance of BFO variants and CPLEX for test set C

Fig. 13 Evaluation of the performance of BFO variants and CPLEX for test set D

solution yielded by all the approaches is higher than 90%,
demonstrating the method robustness. The similarity of the
performance curves among all BFO variants shows that it is
not strongly depend on the quality of the initial solution.

Figure 11 shows the results of test setB+.Theperformance
of BFO is even better in comparison with CPLEX because
the quantities of the best solutions are relatively similar and
the curves of the three variants are always above those of
the MIP solver. The difference between test sets A+ and B+
is the inclusion of positive setup times in the latter. This
characteristic seems to reduce the amount of best solutions
obtained by theMIP solver, but is does not affect significantly
the performance of the proposed method. Furthermore, the
MIP solver shows a lower performance curve for test set B+
than for A+.

Test set C shows the largest performance gap between
CPLEX and the BFO variants (Fig. 12). The chart shows that
all solutions produced by the BFO are at most 3% worse
than the best solution found, i.e. the point at which the curve
reaches 100% of probability has τ ≤ 1.03.

The results of the chart in Fig. 13 are similar to those
of the previous chart. Here, in more than 90% of the cases
the gap in the BFO solution is lower than or equal to 2%.
The performance of the MIP solver is better in comparison
with its performance for test set C, however the BFO remains
superior.

The performance curves have demonstrated the BFO
robustness, given the reduced percentage of infeasible solu-
tions and the high-quality of the them. Furthermore, the BFO
proper functioning does not appear to be strongly dependent

123

J Intell Manuf (2017) 28:929–944 943

on the initial solution quality, as observed by the similarities
between the performance of the three variants.

Additional computational tests

For the additional tests (test sets C+, D+ and E+), the
gap was calculated as the relative difference between
BFO and CPLEX results: Gap = 100 ∗
heuristic solution − CPLEX solution

CPLEX solution . In this case, values lower
than zero show that the BFO variant considered provide bet-
ter results than CPLEX. The variants with partition 3 asso-
ciated with all initial solution options (LFL, CPLEX and
GRRCH) were tested. For test set C+, the best variant (BFO-
ISCPLEX) produced solutions with an average gap equal to
−20.66% and the worst variant (BFO-LFL) generated solu-
tions with a gap equal to −20.26%, on average. The results
are quite similar for test set D+, in which BFO-ISCPLEX
delivered solutions with average gap equal to −21.47%
and BFO-LFL created production plans with average gap
of −20.97%. For the largest test class (E+), CPLEX solved
only one instance, whereas BFO solved all. For the instance
solved by CPLEX, the average gap found by BFO ranges
between −28.98% (BFO-ISCPLEX) and −23.53% (BFO-
LFL).

Conclusions

This paper has proposed a hybrid heuristic (BFO) to solve the
multi-level capacitated lot-sizing problem. This heuristic is a
combination of the bees algorithm and the fix-and-optimize
heuristic. The key idea is to use the bees algorithm features
to overcome the local minima produced by the decomposi-
tion scheme and maintain the fix-and-optimize heuristic’s
ability to quickly return high-quality solutions. The BFO
method has outperformed the standard CPLEX 12.2 solver
and other heuristics reported in the literature in terms of
quality.

This paper has also reported on the development of
a heuristic that improves the fix-and-optimize solutions,
demonstrating it is possible to use this approach as an effi-
cient sub-problem solver. The computational results show
that an initial good-quality solution is not necessary for the
method and, in some cases, the results could be worse even
starting with better initial solutions.

For test sets C+, D+ and E+, the BFO outperformed
CPLEX with average gaps higher than 20%. The proposed
method provided better results for all instances even con-
sidering the worst run. The percentage of feasibility is also
higher in test set E+, where CPLEX solved only one instance
and the BFO solved all. These results show the BFO higher
performance and stability for medium and large instances.

