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Abstract Uncertain finance is an application of uncer-
tainty theory in the field of finance. This paper investi-
gates the uncertain financial market based on the exponential
Ornstein—Uhlenbeck model. European option pricing formu-
las and American option pricing formulas are derived via the
a-path method. Finally, some mathematical properties of the
uncertain option pricing formulas are discussed.
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Introduction

Black and Shocles (1973) and Merton (1973) used the geo-
metric Brownian motion to construct a theory for pricing
the options. From then on, Black—Scholes formula has been
pivotal to the growth and success of financial engineering.
As we all know, when using probability theory, a fun-
damental premise is that the estimated probability distribu-
tion is close enough to the long-run cumulative frequency.
Otherwise, the law of large numbers is no longer valid and
probability theory is no longer applicable. However, in many
situations, there are not enough (or even no) historical data.
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Then we have to invite some domain experts to evaluate
their belief degree that each event will occur. In order to
model human belief degrees, uncertainty theory was estab-
lished by Liu (2007) and refined by Liu (2010a). Nowadays,
uncertainty theory has become a branch of axiomatic math-
ematics with diverse applications such as uncertain logic (Li
and Liu 2009), uncertain risk analysis (Liu 2010c), uncertain
set (Liu 2010b, 2013a) and uncertain game (Yang and Gao
2013, 2014). In order to describe dynamic uncertain sys-
tems, (Liu 2008) introduced uncertain process. Besides, Liu
(2009) designed canonical Liu process which could be seen
as a counterpart of Brownian motion. Based on canonical Liu
process, Liu introduced uncertain calculus (Liu 2009) and
uncertain differential equations (Liu 2008). After that, Chen
and Liu (2010) proved the existence and uniqueness theorem
of solution of uncertain differential equation. The concept
of stability of uncertain differential equation was presented
by Liu (2009). Later on Yao et al. (2013) proved some sta-
bility theorems of uncertain differential equation. Chen and
Liu (2010), Liu (2012) and Yao (2013a) developed many
methods to solve the uncertain differential equations. Fur-
thermore, Yao and Chen (2013) designed the -path method,
which produced an inverse uncertainty distribution of the
solution. Based on «-path, Yao (2013b) presented some for-
mulas to calculate the extreme value, first hitting time, and
time integral of solution of uncertain differential equation.
As adifferent doctrine, based on the assumption that stock
price follows a geometric canonical process, uncertainty the-
ory was first introduced into finance by Liu (2009) in 2009.
And Liu (2009) also proposed an uncertain stock model and
derived its European option price formulas. Later on, Chen
(2011) studied American option pricing formulas for uncer-
tain stock market, Sun and Chen (2013) derived Asian option
price formulas, and Yao (2015) proved a no-arbitrage the-
orem for this type of uncertain stock model. In addition,
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Peng and Yao (2010) proposed a different uncertain stock
model and derived some option price formulas. Liu et al.
(2012) proposed an uncertain currency model and explored
some mathematical properties of it. Under the assumption of
short interest rate following uncertain processes, Chen and
Gao (2013) derived the term-structure equation to value the
zero-coupon bond. Besides, Jiao and Yao (2015) investigated
another type of uncertain interest rate model. For exploring
the recent developments of uncertain finance, the readers may
consult (Liu 2013b) and the book by Liu (2015).

Peng—Yao stock model (Peng and Yao 2010) incorporated
a general economic behavior: mean reversion. That is, when
the stock price is too high, the price tends to fall more likely;
when the stock price is too low, the price tends to rise more
likely. However, this model is linear mean reversion. In this
paper, we shall use a nonlinear mean reversion, assuming
that the stock price follows uncertain counterpart of the expo-
nential Ornstein—Uhlenbeck model. European option pricing
formulas and American option pricing formulas are derived,
respectively. Furthermore, some mathematical properties are
discussed.

