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Abstract This paper employs uncertain programming to
deal with a problem of dispatching medical supplies in emer-
gency events. As we know, the highly unpredictable nature
of emergencies and the severity of the accident may lead to
uncertainty both in demands and running times. Under this
condition, the demands and running times are supposed to
be uncertain variables. Within the framework of uncertain
programming, two mathematical models are constructed. In
addition, some properties of the models are also discussed.
Moreover, a hybrid intelligent algorithm for solving the pro-
posed models in general cases is designed. Finally, some
numerical examples are also presented to illustrate the opti-
mization ideas and the effectiveness of the proposed algo-
rithm.

Keywords Uncertainty theory · Uncertain programming ·
Uncertain measure · Dispatching medical supplies ·
Emergency event

Introduction

In the event of an emergency such as substantial acts of
nature (e.g. earthquake, flooding, etc.), large human-caused

H. Li
School of Mathematics and Statistics, Hubei University,
Hubei 430062, China

J. Peng · S. Li (B)
Institute of Uncertain Systems, Huanggang Normal University,
Hubei 438000, China
e-mail: shengguo79@163.com

C. Su
College of Mathematics and Sciences, Shanghai Normal University,
Shanghai 200234, China

accidents, and major terrorist attacks (e.g. the September 11
event), tremendous demands for medical supplies will occur
at the incident sites in a short time period. Dispatching med-
ical supplies is one of the fundamental problems in emer-
gency events. A key ingredient in an effective response to an
emergency is the prompt availability of necessary supplies at
the emergency sites. Based on this fact, dispatch strategies
in emergency response systems have been investigated for
decades. For instance, Rathi et al. (1992) considered supply
dispatch in conflict or emergency situations, Özdamar et al.
(2004) investigated how to dispatch commodities to distrib-
ution centers in affected areas as soon as possible in natural
disasters, and Yuan and Wang (2009) presented some mod-
els and algorithms for path selection in emergency events.
In addition, Rodríguez et al. (2010) provided a decision sup-
port system to aid Humanitarian Non-Governmental Organi-
zations concerned with the response to natural disasters, and
Zhang et al. (2012) considered multiple secondary disasters
by an integer programming.

In the literature mentioned above, the dispatch strate-
gies were investigated in deterministic environment. That is,
demand, running distance or running speed are supposed to
be positive crisp values. However, the highly unpredictable
nature of emergencies may lead to indeterminacy both in
demand and running time. As a result, it is not suitable to
employ the classical models and algorithms in these situa-
tions. Some researchers believed such indeterminacybehaves
like randomness. Based on this assumption, a large number of
studies have been presented. For example, Barbarosoğlu and
Arda (2004) proposed a two-stage stochastic programming
model to plan the transportation of vital first-aid commodities
to disaster-affected areas, Beraldi et al. (2004) addressed the
problem of designing robust emergency medical service via
stochastic programming, and Chang et al. (2007) formulated
two stochastic programmingmodels for flood emergency dis-
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patch. Formore research of dispatch problem in randomenvi-
ronment, we may consult Daskin (1987), Ingolfsson et al.
(2008), Mete and Zabinsky (2010), and so on. In addition,
the dispatch problems were researched in some other situa-
tions, such as Lin et al. (2006), Wen and Iwamura (2008),
and Yang et al. (2011), Wang and Chen (2012), etc.

As we know, a fundamental premise of applying probabil-
ity theory is that the obtained probability distribution is close
enough to the real frequency. However, in the emergency cir-
cumstances, we are frequently lack of observed data, and
no samples are available to estimate a probability distribu-
tion. In this case, we have to invite some experts to evaluate
the belief degree that each event will occur. Since the human
beings usually overweight unlikely events, the belief degrees
deviate far from the real frequency (Kahneman and Tversky
1979). As a result, Liu (2012) pointed out that probability
cannot be used to model belief degree, since it may lead to
counterintuitive results. In addition, a counterexample was
presented by Liu (2012). This fact promoted Liu (2007) to
found an uncertainty theory to deal with the belief degree.
Due to this fact, we deal with such indeterminacy factors in
emergency by uncertainty theory in this paper.

The uncertainty theory was proposed by Liu (2007) in
2007, and subsequently studied by many scholars. So far, it
has broughtmany newbranches such as uncertain differential
equation (Yao 2013; Gao and Yao 2014), uncertain finance
(Peng and Yao 2011; Liu 2013a), uncertain programming
(Liu 2009b; Zhang and Peng 2012, 2013), uncertain statis-
tics (Liu 2010;Wang and Peng 2014), uncertain logic (Li and
Liu 2009a, b; Li and Wong 2010; Chen and Ralescu 2011),
uncertain optimal control (Zhu 2010), uncertain risk (Liu
2013b; Peng 2013), uncertain game (Yang and Gao 2013,
2014), and so on. For exploring the recent developments
of uncertainty theory, the readers may consult (Liu 2010).
In the area of vehicle dispatch, Liu (2009b) first introduced
uncertainty theory into the study of vehicle routing problem.
After that, Dong and Wang (2013) employed uncertain opti-
mal control to the study of vehicle routing problem. Sheng
and Yao (2012) studied transportation problem via uncertain
programming.

As is known to us, emergency events are of high-
consequence, low-frequency events. Due to the scarce
resources and overwhelming demands occurs during an
emergency, careful pre-planning is important for an emer-
gency to savemany lives.Because of the highly unpredictable
nature of emergencies and the severity of the accident, the
running times and the demands cannot be known precise, but
can be estimated by some domain experts. The experts will
give their belief degrees for these quantities. As mentioned
before, the uncertainty theory is a powerful tool to deal with
belief degrees. In order to deliver the medical supplies from
a depot to the demanding locations as soon as possible, we
will construct two uncertain programming models based on

the uncertainty theory. In addition, we will give a hybrid
intelligent algorithm for solving the proposed models.

The rest of the paper is organized as follows. “Preliminar-
ies” briefly reviews some basic concepts and results of uncer-
tainty theory. In section“Problem description”, we firstly
introduce the problem of dispatching medical supplies in
emergency events with uncertain running times and uncer-
tain demands, and then present two mathematical models
according to various decision criteria. In section“Theoretical
analysis of the models”, some properties of the models are
discussed. In section“Hybrid intelligent algorithm”, an algo-
rithm for solving the proposed models in general cases is
presented. In section“Numerical examples”, we will give
some numerical examples to better illustrate the modeling
ideas and to show the effectiveness of the proposed algo-
rithm. Finally, the last section concludes this paper with a
brief summary.

Preliminaries

Let Γ be a nonempty set and L a σ -algebra over Γ . Each
element Λ ∈ L is called an event. For any Λ ∈ L, a set
function M : L → [0, 1] is called an uncertain measure if
it satisfies the following axioms (Liu 2007): (1) M{Γ } = 1
for the universal set Γ ; (2) M{Λ} + M{Λc} = 1 for any
Λ ∈ L; (3) For every countable sequence of events {Λi }, we
have

M
{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

The triplet (Γ,L,M) is called an uncertainty space. In
order to obtain an uncertain measure of compound event,
Liu (2009a) defined the fourth axiom called product axiom:
Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . ..
The product uncertain measure M is an uncertain measure
satisfying

M
{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k
= 1, 2, . . . , respectively.

Definition 1 (Liu 2007) An uncertain variable ξ is a mea-
surable function from an uncertainty space (Γ,L,M) to the
set of real numbers, i.e., for any Borel set of real numbers,
the set

{ξ ∈ B} = {γ ∈ Γ |ξ(γ ) ∈ B}
is an event.

In order to describe an uncertain variable in practice, the
concept of uncertainty distribution Φ : � → [0, 1] of an
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uncertain variable ξ is defined by Liu (2007) as the following
function

Φ(x) = M{ξ ≤ x}, x ∈ �.

The inverse function Φ−1 is called the inverse uncertainty
distribution of ξ .

An uncertain variable ξ is called zigzag if it has a zigzag
uncertainty distribution

Φ(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ a
x−a

2(b−a)
, if a ≤ x ≤ b

x+c−2b
2(c−b) , if b ≤ x ≤ c
1, if x ≥ c

denoted byZ(a, b, c), where a, b and c are real numberswith
a < b < c. It is easy to verify that the inverse uncertainty
distribution of Z(a, b, c) is

Φ−1(α) =
{

(1 − 2α)a + 2αb, if α < 0.5
(2 − 2α)b + (2α − 1)c, if α ≥ 0.5.

Theorem 1 (Peng and Iwamura 2010) A function Φ(x) :
� → [0, 1] is an uncertainty distribution if and only if it
is a monotone increasing function except Φ(x) ≡ 0 and
Φ(x) ≡ 1.

Definition 2 (Liu 2007) Let ξ be an uncertain variable. Then
the expected value of ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.

Let ξ be an uncertain variablewith uncertainty distribution
Φ, Liu (2007) proved that

E[ξ ] =
∫ +∞

0
(1 − Φ(x))dx −

∫ 0

−∞
Φ(x)dx .

In addition, we have the following result.

Theorem 2 (Liu 2010) Let ξ be an uncertain variable with
uncertainty distribution Φ. If its expected value exists, then

E[ξ ] =
∫ 1

0
Φ−1(α)dα.

Definition 3 (Liu 2009a)Theuncertain variables ξ1, ξ2, . . . ,
ξn are said to be independent if

M
{

n⋂
i=1

(ξi ∈ Bi )

}
=

n∧
i=1

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Let ξ and η be independent uncertain variables with finite
expected values. Liu (2010) proved that for any real numbers
a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η].

A real-value function f (x1, x2, . . . , xn) is said to be
strictly increasing if

(1) f (x1, x2, . . . , xn) ≤ f (y1, y2, . . . , yn) where xi ≤ yi
for i = 1, 2, . . . , n;

(2) f (x1, x2, . . . , xn) < f (y1, y2, . . . , yn) where xi < yi
for i = 1, 2, . . . , n.

Theorem 3 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
Φ1, Φ2, . . . , Φn, respectively. If f is a strictly increasing
function, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain vari-
able with inverse uncertainty distribution

Ψ −1(α) = f
(
Φ−1

1 (α),Φ−1
2 (α), . . . , Φ−1

n (α)
)

.

Example 1 Let ξ1, ξ2 and ξ3 be independent uncertain vari-
ables with uncertainty distributions Φ1, Φ2 and Φ3, respec-
tively. Since f (x1, x2, x3) = x1 + x2 + exp(x3) is a strictly
increasing function, ξ1+ξ2+exp(ξ3) is an uncertain variable
with inverse uncertainty distribution

Ψ −1(α) = Φ−1
1 (α) + Φ−1

2 (α) + exp
(
Φ−1

3 (α)
)

.

Through Theorem 3, we can easily obtain the inverse
uncertainty distribution of f (ξ1, ξ2, . . . , ξn). Furthermore,
we can transform an indeterminacy model into a determinis-
tic one based on this theorem.

Problem description

In this paper, we consider the problem as follow. Suppose
that in a central depot (e.g. airport or central inventory), m
vehicles are available for n demanding locations. Our task of
this paper is to plan the routes such that emergency medical
supplies are transported by vehicles to the demanding loca-
tions as soon as possible once an emergency event occurs.

To simplify the problem, we take some assumptions as
follows: (a) each vehicle has a container with a physical lim-
itation so that the total loading of each vehicle cannot exceed
its capacity; (b) a vehicle will be assigned a route at most
one time; (c) each route begins at the central depot, and also
returns to the central depot; (d) each demanding location will
be serviced exactly once; and (e) neglect the unload time by
consider it a zero.

According to the discussion in section“Introduction”, the
highly unpredictable nature of emergenciesmay lead to inde-
terminacy both in demands and running times. And we usu-
ally cannot obtain these data exactly at the moment. Gener-
ally, we have no choice but to invite some domain experts to
evaluate the belief degrees about them. Therefore, we may
use uncertain variables to describe the running times and
demands.Before startingmodel construction, somenotations
and assumptions are listed as follows:
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i = 0 : depot (e.g. airport or central inventory);
i = 1, 2, . . . , n : demanding locations;
k = 1, 2, . . . ,m : vehicles;
ξi j : running time from demanding locations i to j , i, j =
0, 1, 2, . . . , n; ξi j are independent uncertain variables;
ηi : amount of demand of demanding locations i , i =
1, 2, . . . , n; ηi are independent uncertain variables;
Ck : capacity of vehicle k, k = 1, 2, . . . ,m.

In the following, we describe the operational plan by the
formulation Liu (2009b) via two decision vectors x and y.

x = (x1, x2, . . . , xn) : integer decision vector represent-
ing n demanding locations with 1 ≤ xi ≤ n and xi 	= x j
for all i 	= j, i, j = 1, 2, . . . , n;
y = (y1, y2, . . . , ym−1) : integer decision vector with
y0 = 0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n = ym .

It is no doubt that the operational plan is fully determined
by the decision vectors x and y in the following way: For
1 ≤ k ≤ m, if yk = yk−1, then vehicle k is not used; if
yk > yk−1, then vehicle k is used, and the tour of vehicle k
is:

0 → xyk−1+1 → xyk−1+2 → · · · → xyk → 0.

Generally speaking, emergencies may lead to the scarce
of relief supplies. It is natural that the decision maker would
accept that the quantity of the supplies delivered by a vehicle
cannot reach the total demand in the corresponding route to
some extent. However, at a given confidence level which
is considered as the safety margin, the demand must be
achieved. Suppose that the total amount of the medical sup-
plies transported by each vehicle equals to its capacity. There-
fore the satisfaction constraint is verified in the following
way: For 1 ≤ k ≤ m, if yk > yk−1, then

M
⎧⎨
⎩

yk∑
j=yk−1+1

ηx j ≤ Ck

⎫⎬
⎭ ≥ α

where α is the predetermined confidence level.
For simplicity, we write ξ = {ξi j : i, j = 0, 1, 2, . . . , n}.

Let fk(x, y, ξ) be the total running time function of vehicle
k in the corresponding route, k = 1, 2, . . . ,m. Then we have

fk(x, y, ξ) =

⎧⎪⎨
⎪⎩

ξ0xyk−1+1 + ∑yk−1
i=yk−1+1 ξxi xi+1 + ξxyk 0,

if yk > yk−1

0, if yk = yk−1.

It is clear that fk(x, y, ξ) is also an uncertain variable.
Under this condition, we must choose some criteria to rank
uncertain variables, since it is difficult for us to rank them
directly. A common way to rank uncertain variables is to use
the expected value operator. That is, the larger the expected

value is, the larger the corresponding uncertain variable is.
Then, the goal of the problem can be formulated as

min max
1≤k≤m

E[ fk(x, y, ξ)].

If the decision maker prefers optimizing the problem in
the sense of expected running time, we may construct the
mathematical model for the problem of dispatching medical
supplies in emergency as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min max1≤k≤m E[ fk(x, y, ξ)]
subject to :

M
{∑yk

j=yk−1+1 ηx j ≤ Ck

}
≥ α, if yk > yk−1

k = 1, 2, . . . ,m
1 ≤ xi ≤ n, i = 1, 2, . . . , n
xi 	= x j , i 	= j, i, j = 1, 2, . . . , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n
xi , i = 1, 2, . . . , n, integers
y j , j = 1, 2, . . . ,m − 1, integers

(1)

where α is the predetermined confidence level.
In fact, the decisionmakermay consider the problem from

another point of view. He may firstly present a satisfying
predetermined maximal running time f̄ , and then maximize
the minimum uncertain measure that the running time is no
more than the given value. Taking this modeling idea, we
may construct belief degree-chance programming model as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max min1≤k≤m M{ fk(x, y, ξ) ≤ f̄ }
subject to :

M
{∑yk

j=yk−1+1 ηx j ≤ Ck

}
≥ α, if yk > yk−1

k = 1, 2, . . . ,m
1 ≤ xi ≤ n, i = 1, 2, . . . , n
xi 	= x j , i 	= j, i, j = 1, 2, . . . , n
0 ≤ y1 ≤ y2 ≤ · · · ≤ ym−1 ≤ n
xi , i = 1, 2, . . . , n, integers
y j , j = 1, 2, . . . ,m − 1, integers

(2)

where α is the predetermined confidence level.

Theoretical analysis of the models

We can see that the models (1) and (2) are constructed in
uncertain environment. In order to seek the optimal solution
for the models, it is necessary for us to compute expected
value and uncertain measure. In order to solve the models
easily, it is better for us to analyze some mathematical prop-
erties of the models. In the following, we shall discuss this
issue.

For any feasible solution (x, y), we need to compute the
expected value E[ fk(x, y, ξ)] for model (1).
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Table 1 The expression of uncertainty distribution of uncertain
variable ξi

0.01 0.02 0.03 · · · 0.99

t1i t2i t3i · · · t99i

Theorem 4 If ξi j are independent uncertain variables with
uncertainty distributions Φi j , i, j = 0, 1, 2, . . . , n, respec-
tively, then

E[ fk(x, y, ξ)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1
0 Φ−1

0xyk−1+1
(α)dα

+ ∑yk−1
i=yk−1+1

∫ 1
0 Φ−1

xi xi+1
(α)dα

+ ∫ 1
0 Φ−1

xyk 0
(α)dα, if yk > yk−1

0, if yk = yk−1.

Proof Since ξi j , i, j = 0, 1, 2, . . . , n, are independent
uncertain variables, it follows from the linearity of expected
value operator of uncertain variable that

E[ fk(x, y, ξ)] =

⎧⎪⎨
⎪⎩

E[ξ0xyk−1+1 ] + ∑yk−1
i=yk−1+1

E[ξxi xi+1 ] + E[ξxyk 0], if yk > yk−1

0, if yk = yk−1.

According to Theorem 2, we can easily complete the proof.

�

In fact, if the uncertain variables ξi j , i, j = 0, 1, 2, . . . , n,
are special uncertain variables, for instance, linear uncer-
tain variables, zigzaguncertain variables, or normal uncertain
variables, we can then easily obtain the inverse uncertainty
distributions Φ−1

i j , i, j = 0, 1, 2, . . . , n. Thus, we can com-
pute the expected value E[ fk(x, y, ξ)]. However, in most
cases, it is difficult to do so. Recently, Liu (2010) pointed
out that an uncertain variable ξi with uncertainty distribu-
tion Φi can be represented as Table1 according to expert’s
estimation.

In Table1, 0.01, 0.02, 0.03, . . . , 0.99 in the first row are
thevalues of uncertainty distributionΦi and t1i , t2i , t3i , . . . , t99i
in the second row are the corresponding values ofΦ−1

i (0.01),
Φ−1
i (0.02),Φ−1

i (0.03), . . . , Φ−1
i (0.99).

Based on Table1, we can estimate the expected value
E[ξi ] = ∫ 1

0 Φ−1
i (α)dα by trapezoid∫ 1

0
Φ−1
i (α)dα

≈
98∑
s=1

0.01
[
Φ−1
i (0.01s) + Φ−1

i (0.01(s + 1))
]

2

=
98∑
s=1

t si + t s+1
i

200
. (3)

Similarly, we can obtain the approximate value of E[ fk
(x, y, ξ)] according to Eq. (3).

For any (x, y), if yk > yk−1, k = 1, 2, . . . ,m, we need to
check whether it satisfies the following chance constraint:

M
⎧⎨
⎩

yk∑
j=yk−1+1

ηx j ≤ Ck

⎫⎬
⎭ ≥ α. (4)

Fortunately, we can transform the constraint to the corre-
sponding crisp equivalent if the uncertain variables ηi are
independent uncertain variables, i = 1, 2, . . . , n.

Theorem 5 If ηi are independent uncertain variables with
regular uncertainty distributionsΨi , i = 1, 2, . . . , n, respec-
tively, then the chance constraint (4) can be transformed into

yk∑
j=yk−1+1

Ψ −1
x j (α) ≤ Ck, k = 1, 2, . . . ,m.

Proof Let

τk = gk
(
ηxyk−1+1 , ηxyk−1+2 , . . . , ηxyk

)
=

yk∑
j=yk−1+1

ηx j ,

for k = 1, 2, . . . ,m. Suppose that the uncertainty distribu-
tions of τk areΘk, k = 1, 2, . . . ,m, respectively. Since ηi are
independent uncertain variables, it follows from Theorem 3
that, for any 0 < α < 1, we have

Θ−1
k (α) =

yk∑
j=yk−1+1

Ψ −1
x j (α), k = 1, 2, . . . ,m.

By using the inverse uncertainty distribution, from

M
⎧⎨
⎩

yk∑
j=yk−1+1

ηx j ≤ Ck

⎫⎬
⎭ ≥ α, k = 1, 2, . . . ,m,

we know

Ck ≥ Θ−1
k (α) =

yk∑
j=yk−1+1

Ψ −1
x j (α), k = 1, 2, . . . ,m.

The proof is completed. 
�

As we can see, for each confidence level α we will obtain
an optimal objective value for model (1). Thus, choosing
different α, we may obtain different optimal objective value.
How about the relation between the optimal objective value
and α? Now, we shall analyze this issue.

Theorem 6 If ηi are independent uncertain variables with
regular uncertainty distributionsΨi , i = 1, 2, . . . , n, respec-
tively, then the optimal objective value of model (1) is non-
decreasing with respect to confidence level α.
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Proof Suppose that the feasible set of the constraint (4) with
respect to α is denoted by F(α), and the corresponding opti-
mal objective value is denoted by Opti(α). Without loss of
generality, we assume α1 ≥ α2. It is clear that

yk∑
j=yk−1+1

Ψ −1
x j (α1) ≥

yk∑
j=yk−1+1

Ψ −1
x j (α2).

According to Theorem 5, F(α1) ⊆ F(α2). Since the objec-
tive of model (1) is to minimize the maximum expected run-
ning time. Obviously, the optimal objective value of model
(1) with respect to α1 is greater than or equal to that with
respect to α2. In other words, Opti(α1) ≥ Opti(α2). The
theorem is proved. 
�

As the similar proof of Theorem 6, we can obtain the
following corollary directly.

Corollary 1 If ηi are independent uncertain variables with
regular uncertainty distributionsΨi , i = 1, 2, . . . , n, respec-
tively, then the optimal objective value of model (2) is non-
increasing with respect to confidence level α.

Hybrid intelligent algorithm

For solving the models, we must compute expected value
E[ fk(x, y, ξ)], inverse uncertainty distribution Ψ −1

x j (α) or

uncertain measure M{ fk(x, y, ξ) ≤ f̄ }. If the uncertain
variables are some special variables such as linear uncer-
tain variables, zigzag uncertain variables, or normal uncer-
tain variables, we can obtain them easily. However, in most
cases, it is difficult to do so. In addition, the proposed mod-
els are complex, and are difficult to solve them by traditional
methods. Therefore, we need to find an algorithm to solve the
proposedmodels in general cases. As we know, genetic algo-
rithm (GA) has successfully solved many complex industrial
optimization problems that are difficult to solve by tradi-
tional methods. In this paper, we design a hybrid intelligent
algorithm based on uncertain simulation and GA. GA was
proposed by Holland (1975). GA has been well discussed
in numerous literature, such as Fogel (1994), and Gen and
Cheng (2000). Interested readers can refer to them. In the
paper, the technique of uncertain simulation is first applied
to compute inverse uncertainty distribution, expected value
and uncertain measure. Then uncertain simulation is inte-
grated into GA to solve uncertain models. The introduction
of the algorithm is as follows.

Uncertain simulation

Inverse uncertainty distribution

As discussed in section“Theoretical analysis of the mod-
els”, an uncertain variable ξi can be represented as Table1.
Then, for any 0 < α < 1, the inverse uncertainty distribution
Φ−1
i (α) can be estimated by

Φ−1
i (0.01�100α�) + Φ−1

i (0.01�100α�)
2

= t�100α�
i + t�100α�

i

2
.

Therefore, we can obtain the inverse uncertainty distribution
Ψ −1
x j (α) by the same way.

Expected value

As mentioned before, the expected value E[ξi ] can be esti-
mated by (3). Thus, the algorithm for computing E[ξi ] can
be summarized as follows:

Step 1 Set E = 0, and s = 1.
Step 2 Let ys = t si + t s+1

i , and E ← E + ys .
Step 3 If s < 98, let s ← s + 1, and then turn back to Step

2.
Step 4 Report E/200 as the estimation of E[ξi ].

By the linearity of expected value operator of uncertain
variable, the expected value E[ fk(x, y, ξ)] also can be esti-
mated by the algorithm designed above.

Uncertain measure

For model (2), we need to compute uncertain measure
M{ fk(x, y, ξ) ≤ f̄ }, where f̄ is a predetermined maximal
value. Let (x, y) be a feasible solution. For 1 ≤ k ