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Abstract In this paper, based on uncertainty theory, we
first present a new class of two-stage uncertain programming
model and give its deterministic equivalent programming
problem. Then some fundamental properties of the two-stage
uncertain programming problem, including the convexity of
feasible set as well as objective function, are investigated.
In addition, a solution method by employing an efficiently
heuristic algorithm, called artificial bee colony algorithm, is
applied to solve the two-stage uncertain programming prob-
lem. Finally, some numerical examples are provided to illus-
trate the novel method introduced in this paper.

Keywords Uncertainty theory · Two-stage uncertain
programming · Convexity · Artificial bee colony algorithm

Introduction

In the realworld, optimization problems are very important in
a variety of fields (Chen 2013; Jeang 2013; Yang et al. 2014;
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Yang and Zhou 2014). In particular, a type of optimization
problems solved through several steps has been widely used
such as Ali Allahverdi and Aydilek (2013), and Sun et al.
(2011). These problems, usually calledmulti-stage optimiza-
tion, are more complex when decisions involve uncertain
parameters under the uncertain environment. A good result
in practical problem has been provided by Dantzig (1995)
who presented a kind of optimization problem by applying
the linear programming to aircraft flight with the stochas-
tic parameters about traffic flow. More examples such as the
farmer problem, the news vendor problem and the mater-
ial procurement problem can be found in Birge and Lou-
veaux (1997), Mirabi et al. (2013) and Wang et al. (2012).
Based on probability theory, stochastic programming has
been well developed recently (Kall and Wallace 1994; Yang
et al. 2013).

However, a fundamental premise of employing probabil-
ity theory is that the estimated probability is close enough
to the real frequency. Because of lack of observed data, we
have to invite some experts to provide their belief degree
that each event will occur. Since human beings tend to over-
weight unlikely events (Kahneman and Tversky 1979), the
belief degree may have a much larger range than the real
frequency. If we insist on treating the belief degree as prob-
ability, some counterintuitive results will happen. We may
refer to Liu (2012) for examples. To overcome this disad-
vantage, the uncertainty theory was founded by Liu (2007)
and refined by Liu (2010) based on normality, duality, subad-
ditivity and product axioms. Since then, uncertainty theory
was developed continuously such as Liu (2013a) and Sheng
and Yao (2014). Nowadays it has become a branch of mathe-
matics for modeling human uncertainty and has been widely
applied to various fields as theoretical foundation such as Liu
(2009b, 2013b, 2014), Wang et al. (2014, 2015a, b), Chen
and Ralescu Dan (2013) and Yang and Gao (2013, 2014).
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When some parameters of the underlying model are
unknown with full certainty and characterized by uncertain
variables whose uncertainty distributions are available, the
goal is to formulate an optimization problem, explicitly tak-
ing all outcomes of the uncertain parameters into account
rather than simply replacing them by their expected values. It
is also assumed that some decisions must be taken before the
outcomes of uncertain parameters are revealed and thus must
be based on the knowledge of the distribution of the uncer-
tain parameters only, which can be referred to as the first
stage. In the second stage, outcomes of all uncertain parame-
ters have been observed and some recourse (or corrective)
actions may be taken. From the discussion above, we can see
that the two-stage approach we present differs from the exist-
ing approaches such as Liu (2001), Wang and Qiao (1993)
and Arnaout et al. (2014). In this paper, two-stage uncer-
tain programming (UP) problem is presented firstly based
on the uncertainty theory, and some fundamental properties
of the two-stage UP, including the convexity of feasible set
as well as objective function, are investigated, which pro-
vides a theoretical foundation for application of two-stage
UP problem. Considering the complexity of the two-stage
UPproblemwhich is usually transformed into a deterministic
nonlinear programming problem, meta-heuristics and evolu-
tionary algorithms should be widely applied to this kind of
problem.The artificial bee colony (ABC) algorithm is ameta-
heuristic bionic algorithm based on the intelligent foraging
behavior of honey bees proposed by Karaboga (2005). The
ABC algorithm has been adopted by researchers in a variety
of fields and that the effectiveness and efficiency on algo-
rithm performance competitive to other optimization algo-
rithms have been experimentally validated (Karaboga and
Akay 2009). Therefore, in this paper, the ABC algorithm is
applied to solve the two-stage UP problem, which is demon-
strated specifically by several numerical examples, and more
efficient solutions are obtained.

This paper is organized as follows. The next section
reviews some basic results of the uncertainty theory. In “Two-
stage uncertain programming problem” section, the formu-
lation of a new class of two-stage UP problem is presented.
Then the properties of model presented above are investi-
gated in “Fundamental properties”. “Solution method” sec-
tion illustrates the ABC algorithm to solve the two-stage
UP problem, and several numerical examples are given to
demonstrate the efficient solution method explicitly. Finally,
the main results of this paper are summarized in “Conclu-
sions” section.