Future research could involve the use of other types
of decompositions, the extension to multi-objective prob-
lems (Gen and Lin 2014; Alvarado-Iniesta et al. 2014)
and consider less expensive methods to control the parti-
tion use. Considering other ways to solve the sub-problems
is also important because of the high number of sub-
problems solved by this type of heuristic. The use of meth-
ods more efficient than a standard LP/MIP solver may
reduce the solution time and yield higher-quality solutions
enabling the use of larger populations. Other metaheuris-
tics, such as GRASP and Tabu Search could be used com-
bined with the fix-and-optimize method to construct hybrid
heuristics. The proposed method can be easily modified or
extended to other problems by changing the decomposition
schemes and setting the parameters according to the problem
addressed.

Acknowledgements This work was supported by the Conselho
Nacional de Desenvolvimento Científico (CNPq) and by Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP).

References

Ajorlou, S., & Shams, I. (2013). Artificial bee colony algorithm for
CONWIP production control system in a multi-product multi-
machine manufacturing environment. Journal of Intelligent Man-
ufacturing, 24(6), 1145–1156.

Akartunalı, K., & Miller, A. J. (2009). A heuristic approach for big
bucket multi-level production planning problems. European Jour-
nal of Operational Research, 193(2), 396–411.

Almeder, C. (2010). A hybrid optimization approach for multi-level
capacitated lot-sizing problems. European Journal of Operational
Research, 200(2), 599–606.

Alvarado-Iniesta, A., García-Alcaraz, J. L., Piña-Monarrez, M., &
Pérez-Domínguez, L. (2014).Multiobjective optimization of torch
brazing process by a hybrid of fuzzy logic and multiobjective arti-
ficial bee colony algorithm. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-014-0899-2.

Billington, P. J., McClain, J. O., & Thomas, L. J. (1983). Mathematical
programming approaches to capacity-constrained MRP systems:
Review formulation and problem reduction.Management Science,
29(10), 1126–1141.

Bitran, G. R., & Yanasse, H. H. (1982). Computational complexity of
the capacitated lot size problem. Management Science, 28(10),
1174–1186.

Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid meta-
heuristics in combinatorial optimization: A survey. Applied Soft
Computing, 11(6), 4135–4151.

Brajevic, I., & Tuba, M. (2013). An upgraded artificial bee colony
(ABC) algorithm for constrained optimization problems. Journal
of Intelligent Manufacturing, 24(4), 729–740.

Castellani, M., Pham, Q. T., & Pham, D. T. (2012). Dynamic optimisa-
tion by a modified bees algorithm. Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, 226(7), 956–971.

Dereli, T., & Das, G. S. (2011). A hybrid ‘bee(s) algorithm’ for solving
container loading problems.Applied Soft Computing, 11(2), 2854–
2862.

123

http://dx.doi.org/10.1007/s10845-014-0899-2

944 J Intell Manuf (2017) 28:929–944

Dolan, E.D.,&Moré, J. J. (2002). Benchmarking optimization software
with performance profiles.Mathematical Programming, 91, 201–
213.

Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—Survey
and extensions.European Journal of Operational Research, 99(2),
221–235.

Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for
manufacturing scheduling problems: State-of-the-art survey. Jour-
nal of Intelligent Manufacturing, 25(5), 849–866.

Goren, H. G., Tunali, S., & Jans, R. (2010). A review of applications of
genetic algorithms in lot sizing. Journal of Intelligent Manufac-
turing, 21(4), 575–590.

Helber, S., & Sahling, F. (2010). A fix-and-optimize approach for the
multi-level capacitated lot sizing problem. International Journal
of Production Economics, 123(2), 247–256.

Jain, V., Kundu, A., Chan, F. T. S., & Patel, M. (2013). A Chaotic
Bee Colony approach for supplier selection-order allocation with
different discounting policies in a coopetitive multi-echelon sup-
ply chain. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-013-0845-8.

James, R. J. W., & Almada-Lobo, B. (2011). Single and parallel
machine capacitated lotsizing and scheduling: New iterative MIP-
based neighborhood search heuristics. Computers & Operations
Research, 38(12), 1816–1825.

Jans, R., & Degraeve, Z. (2007). Meta-heuristics for dynamic lot siz-
ing: A review and comparison of solution approaches. European
Journal of Operational Research, 177(3), 1855–1875.

Li, Y., Tao, Yi, &Wang, F. (2012). An effective approach to multi-item
capacitated dynamic lot-sizing problems. International Journal of
Production Research, 50(19), 5348–5362.

Maes, J., McClain, J. O., & Wassenhove, L. N. V. (1991). Multilevel
capacitated lotsizing complexity and LP-based heuristics. Euro-
pean Journal of Operational Research, 53(2), 131–148.

Özbakir, L., Baykasoglu, A., & Tapkan, P. I. (2010). Bees algorithm for
generalized assignment problem. Applied Mathematics and Com-
putation, 215(11), 3782–3795.

Pham,D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., &Zaidi,M.
(2005). The Bees Algorithm. Technical report, Cardiff University,
UK.

Pham, D. T., Koc, E., Lee, J. Y., & Phrueksanant, J. (2007). Using the
Bees Algorithm to schedule jobs for a machine. In Proceedings
of Eighth International Conference on Laser Metrology (pp. 430–
439). Uk: Euspen.

Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed
integer programming. New York: Springer.

Puchinger, J., & Raidl, G. R. (2005). Combining metaheuristics and
exact algorithms in combinatorial optimization: A survey and clas-
sification. In artificial intelligence and knowledge engineering
applications: A bioinspired approach (vol. 3562, pp. 113–124).
Berlin: Springer.

Sahling, F., Buschkühl, L., Tempelmeier, H., &Helber, S. (2009). Solv-
ing a multi-level capacitated lot sizing problem with multi-period
setup carry-over via a fix-and-optimize heuristic. Compututers &
Operational Research, 36(9), 2546–2553.

Stadtler, H. (2003). Multilevel lot sizing with setup times and multiple
constrained resources: Internally rolling schedules with lot-sizing
windows. Operations Research, 51(3), 487–502.

Stadtler, H., & Sürie, C. (2000).Description of MLCLSP test instances.
Technicalreport, Darmstadt: Technische Universität Darmstadt.

Tempelmeier, H., & Derstroff, M. (1996). A Lagrangean-based heuris-
tic for dynamic multi-level multi-item constrained lotsizing with
setup times.Management Science, 42(5), 738–757.

Toledo, C. F. M., de Oliveira, R. R. R., & França, P. M. (2013). A hybrid
multi-population genetic algorithm applied to solve themulti-level
capacitated lot sizing problem with backlogging. Computers &
Operations Research, 40(4), 910–919.

Wen, X. Y., Li, X. Y., Gao, L., & Sang, H. Y. (2014). Honey bees mating
optimization algorithm for process planning problem. Journal of
Intelligent Manufacturing, 25(3), 459–472.

Wu, T., Akartunalı, K., Song, J., & Shi, L. (2013). Mixed integer pro-
gramming in production planning with backlogging and setup car-
ryover: Modeling and algorithms. Discrete Event Dynamic Sys-
tems, 23(2), 211–239.

Wu, T., Shi, L., & Song, J. (2012). An MIP-based interval heuristic for
the capacitated multi-level lot-sizing problem with setup times.
Annals of Operations Research, 196, 635–650.

123

http://dx.doi.org/10.1007/s10845-013-0845-8
http://dx.doi.org/10.1007/s10845-013-0845-8

	BFO: a hybrid bees algorithm for the multi-level capacitated lot-sizing problem
	Abstract
	Introduction
	Problem formulation
	Hybrid method
	Initial solution
	Fix-and-optimize heuristic
	Decomposition schemes
	Bees algorithm
	Main procedure

	Computational experiments
	Results
	Additional computational tests

	Conclusions
	Acknowledgements
	References