The rest of the paper is organized as follows. Some pre-
liminary concepts of uncertain process are recalled in “Pre-
liminaries” section. The exponential Ornstein—Uhlenbeck
model for uncertain markets is formulated in “Exponen-
tial Ornstein—Uhlenbeck model” section. “European option
price” section gives European option pricing formulas and
discusses some properties of the formulas. “American opi-
tion price” section gives American option pricing formulas
and discusses some properties of the formulas. Finally, a brief
summary is given in “Conclusion ” section.

Preliminaries

Uncertainty theory was established by Liu (2007) and refined
by Liu (2010a). Nowadays, uncertainty theory has become
a branch of axiomatic mathematics for modelling human
belief degrees. In this section, we will introduce some basic
results in uncertainty theory. For more detailed expositions of
uncertainty theory with applications (Gao 2013; Liu2013a, b,
2014), the readers may consult Liu’s recent book (Liu 2015).

Definition 1 (Liu2007) Let £ be a o -algebra on a nonempty
set I'. A set function M : £ — [0, 1] is called an uncertain
measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom) M{I"} = 1 for the universal
set .

Axiom 2. (Duality Axiom) M{A} + M{A} = 1 for any
event A.

Axiom 3. (Subadditivity Axiom) For every countable
sequence of events A, Aa, ..., we have
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M[U Ai] <D M{A).
i=1 i=1

Besides, in order to provide the operational law, (Liu 2009)
defined the product uncertain measure on the product o-
algebre L as follows.

Axiom 4. (Product Axiom) Let (I}, Lk, My) be uncertainty
spaces for k = 1, 2, ... The product uncertain measure M is
an uncertain measure satisfying

M {]‘[ Ak] = N\ Ml
k=1

k=1

where Ay are arbitrarily chosen events from Ly for k =
1,2, ..., respectively.

Definition 2 (Liu 2007) An uncertain variable is a function
from an uncertainty space (I, £, M) to the set of real num-
bers, such that, for any Borel set B of real numbers, the set

{6 eBl={y el'l§(y) € B}
is an event.

In order to describe uncertain variables in practice, the
concept of uncertainty distribution was introduced.

Definition 3 (Liu 2007) The uncertainty distribution of an
uncertain variable £ is defined as

D (x) =M{§ < x}

for any real number x.

An uncertainty distribution @ (x) is said to be regular if
its inverse function ®~!(«) exists and is unique for each
a € (0,1). And @ () is called the inverse uncertainty
distribution of . In this paper, we assume that all the payofts
are characterized by regular uncertain variables.

Definition 4 (Liu 2009) The uncertain variables &1, &, ...,
&y, are said to be independent if

M[ﬂ{a € Bl-}] = \Mi& € B)
i=1

i=1

for any Borel sets By, B, ..., By, of real numbers.

The operational law of uncertain variables was proposed
by Liu (2010c¢) to calculate the inverse uncertainty distribu-
tion of strictly monotonous function.
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Theorem 1 (Liu 2010c) Let &1,&,...,&, be indepen-
dent uncertain variables with uncertainty distributions @1,
Dy, ..., Dy, respectively. If the function f(x1, X2, ..., Xp) IS
strictly increasing with respect to x1, X2, . . . , Xy, and strictly
decreasing with Xy 41, X2, - - ., Xp, then

S:f($1a~~v‘§m7§m+1s-~-7§n)

is an uncertain variable with inverse uncertainty distribution

vl @) = f@; (@),.... 0, (@),

o (1—a),.... 0, (1 —a)).

Definition 5 (Liu2007) Let & be an uncertain variable. Then
the expected value of & is defined as

+00

0
Blgl= [ M > x)dy — / M€ < x}dx

provided that at least one of the two integral is finite.

If € is a regular uncertain variable with uncertainty distri-
bution @, then its expected value can be briefed as

+00 0
E[£] = / (1 —&(x))dx —/ D (x)dx
0

1
:/ @ (x)dx.
0

Definition 6 (Liu 2008) Let T be an index set and let
(I', L, M) be an uncertainty space. An uncertain process is
a measurable function from 7' x (I", £, M) to the set of real
numbers, i.e., for each t € T and any Borel set B,

{X;eBYy={y eI | X;(y) € B}
is an event.

Definition 7 (Liu 2008) An uncertain process X, is said to
have independent increments if
Xt()v Xt1 - XI()’ th - Xt1 ey th - ka—l

are independent uncertain variables where #y is the initial

time and #, fp, . . ., t; are any time with ) < 1] < -+ - < f¢.

Definition 8 (Liu 2008) An uncertain process X, is said to
have stationary increments if, for any given ¢t > 0, the incre-
ments X4, — X are identically distributed uncertain vari-
ables for all s > 0.

Definition 9 (Liu 2009) An uncertain process C; is said to
be a canonical process if

(i) Co = 0 and almost all sample paths are Lipschitz con-
tinuous,
(i) C; has stationary and independent increments,

(iii) every increment Cs4; — C; is a normal uncertain vari-
able with expected value 0 and variance 2, whose uncer-
tainty distribution is

D(x) = (1 + exp (—rrx))_l xeNn
= E , N.

Definition 10 (Liu2009) Let X, be an uncertain process and
let C; be a canonical Liu process. For any partition of closed
interval [a, b] witha =t <t < -+ < ty41 = b, the mesh
is written as

A = max |tig1 — ti].
1<i<k

Then Liu integral of X, with respect to C; is defined as

b k
/a X dC; = Ahin();Xt : (Ct,-+1 - Ct,-)

provided that the limit exists almost surely and is finite. In
this case, the uncertain process X; is said to be integrable.

Definition 11 (Liu 2008) Suppose C; is a canonical Liu
process, and f and g are two functions. Then

dX; = f(t, Xp)dt + g(t, X;)dC;

is called an uncertain differential equation. A solution is a
Liu process X; that satisfies the equation identically in 7.

Definition 12 (Yao and Chen 2013) Let « be a number with
0 < o < 1. An uncertain differential equation

dX; = f(t, Xp)dt + g(t, X)dC;

is said to have an a-path X¢ if it solves the corresponding
ordinary differential equation

dX% = f(t, X%)dt + |g(r, X*) @~ (@)dr,

where @ ~!(«) is the inverse uncertainty distribution of stan-
dard normal uncertain variable, i.e.,

3
¢_1(a)=£ln ‘.
T l—«o

Theorem 2 (Yao and Chen 2013) Let X; and X{ be the
solution and a-path of the uncertain differential equation

dX; = f(r, Xpdt + g, X)dCy,

respectively. Then the solution X; has an inverse uncertainty
distribution

-1
o () = X°.
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Theorem 3 (Yao and Chen 2013) Let X; and X{ be the
solution and a-path of the uncertain differential equation

dXt - f(t, Xt)dt + g(t, X,)dC;,

respectively. Then for any monotone function J, we have

1
ELJ(X)] = /0 J(X¥)da.

Theorem 4 (Yao 2013b) Let X; and X{* be the solution and
o-path of the uncertain differential equation

dX; = f(1, Xp)dt + g(t, X)dCy,

respectively. Then for any time s > 0 and strictly increasing
function J (x), the supremum

sup J(X;)

0<t<s

has an inverse uncertainty distribution

W () = sup J(X[).

0<t<s

Theorem 5 (Yao 2013b) Let X; and X{* be the solution and
a-path of the uncertain differential equation

dX; = f(r, Xpdt + g, X;)dCy,

respectively. Then for any time s > 0 and strictly decreasing
function J (x), the supremum

sup J(X;)

0<t<s

has an inverse uncertainty distribution

v @) = sup J(X!79).

0<t<s

Exponential Ornstein—Uhlenbeck model

In this section, we give the exponential Ornstein—Uhlenbeck
model for uncertain markets.

Let X; be the stock price and Y; be the bond price. Suppose
that the stock price X; follows a geometric canonical process.
Then Liu’s stock model (Liu 2008) is written as follows,

[dX, = ,bLXtdt —i—UX,dC,

dY[ = VYtdt (1)

where r is the riskless interest rate, w is the stock drift, o
is the stock diffusion, and C; is a canonical process. This
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model represents that the stocks have constant expected rate
of return.

Besides, Peng—Yao’s stock model (Peng and Yao 2010)
has the following form

dYt = rYtdt (2)

[ dX; = (m — aX,)dt + 0 X;dC;
where r > 0O,m > 0, > 0 and 0 > 0 are constants.
This model incorporates a general economic behavior: mean
reversion. That is, when the stock price is too high, the price
tends to fall more likely; when the stock price is too low, the
price tends to rise more likely. However, this model is linear
mean reversion. In the sequel, we shall give the following
nolinear model

dX, = M(] — clnX,)X;dt +GX[dC[

dYt = rYtdt (3)

wherer > 0, ¢ > 0, 0 > 0and p are constants. For ¢ = 0, it
is clearly Liu’s stock model (1). This model is the exponential
Ornstein—Uhlenbeck model.

Now, we use the a-path’s method to discuss the exponent
OU model under the uncertain environment.

Theorem 6 Suppose that the stock price follows the model
dX[ = ,lL(l —cln Xt)Xtdt + GX[dC[,

where X; represents the stock price at the moment t. Then
the o-path of X is

X¥ = exp(exp(—uct) In Xg + (1 — exp(—puct))

1
(——i—oﬁln ¢ ))
c ucr 11—«

Proof By Definition 12, we have

V3«

dX =pu(l —chh X)X} dr + o X —1In dr.
b4 11—«
So
3
dlnxf‘=(u+a‘/_1n )dt—uclan‘dt.
b4 l -«

The above ordinary differential equation has a solution

ot P g

In XY= o (1—exp(—pct))+exp(—puct) In Xo.
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Then

Xy = XZXP(_“CI) exp ((1 — exp(—puct))

1
c ucr 11—«

= exp(exp(—uct) In Xo + (1 — exp(—puct))

1
(——i—aﬁln a ))
c puer 11—«

The a-path’s formula of X, is verified.

European option price

A European option gives one the right, but not the obliga-
tion, to buy or sell a stock at a specified time for a specified
price. Suppose that a European call option has a strike price
K and an expiration time 7. If X7 is the final price of the
underlying stock, then the payoff from buying a European
call option is (X7 — K)™. Considering the time value of
money resulted from the bond, the present value of this pay-
offis exp(—rT) (X7 — K)™ . Hence the European call option
should be the expected present value of the payoff. Then this
option has a price

fe =exp(=rT)E[(X7 — K)™]. “

Theorem 7 (European call option pricing formula) Suppose
a European call option for the stock model (3) has a strike
price K and an expiration time T. Then the European call
option pricing formula is

1
fe= exp(—rT)/ (exp( exp(—ucT)In Xg
1 a\/§ o

+ (1 —exp(—pucT)) (;+ e l—a)) — K) do,

In

where

et A ur  [c(In K —exp(—ucT)In Xg) )
m=——, = —1).
1+e4 1—exp(—ucT)

-5

Proof From Theorems 2 and 6, we get

@;1(05) =X7 = exp(exp(—McT) In Xg

+ (1 = exp(—ucT)) (% + ov3 @ ))

ucer 11—«

By Theorem 3, we have

fe =exp(=rT)E[(XT — K)*]

1
=exp(—rT) / ( exp( exp(—ucT)In Xo
0

+ (1 —exp(—ucTH| —+ In— ) )— K] da,
c pucer  l—«a

Letting

exp(exp(—,ucT) In Xo + (1 — exp(—pucT))

1 3
(_+<ff1n « ))K
c uer 11—«

we have

o >m,

where

PR

m=-——-oy,

1+e4
A T (c(an—exp(—ucT)lnXo) 1)
o3 1 —exp(—pucT) :
Then

1
fe = exp(—rT)/ ( exp( exp(—ucT) In Xg

U\/gln ¢ ))— K)da,
ucer 1 —a

The European call option pricing formula is verified.

+ (1 —exp(—ucT)) (% +

Theorem 8 (Monotonicity of European call option pricing
model) Suppose the stock price follows the stock model (3),
which has a strike price K and an expiration time T. Then
fc has the following properties:

1. f. is a decreasing function of K ;
2. feis a decreasing function of r;
3. fc is an increasing function of Xo.

Proof 1. By equation (4) we get assertion clearly.
2. Since exp(—rt) is a decreasing function of r, the result

is obvious.
3. Let

G = exp(exp(—,ucT) In X + (1 —exp(—pucT))

1
(——I—Uﬁln ¢ ))
c uer 11—«
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Then
1
fo= exp(—rT)/ (G — K)Tda.
0
Since

dG 1 o3 o
— =exp{ (1—expucT))| —+ In
dXo c puer  l—a

dexp(exp(—ucT) In Xo)
dXo

= exp ((1 —exp(—ucT)) (% + iﬁ In ¢ )

uer 1 —«

— jueT + (exp(—peT) — 1) In Xo)
> 0.

It is obvious that f is an increasing function of X since
G is an increasing function of X(. The Monotonicity of
European call option pricing formula is verified.
Suppose that a European put option has a strike price K
and an expiration time 7. If X7 is the final price of the
underlying stock, then the payoff from buying a European
put option is (K — X7)T. Considering the time value of
money resulted from the bond, the present value of this pay-
off is exp(—rT)(K — X7) ™. Hence the European call option
should be the expected present value of the payoff. Then this
option has a price

fp =exp(=rT)E[(K — X7)"]. (5)
Theorem 9 (European put option pricing formula) Suppose
a European call option for the stock model (3) has a strike

price K and an expiration time T. Then the European put
option pricing formula is

fr= exp(—rT)/ (K — exp(exp(—ucT)ln Xo
0

1 3
+ (1 — exp(—ucT)) (— + V3 In ¢ ))) do,
c ucr 1l—a«a
where
e ur [ c(ln K —exp(—ucT)In Xop)
m=———-, A= —1).
1+eA o3 1 —exp(—ucT)

Proof From Theorems 2 and 6, we get

@;1(05) =X7 = exp(exp(—McT) In Xo+

(1—exp(—p,cT))(%+U—\/§ln ¢ ))

ucr 1 —a
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By Theorem 3, we have

fp =exp(=rT)E[(K — X7)"]

1
= exp(—rT)/ (K —exp(exp(—y,cT)ln Xo
0

+
3
o3, _@ ))) da.
ucr 1 —«

exp(exp(—,ucT) In Xg + (1 —exp(—pucT))

+ (1 —exp(—pucT)) (é +

Let

1
(——i—aﬁln ¢ ))<K,

c puer 11—«

we have
oA
a<m=-——-,
1+e4
where
A UTT (c(an — exp(—ucT) In Xp) 1)
o3 1 — exp(—ucT) '

So

fr= exp(—rT)/ (K — exp(exp(—ucT)ln Xo
0

1
(1 — exp(—pucT)) (E + %f In - - O5))) da,

The European put option pricing formula is verified.

Theorem 10 (Monotonicity of European put option pricing
model) Suppose the stock price follows the stock model (3),
which has a strike price K and an expiration time T. Then
fp has the following properties:

1. fp is a decreasing function of K;
2. fp is a decreasing function of r;
3. fp is a decreasing function of Xo.

Proof The proof is omitted here for it is similar to that of
Theorem 8.

American opition price

An American option gives one the right, but not the oblig-
ation, to buy or sell a stock before a specified time for a
specified price. Suppose that an American call option has a
strike price K and an expiration time 7. If X7 is the final
price of the underlying stock, then the payoff from buying
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an American call option is the supremum of (X; — K)™ over
the time interval [0, T']. Considering the time value of money
resulted from the bond, the present value of this payoff is the
supremum of exp(—rt)(X; — K)*. Hence an American call
option should be the expected present value of the payoff.
Then this option has a price

F.=E |: sup exp(—rt)(X; — K)+:| . (6)

0<t<T

Theorem 11 (American call option pricing formula) Sup-
pose an American call option for the stock model (3) has a
strike price K and an expiration time T. Then the American
call option pricing formula is

1
Fcz/ sup exp(—rt)| exp| exp(—puct)ln Xo
0 0<t<T

AT

+
o
— K| da.
uer 1 —«

In

+(1—emm—uw»(%+-

Proof We note that exp(—rt)(X; — K)T is an increasing
function of X,. According to Theorem 4, we get that the
inverse distribution function of supy.; .7 exp(—r?)(X; —
K)tis o

v @) = sup exp(—rr)(X* — K)*.

0<t<T

From Theorem 6, we have

XY = exp(exp(—uct) In Xg + (1 — exp(—puct))

1
(_+o\/§1n « ))
c ucr 11—«

Thus we get

lI/fl(oe) = sup exp(—rt)(exp(exp(—uct) In X

0<t<T

V3, e

+
o
n —K .
ucr 1 —«a

F.=E [ sup exp(—rt)(X; — K)+:|
0<t<T

1 1
:/ tlft_l(oe)da:/ sup
0 0 0=<t<T

X exp(—rt) ( exp( exp(—uct)In Xg

+
V3 In L))—K) do.
ucer l1—a

+U—ﬁMﬂwm(%+

So

+ (1 — exp(—pct)) (é +

The American call option pricing formula is verified.

Theorem 12 (Monotonicity of American call option pricing
model) Suppose the stock price follows the stock model (3),
which has a strike price K and an expiration time T. Then
F¢ has the following properties:

F. is a decreasing function of K ;
F. is a decreasing function of r;
F. is an increasing function of T;
F. is an increasing function of Xo.

N~

Proof The proof is omitted here for it is similar to that of
Theorem 8.

Suppose that an American put option has a strike price
K and an expiration time 7. If X7 is the final price of the
underlying stock, then the payoff from buying an American
put option is the supremum of (K — X;)™ over the time inter-
val [0, T']. Considering the time value of money resulted from
the bond, the present value of this payoftf is the supremum of
exp(—rt)(K — X,)™. Hence an American call option should
be the expected present value of the payoff. Then this option
has a price

F,=E |: sup exp(—rt)(K — X,)+:| . (7)
0<t<T

Theorem 13 (American put option pricing formula) Sup-
pose an American put option for the stock model (3) has a
strike price K and an expiration time T. Then the American
put option pricing formula is

1
F :/ sup exp(—rt)| K —exp| exp(—puct)In X
0 0<t<T

+
1—
o V3 In O[))) do.
e o

Proof We note that exp(—rt)(K — X;)* is an decreasing
function of X;. According to Theorem 5, we get that the

inverse distribution function of sup exp(—rt)(X; — K)*
0<t<T

+ (1 — exp(—pct)) (% +

is

v @)= sup exp(—r) (X 7% — K)*.
0<t<T

From Theorem 6, we have

th_“ = exp(exp(—uct) In X + (1 — exp(—puct))

1 1-—
(——}—G\/gln a)).
¢ ucw o
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Thus we get

llft_l(oe)z sup exp(—rt)| K —exp| exp(—puct)In X

0<r<T
+
1 ov3, l-«
+ (1—exp(—pct))| —+ In — .
¢ ucw o
So
Fp=FE| sup exp(—rt)(K — X))t

0<t<T

1
= / ¥ H()da.
0

1
:/ sup exp(—rt)
0 0<t<T

1
+ (1 —exp(—pen) | - +

K —exp| exp(—puct)In Xy

o3 1—«a *

In do.

U
The American put option pricing formula is verified.

Theorem 14 (Monotonicity of American put option pricing
model) Suppose the stock price follows the stock model (3),
which has a strike price K and an expiration time T. Then
Fy has the following properties:

F, is an increasing function of K ;
Fy is a decreasing function of r;

Fp is an increasing function of T;
Fp is a decreasing function of X.

KL~

Proof The proof is omitted here for it is similar to that of
Theorem 8.

Conclusion

In this paper, we investigated the option pricing problems
for uncertain financial market. European option price formu-
las and American option price formulas are calculated by
the a-path method for the exponential Ornstein—Uhlenbeck
model. At the same time, some properties of these formulas
are discussed.
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