Preliminaries

Let � be a nonempty set, and L a σ -algebra over �. Each
element � in L is called an event. A set function M from

L to [0, 1] is called an uncertain measure if it satisfies the
following axioms (Liu 2007):

Axiom 1. (Normality axiom) M{�} = 1 for the universal
set �.

Axiom 2. (Duality axiom) M{�} + M{�c} = 1 for any
event �.

Axiom3. (Subadditivity axiom) For every countable sequence
of events �1,�2, . . ., we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i } .

The triplet (�,L,M) is called an uncertainty space. Fur-
thermore, Liu (2009a) defined a product uncertain measure
by the fourth axiom:
Axiom 4. (Product axiom) Let (�k,Lk,Mk) be uncertainty
space for k = 1, 2, . . .. The product uncertain measure M
is an uncertain measure satisfying

M

{ ∞∏
k=1

�i

}
=

∞∧
k=1

M{�k}

where �k are arbitrarily chosen events from Lk for
k = 1, 2, . . ., respectively.

Definition 2.1 (Liu 2007)An uncertain variable is ameasur-
able function ξ from an uncertainty space (�,L,M) to the
set of real numbers, i.e., for any Borel set B of real numbers,
the set {ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B} is an event.

Definition 2.2 (Liu 2007) The uncertainty distribution � of
an uncertain variable ξ is defined by �(x) = M{ξ ≤ x} for
any real number x .

Definition 2.3 (Liu 2009a) The uncertain variables ξ1, ξ2,

. . . , ξn are said to be independent if M{⋂n
i=1(ξi ∈ Bi )}

= ∧n
i=1M{ξi ∈ Bi } for any Borel sets B1, B2, . . . , Bn of

real numbers.

Definition 2.4 (Liu 2010) An uncertain variable� is said to
be regular if its inverse function �−1(α) exists and is unique
for each α ∈ (0, 1.)

Definition 2.5 (Liu 2010)Let ξ be anuncertain variablewith
regular uncertainty distribution �. Then the inverse function
�−1 is called the inverse uncertainty distribution of ξ .

Definition 2.6 (Liu 2007) Let ξ be an uncertain variable.
Then the expected value of ξ is defined by

E[ξ ] =
∫ ∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx (1)
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provided that at least one of the two integrals is finite.

Theorem 2.1 (Liu 2010) Let ξ and η be independent uncer-
tain variables with finite expected values. Then for any real
numbers a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η]. (2)

Theorem 2.2 (Liu 2009b) Let ξ1, ξ2, . . . , ξn be uncertain
variables, and f a real-valued measurable function. Then
f (ξ1, ξ2, . . . , ξn) is an uncertain variable.

Theorem 2.3 (Liu 2010) Let ξ be an uncertain variable
with regular uncertainty distribution�. If the expected value
exists, then

E[ξ ] =
∫ 1

0
�−1(α)dα

Theorem 2.4 (Liu 2010) Let ξ1, ξ1, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
�1,�1, . . . , �n, respectively. If the function f (x1, x2, . . . ,
xn) is strictly increasing with respect to x1, x2, . . . , xm and
strictly decreasing with respect to xm+1, xm+2, . . . , xn, then
ξ = f (ξ1, ξ1, . . . , ξn) is an uncertain variable with inverse
uncertainty distribution

Ψ −1(α) = f
(
�−1

1 (α),�−1
2 (α), . . . �−1

m (α),

�−1
m+1(1 − α),�−1

m+2(1 − α), . . . , �−1
n (1 − α)

)
.

Theorem 2.5 (Yang 2013) Let f and g be comonotonic
functions. Then for any uncertain variable ξ , we have

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)].

Two-stage uncertain programming problem

Formulation

Considering the following underlying deterministic problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min
x

cT x + min
y

qT (γ )y

s.t. Ax = b
T (γ )x + W (γ )y = h(γ )

x ≥ 0, y ≥ 0.

(3)

where c is a known vector in Rn1 , b is a known vector in
Rm1; A is a knownmatrix of sizem1×n1. For each γ, q(γ ) ∈
Rn2 , h(γ ) ∈ Rm2; T (γ ) andW (γ ) arem2 ×n1 andm2 ×n2
matrices, respectively. The decision–observation scheme can
be described as follows

decision on x
observation of uncertain event γ

decision on y.

According to this scheme, the problem (3) obtains two
optimization problems to be solved. Assuming that x and
γ are given, the second-stage problem, or recourse problem
can be formulated as follows⎧⎪⎨
⎪⎩
min
y

qT (γ )y

s.t. T (γ )x + W (γ )y = h(γ )

y ≥ 0,

(4)

where x belongs to the feasible set S1 = {x | Ax = b, x
≥ 0}.

By the above analysis, we can see that the second-stage
problem is a more difficult one. For each γ , the value y(γ )

is the solution of a linear programming. To stress this fact,
sometimes we use the notion of a deterministic equivalent
programming. For a given realization γ of uncertain variable
ξ , let

Q(x, ξ(γ ))=min{qT (γ )y|W (γ )y=h(γ )−T (γ )x, y ≥ 0}
be the second-stage value function, where ξ is an uncertain
vector. For convenience, Q(x, ξ(γ )) is denoted by Q(x, γ ).

Example 3.1 Suppose that the second-stage value function
is defined by⎧⎪⎨
⎪⎩
min
y

2y

s.t. ξ y = x − 2
y ≥ 0

where ξ is a zigzag uncertain variable Z(1, 2, 4). Discuss the
second-stage value function Q(x, γ ) and the feasible set S1.

Note that zigzag uncertain variable ξ has the following
uncertainty distribution

�(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 1
x−1
2 , if 1 ≤ x ≤ 2

x
4 , if 2 ≤ x ≤ 4
1, if x ≥ 4.

It is evident that ξ(γ ) ∈ [1, 4]. If x < 2, then there is no
solution y satisfying the constraint ξ y = x − 2. Hence, it is
easy to obtain that S1 = {x | x ≥ 2}.

In addition, for each x ∈ S1 and γ , we have the opti-
mal solution y∗ = (2x − 4)/ξ(γ ), therefore Q(x, γ )

= (2x − 4)/ξ(γ ) which implies that Q(x, γ ) is an uncer-
tain variable for each x ∈ S1. For instance, Q(4, γ ) is the
uncertain variable 4/ξ , and the Q(2.25, γ ) is the uncertain
variable 1/(2ξ).

We define the expected second-stage value function (or
recourse function) as

QE(x) = Eξ [Q(x, γ )] (5)

where Eξ is the expected value operatorwith respect to uncer-
tain vector ξ .
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Therefore, the two-stage UP problem can be presented as
follows

⎧⎪⎨
⎪⎩
min
x

z(x) = cT x + QE(x)

s.t. Ax = b
x ≥ 0.

(UP) (6)

where QE(x) = Eξ [Q(x, γ )], and
⎧⎪⎨
⎪⎩

Q(x, γ ) = min
y

qT (γ )y

s.t. T (γ )x + W (γ )y = h(γ )

y ≥ 0.

(7)

Obviously, by the above discussion, the problem (6) and
(7) are equivalent to the following programming problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min
x

cT x + Eξ [min
y

qT (ξ)y]
s.t. Ax = b

T (ξ)x + W (ξ)y = h(ξ)

x ≥ 0, y ≥ 0

(UP) (8)

where ξ is an uncertain vector defined on the uncertain space
(�,L,M).

Example 3.2 Let the second-stage problem be defined as the
one in Example 3.1. Calculate the recourse functionQE(x) =
E[Q(x, ξ)].

For the uncertainty distribution of zigzag uncertain vari-
able ξ given in the Example 3.1, since the function f (x) =
1/x is strictly decreasing, the inverse uncertainty distribution
�−1(1 − α) can be calculated as follows

�−1(1 − α) =
{
4 − 4α, if 0 ≤ α ≤ 1

2
3 − 2α, if 1

2 ≤ α ≤ 1.

By the Theorems 2.3 and 2.4, the E[1/ξ ] can be obtained
as follows

E

[
1

ξ

]
=

∫ 1

0

1

�−1(1 − α)
dα =

∫ 1
2

0

1

4 − 4α
dα

+
∫ 1

1
2

1

3 − 2α
dα = 3

4
ln 2.

In addition, by Example 3.1, we know that Q(x, γ ) =
(2x−4)/ξ(γ ), fromwhichQE(x) can be obtained as follows

QE(x) = Eξ [Q(x, ξ)] = E

[
2x − 4

ξ

]

= (2x − 4) E

[
1

ξ

]
= 6(x − 2) ln 2

4
.

Feasible sets

For any given x and the realization γ of uncertain variable
ξ , the value of Q(x, ξ) of the second-stage programming is
obtained by

Q(x, γ ) = min{qT (γ )y|W (γ )y = h(γ ) − T (γ )x, y ≥ 0}.
(9)

If the problem (9) is infeasible, then the Q(x, γ ) is defined to
be+∞. In order to discuss the solutions of problems (6)–(7),
it is necessary to introduce additional constraints on x . Let
S2 be the set of all those x vectors for which the problem
(6)–(7) have a feasible solution for every possibly realized
uncertain event γ . It is easy to know that S2 can be expressed
as

S2 = {x |x ∈ Rn1, Q(x, γ ) < ∞} (10)

which is defined as elementary feasibility set.
By the above discussion, now we can redefine the deter-

ministic equivalent programming as follows

{
min
x

z(x) = cT x + QE(x)

s.t. x ∈ S1
⋂

S2.
(11)

From a practical point of view, it is not absolutely neces-
sary to have a complete description of region of finiteness of
QE(x). On the other hand, it is desirable to be able to check if a
particular first-stage decision x leads to a finite second-stage
value without having to calculate that value, so the defini-
tion of S2 is not useful in that respect. To illustrate this case,
we consider an example where the second-stage defined by
Q(x, ξ) = min{y|ξ y = 2− x, y ≥ 0}, and ξ is an uncertain
variable with the following uncertainty distribution

�(x) =
⎧⎨
⎩
0, if x ≤ 0
4x2, if 0 ≤ x ≤ 1

2
1, if 1

2 ≤ x .

By the definition of inverse uncertainty distribution of ξ ,
the �−1(1 − α) of uncertain variable ξ can be calculated as
follows

�−1(1 − α) =
√
1 − α

2
, if 0 ≤ α ≤ 1.

Similarly, it follows from the Theorem 2.3 and Theo-
rem 2.4 that the expected value of uncertain variable 1/ξ
is as follows

E

[
1

ξ

]
=

∫ 1

0

1

�−1(1 − α)
dα =

∫ 1

0

2√
1 − α

dα = 4.

Note that hereW reduces to a 1×1 matrix and is the only
uncertain element.
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For all ξ in (0, 1/2], the optimal solution y is (2 − x)/ξ ,
so it is easy to obtain S2(ξ) = {x |x ≤ 2}, and Q(x, ξ) =
(2− x)/ξ for x ≤ 2. If ξ = 0, there doesn’t exist y such that
0 · y = 2 − x unless x = 2, so we can obtain that S2(0) =
{x |x = 2}.Now, for x �= 2, Q(x, 0) should normally be+∞.
However, since the M{γ |ξ(γ ) = 0} = 0, the convention is
to take Q(x, 0) = 0. Therefore, by the above discussion, the
following results can be obtained as follows

S2 = S2(ξ) ∩ S2(0) = {x |x ≤ 2} ∩ {x |x = 2} = {x |x = 2}.
When ξ ∈ [0, 1/2], the second-stage value function can

be calculated as QE(x) = E[(2 − x)/ξ ] = (2 − x)E[1/ξ ]
= 8 − 4x for all x ≤ 2.

Therefore, S2 should contain some ξ values for infeasibil-
ities occurring with 0 uncertain measure. For this purpose,
an alternative definition is considered. Define

SP
2 = {x |M{γ | Q(x, γ ) < ∞} = 1}

as the weak feasibility set of the second-stage. Evidently,
S2 ⊂ SP

2 , and S2 = ⋂
ξ∈� SP

2 (ξ).

From the above discussion, it is necessary for us to con-
sider the following optimal problem which is more reason-
able in the real world:{
min
x

z(x) = cT x + QE(x)

s.t. x ∈ S1
⋂

SP
2 .

(12)

Fundamental properties

Theorem 4.1 (1) For each ξ , the elementary feasibility set
S2 is a closed convex polyhedron, hence the set S2 is
closed and convex.

(2) If � is finite, then SP
2 coincides with K2.

Proof (1) For each ξ, SP
2 (ξ) is defined by a set of linear

constraints. By the theory of linear programming, we
can prove the first assertion.

(2) A particular x belongs to SP
2 (ξ) if Q(x) is bounded

above. Since� is finite, by the expected value of discrete
uncertain variable, we can obtain that Q(x) is positively
weighted sum of finitely many Q(x, ξ) values, Q(x) is
bounded above only if each Q(x, ξ) is bounded above,
which implies that x belongs to SP

2 (ξ) for all ξ . In turn, it
implies that x belongs to S2(ξ). Similarly, if x belongs to
S2(ξ), Q(x, ξ) is bounded above for all values, which
implies that Q(x) is bounded above and x belongs to
SP
2 (ξ). The second assertion is completed.

��
Theorem 4.2 For the two-stage UP problem, the weak fea-
sibility set K P

2 is a closed convex set.

Proof Suppose that xi ∈ K P
2 , (i = 1, 2), and denote

�i = {γ |M{Q(xi , γ ) < +∞} = 1},
�λ = {γ |Q(λx1 + (1 − λ)x2, γ ) < +∞}.

Evidently, M{�1} = M{�2} = 1. It follows from the
Duality Axiom of the uncertain measure that M{�c

i } =
1 − M{�i } = 0, (i = 1, 2). Further, by the Subadditivity
Axiom, we can obtain

0 ≤ M{�c
1 ∪ �c

2} ≤ M{�c
1} + M{�c

2} = 0,

which implies that M{�c
1

⋃
�c
2} = 0. Hence

M{�1 ∩ �2} = 1 − M{�c
1 ∪ �c

2} = 1.

For any γ ∈ �1 ∩ �2, there exists y1 and y2 such that

W (γ )y1 = h(γ ) − T (γ )x1, y1 ≥ 0,

W (γ )y2 = h(γ ) − T (γ )x2, y1 ≥ 0.

For any λ ∈ (0, 1), by the above two equations, we can
deduce that

W (γ )(λy1 + (1 − λ)y2) = h(γ ) − T (γ )(λx1 + (1 − λ)x2),

and λy1 + (1 − λ)y2 ≥ 0, which implies that γ ∈ �λ, i.e.,

�λ = {γ |Q(λx1 + (1 − λ)x2, γ ) < +∞} ⊃ �1 ∩ �2.

Thus, we have

1 ≥ M{�λ} ≥ M{�1 ∩ �2} = 1,

that is to say, M{�λ} = 1, which implies that the K p
2 is a

convex set.
Next, we prove that K P

2 is closed. Suppose that {x j } con-
verges to x0, and

� j = {γ |M{Q(x j , γ ) < +∞} = 1}, j = 1, 2, . . . .

It follows from the conditions that M{� j } = 1 for j
= 1, 2, . . . . Denote �k = ⋂k

j=1 � j , k = 1, 2, . . . , it
is evident to know that �K+1 ⊂ �K , and limk→∞ �k

= ⋂∞
k=1 �k = ⋂∞

j=1 � j . Following the proof in the first
part of the theorem, it follows from induction that

M{�k} = 1, j = 1, 2, . . . .

By the Duality Axiom, we have

M{�c
k} = 1 − M{�k} = 0, k = 1, 2, . . . .

By the Subadditivity Axiom, we can obtain

0 ≤ M

{ ∞⋃
k=1

�c
k

}
≤

∞∑
k=1

M
{
�c

k

} = 0,

that is to say, M{⋃∞
k=1 �c

k} = 0. Hence,

M

{ ∞⋂
k=1

�i

}
= M

{ ∞⋂
k=1

�k

}
= 1 − M

{ ∞⋃
k=1

�c
k

}
= 1.
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Next, we prove x0 ∈ K P
2 by contradiction. If x0 /∈ K p

2 ,
then there exists γ0 ∈ ⋂∞

j=1 � j , and ρ > 0, such that
M{γ0} > 0, and

‖ W (γ0)y = h(γ0) − T (γ0)x0 ‖≥ ρ > 0,

for any y ≥ 0,where ‖ · ‖ is the Euclid norm in�m2 defined
as

‖ (z1, . . . , zm2) ‖=
√
z21 + · · · + z2m2

, (z1, . . . , zm2) ∈ �m2 .

Denote Ox0 = {x | ‖ Wγ0(ω0)y = hγ0(ω0) − Tγ0(ω0)x0 ‖≥
ρ/2 > 0} as a neighborhood of x0. By the hypothesis condi-
tion that lim j→∞ x j = x0, there exists x j0 ∈ Ox0 such that
Q(x j0 , γ0) < ∞. Since γ0 ∈ ⋂∞

j=1 � j ⊂ � j0 , there exists
y j0 such thatW (γ0)y j0 = h(γ0)− T (γ0)x j0 , which is a con-
tradiction with x j0 ∈ Ox0 . Therefore, x0 ∈ K p

2 . The theorem
is completed. ��
Theorem 4.3 For the two-stage UP problem with the fixed
recourse matrix W, we have

(1) Q(x, γ ) is a convex function almost sure with respect
to x ∈ SP

2 . Further, if Q(xi , γ ) and Q(x j , γ ) are
comonotonic, i, j ∈ I , where I is an any-index set such
that xi , x j ∈ S p

2 , we can obtain that Q(x) is also a con-
vex function on S p

2 ;
(2) Q(x, γ ) is a convex function with respect to (h(γ ),

T (γ ));
(3) Q(x, γ ) is a concave function with respect to q(γ ).

Proof We first prove the assertion (1). Suppose that x1 ∈
K p
2 , x2 ∈ K p

2 , and

�i = {γ |M{Q(xi , γ ) < +∞} = 1}, (i = 1, 2).

Evidently, M{�1} = M{�2} = 1. It follows from the
Duality Axiom of the uncertain measure that M{�c

i } = 1 −
M{�i } = 0. Further, by the Subadditivity Axiom, we can
obtain

0 ≤ M{�c
1 ∪ �c

2} ≤ M{�c
1} + M{�c

2} = 0,

which implies that M{�c
1

⋃
�c
2} = 0, hence M{�1 ∩ �2} =

1 − M{�c
1 ∪ �c

2} = 1.
Hence, for any γ ∈ �1 ∩�2 and λ ∈ (0, 1), it is sufficient

to prove that

Q(λx1 + (1 − λ)x2, γ ) ≤ λQ(x1, γ ) + (1 − λ)Q(x2, γ ),

where⎧⎪⎨
⎪⎩

Q(xi , γ ) = min
y

{q(γ )T y}
s.t. Wy = h(γ ) − T (γ )xi

y ≥ 0

(13)

i = 1, 2, and⎧⎪⎨
⎪⎩

Q(λx1 + (1 − λ)x2, γ ) = min
y

{q(γ )T y}
s.t. Wy = h(γ ) − T (γ )(λx1 + (1 − λ)x2)

y ≥ 0.

(14)

Let y∗
i (i = 1, 2) be the optimal solutions of problem

(13), respectively. For any λ ∈ (0, 1), it is easy to know that
λy∗

1 + (1 − λ)y∗
2 is the feasible solution of problem (14).

Hence,

Q(λx1 + (1 − λ)x2, γ ) ≤ q(γ )T (λy∗
1 + (1 − λ)y∗

2 )

= λQ(x1, γ ) + (1 − λ)Q(x2, γ )

which implies that Q(x, γ ) is convex on S p
2 .

Since Q(x1, γ ) and Q(x2, γ ) are comonotonic, by the
Theorem 2.5 and the above inequality, we have

E[Q(λx1 + (1 − λ)x2, γ )] ≤ λE[Q(x1, γ )]
+ (1 − λ)E[Q(x2, γ )].
It follows from the definition of the second-stage expec-

tation value function that

Q(λx1 + (1 − λ)x2) ≤ λQ(x1) + (1 − λ)Q(x2),

which implies that Q(x) is a convex function on S p
2 .

We now prove the second assertion. Denote

(hi , Ti ) = (hi (γ ), Ti (γ )), i = 1, 2,

and

(hλ, Tλ) = (λh1 + (1 − λ)h2, λT1 + (1 − λ)T2), λ ∈ (0, 1).

Suppose that y∗
i (i = 1, 2) are the optimal solutions of prob-

lem (13) for (hi , Ti ) (i = 1, 2), respectively. Then, for any
λ ∈ (0, 1), λy∗

1 + (1 − λ)y∗
2 is the feasible solution with

(hλ, Tλ) by using the similar method from the proof of asser-
tion (1). Let y∗

λ be the optimal solution of problem (14) with
(hλ, Tλ). Then we can obtain

Q(x, hλ, Tλ) = q(γ )T y∗
λ ≤ q(γ )T (λy∗

1 + (1 − λ)y∗
2 )

= λq(γ )T y∗
1 + (1 − λ)q(γ )T y∗

2

= λQ(x, h1, T1) + (1 − λ)Q(x, h2, T2),

which proves the required assertion (2).
Finally, we prove the third assertion. Denote

qi = qi (λ), i = 1, 2, and qλ = λq1 + (1 − λ)q2, λ ∈ (0, 1).
Suppose that y∗

i (i = 1, 2) are the optimal solutions of the
following second-stage problem⎧⎪⎨
⎪⎩

Q(x, γ ) = min
y

{q(γ )T y}
s.t. Wy = h − T x

y ≥ 0.

(15)

for q1 and q2, respectively. It is evident that any feasible
solution of problem (15) for qλ is also the feasible solution
of problem (15) for qi . Hence,

Q(x, qλ) = qTλ y = λqT1 y + (1 − λ)qT2 y

≥ λqT1 y∗
1 + (1 − λ)qT2 y∗

2 = λQ(x, q1)

+ (1 − λ)Q(x, q2),

which implies that Q(x, γ ) is a concave functionwith respect
to q(γ ). The assertion (3) is proved. ��
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Solution method

The second-stage expectation problem can be obtained by
the Theorem 2.3 when ξ is an uncertain variable with regular
uncertainty distribution. It is more complex when the first-
stage problem is nonlinear. In order to avoid getting stuck
at a local optimal solution, we present a heuristic algorithm,
called artificial bee colony (ABC) algorithm, to solve the
two-stage UP problem.

Example 5.1 Solve the following two-stage UP problem
with W and h containing uncertain variables

⎧⎨
⎩
min (−ln(x1x2) cos x2+ln(x1x2+1) cos x1)

1
3 + Eξ (Q(x, ξ)

s.t. 0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 10,

(16)

where Q(x, ξ) is the second-stage value function as follows

⎧⎪⎪⎨
⎪⎪⎩
min y1 + 2y2
s.t. ξ y1 = 2 + x1

y2 = η
1
3 + x1 + 5x2

y1, y2 ≥ 0.

(17)

Suppose that ξ ∼ LOGN(e, π/2
√
3) and η ∼ Z(2, 8, 9)

are independent uncertain variables with uncertainty distrib-
utions

�1(x) = (1 + exp(2π(e − ln x)))−1 x ≥ 0,

and

�2(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 2
x−2
12 , if 2 ≤ x ≤ 8
x−7
2 , if 8 ≤ x ≤ 9

1, if x ≥ 9,

respectively.

Since ξ, xi ≥ 0, it is easy to obtain that

Q(x, ξ) = 2 + x1
ξ

+ 2η
1
3 + 2x1 + 10x2

for any fixed x ∈ S1.Because ξ and η are independent uncer-
tain variables, the expected value of second-stage problem
can be deduced by Theorem 2.1 as follows

Eξ [Q(x, ξ)] = Eξ

[
2 + x1

ξ
+ 2η

1
3 + 2x1 + 10x2

]

= (2 + x1)E

[
1

ξ

]
+ 2E

[
η

1
3

]
+ 2x1 + 10x2.

By the uncertainty distribution of ξ and η, we can obtain their
inverse uncertainty distribution

�−1
1 (α) = exp(e)

√
α

1 − α
,

and

�−1
2 (α) =

{
12α + 2, if 0 ≤ α ≤ 1

2
2α + 7, if 1

2 ≤ α ≤ 1,

respectively. Since the f (x) = 1/x is strictly decreasing and
f (x) = x1/3 is strictly increasing, respectively, it follows
from the Theorems 2.3 and 2.4 that

Eξ [Q(x, ξ)] = (2 + x1)E

[
1

ξ

]
+ 2E

[
η

1
3

]
+ 2x1 + 10x2

= (2 + x1)
∫ 1

0

1

�−1
1 (1 − α)

dα

+ 2
∫ 1

0

(
�−1(α)

) 1
3
dα + 2x1 + 10x2

= (2 + x1)
∫ 1

0

1

ee
√

1−α
α

dα + 2
∫ 1

2

0
(12α + 2)dα

+ 2
∫ 1

1
2

(2α + 7)dα + 2x1 + 10x2

= (2 + x1)
π

2
ee + 27

2
+ 2x1 + 10x2

=
(π

2
ee + 2

)
x1 + 10x2 + πee + 27

2
.

= (2 + x1)
π

2
ee + 27

2
+ 2x1 + 10x2 =

(π

2
ee + 2

)
x1

+ 10x2 + πee + 27

2
.

Therefore, the two-stage UP problem (16)–(17) can be
equivalent to the deterministic single programming problem
as follows

⎧⎪⎪⎨
⎪⎪⎩
min (− ln(x1x2) cos x2 + ln(x1x2 + 1) cos x1)

1
3

+ (
π
2 e

e + 2
)
x1 + 10x2 + πee + 27

2
s.t. 0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10.

(18)

Now we will solve the problem by ABC algorithm pro-
posed by Karaboga (2005). In the ABC algorithm, there are
three essential components, which are food source positions,
nectar-amount, and three kinds of foraging bees (employed
bees, onlookers, and scouts). Each food source position rep-
resents a feasible solution to the optimization problem being
considered and the nectar-amount of a food source corre-
sponds to the quality (fitness) of the solution being repre-
sented by that food source. Each kind of foraging bee per-
forms one particular operation for generating new candidate
food source positions. Specifically, unlike real bee colonies,
the ABC algorithm assumes that the number of food sources
(solution) is the same as that of employed bees. The main
steps can be summarized as follows:

Step 1: Initialize the control parameters, which are given
in Table 1;
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Table 1 Control parameters adopted in the ABC algorithm

Control parameters in ABC algorithm

Maximum number of cycles 2,500

Colony size 40

Limit 100

Number of onlookers Half of the colony size

Number of employed bees Half of the colony size

Number of scouts 1

Step 2: Initialize population of food source with random
solutions, denote (x1, x2) as a food position;

Step 3: Send the employed bees to the food sources and
determine the nectar amounts fi based on the objective func-
tion, if the food source is not in the feasible solution, set the
nectar amounts fi as +∞;

Step 4: Calculate the fitness values of each solution f i ti
and its corresponding probability values are as follows:

f i ti =
{
1/(1 + fi ), if fi ≥ 0
1 + abs( fi ), if fi < 0

pi = f i ti/
SN∑
i=1

f i ti ,

where i = 1, 2, . . . , SN ; SN is the number of food sources;
Step 5: Send the onlooker bees to their food sources

according to the probability values;
Step 6: Send the scouts to the search area if a food source

could not be improved through “limit” trials, and replace it
with a new randomly produced solution if the new solution
is better;

Step 7:Memorize the best food source (solution) achieved
so far;

Step 8: If a stopping criterion is met, then output the best
food source, otherwise, go back to Step 3.

Following the steps given above, by the calculation, we
can obtain that the optimal solution of the problem (18) is
(0.0026, 0.0068)T , and the corresponding objective value is
63.4637.

Particularly, it is not feasible to solve the two-stage UP
problem by using inverse uncertainty distribution if the
uncertain variable is discrete, so the following method is
introduced.

Let ξ is a discrete uncertain variable if it takes values with
the following uncertainty distribution

�(x) =
⎧⎨
⎩

α0, if x ≤ ξ1

αi , if ξ i ≤ x ≤ ξi+1, 1 ≤ i < m,

αm, if x ≥ ξm

where 0 = α0 < α1 · · · < αm = 1.

Define

pi = αi − αi−1, i = 1, 2, . . . ,m (19)

as theweight of discrete point ξ i . Then it is easy to know that
the corresponding weights satisfy the following constraints
pi ≥ 0,

∑Ni
j=1 pi = αm = 1, i = 1, 2, . . . , N .

By the Eq.(1), we can deduce that the expectation of
discrete uncertain variable ξ is represented in the formula
E[ξ ] = ∑m

i=1 piξ
i .

Without any loss of generality, we assume that the second-
stage value function satisfies the condition Q(x, ξ1) ≤
Q(x, ξ2) · · · ≤ Q(x, ξm). For any fixed x , the function
QE(x) is calculated by the formula

QE(x) =
m∑
i=1

pi Q(x, ξ i ). (20)

Example 5.2 Solve the following two-stage UP problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min (x1+x2) ln(
√
x1+x2+1)

x1x2
+ (1+cos x2)esin(x1+1)√

x1+x2
+Eξ [min 2y1 + y2]

s.t. x1 ≤ 1
x2 ≤ 1
y1 + y2 ≥ 1 − x1
y1 ≥ ξ − x1 − x2
x1, x2, y1, y2 ≥ 0,

(21)

where ξ ∼ D(0, 1/6, 1, 2/3, 2, 1) is an uncertain variable
with the following uncertainty distribution

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 0
1

6
if 0 ≤ x ≤ 1

2

3
if 1 ≤ x ≤ 2

1 if x ≥ 2.

For any given 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, if uncertain vari-
able ξ takes value 0, then the optimal second-stage solution
is y∗

1 = 0, y∗
2 = 1− x1. We can obtain that the second-stage

value is Q(x1, x2, 0) = 1 − x1.
If uncertain variable ξ takes value 1, then the optimal

second-stage solution is y∗
1 = 1 − x1 − x2, y∗

2 = x2 pro-
vided that x1 + x2 ≤ 1; and y∗

1 = 0, y∗
2 = 1 − x1, provided

that x1 + x2 > 1, which implies that the second-stage value

Q(x1, x2, 1) =
{
1 − x1 if x1 + x2 > 1
2 − 2x1 − x2 if x1 + x2 ≤ 1.

Similarly, if ξ takes value 2, then we can obtain y∗
1 =

2 − x1 − x2, y∗
2 = 0, which implies that Q(x1, x2, 0) =

2(2 − x1 − x2).
Therefore, for any given 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

by the uncertainty distribution of uncertain variable ξ , we
know that the second-stage value function takeson value
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Q(x1, x2, 0), Q(x1, x2, 1) and Q(x1, x2, 2) with weights
1/6, 1/2 and 1/3 calculated byEq. (19), respectively. In addi-
tion, it is easy to verify that Q(x1, x2, 0) ≤ Q(x1, x2, 1) ≤
Q(x1, x2, 2) for any 0 ≤ x1, x2 ≤ 1. Therefore, by Eq. (20),
the recourse function can be obtained as follows

QE(x1, x2)= 1

6
Q(x1, x2, 0)+ 1

2
Q(x1, x2, 1)+ 1

3
Q(x1, x2, 2)

=
{− 4

3 x1 − 2
3 x2 + 2 if x1 + x2 > 1

− 11
6 x1 − 7

6 x2 + 5
2 if x1 + x2 ≤ 1.

It follows from that the problem (21) is equivalent to the
following deterministic programming problem

⎧⎪⎨
⎪⎩
min (x1+x2) ln(

√
x1+x2+1)

x1x2
+ (1+cos x2)esin(x1+1)√

x1+x2
+ QE(x)

s.t. 0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1,

(22)

whose optimal value is the smaller optimal value of the deter-
ministic programming problems as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min (x1+x2) ln(
√
x1+x2+1)

x1x2

+ (1+cos x2)esin(x1+1)√
x1+x2

− 4
3 x1− 2

3 x2 + 2

s.t. 0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
1 < x1 + x2,

(23)

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min (x1+x2) ln(
√
x1+x2+1)

x1x2

+ (1+cos x2)esin(x1+1)√
x1+x2

− 11
6 x1− 7

6 x2+ 5
2

s.t. 0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1
x1 + x2 ≤ 1.

(24)

Next, we solve the two deterministic programming prob-
lems formulated above by ABC algorithm, respectively. Fol-
lowing the steps presented in the solution of Example 5.1,
we can obtain the optimal solution to problem (23) is
x̄ (1) = (1, 0.7761)T , and the corresponding optimal value
is f (x̄ (1)) = 0.9371; the optimal solution to problem (24)
is x̄ (2) = (0.5828, 0.4171)T , and the corresponding optimal
value is f (x̄ (2)) = 1.8570. Obviously, the optimal value of
problem (23) is smaller than that of problem (24). Therefore
the optimal solution of problem (22) is x̄ (1) = (1, 0.7761)T .

Conclusions

In this paper, we first presented a new class of two-stage
uncertain programming problem based on uncertainty the-
ory. Since convexity plays an important role in optimization

theory, the fundamental properties of two-stage UP problem
were discussed. Considering the complexity of the two-stage
UP problem, a meta-heuristics algorithm, called ABC algo-
rithm, was provided to solve the problem presented above.
Several numerical examples were given to illustrate the solu-
tion method proposed in this paper with ABC algorithm.
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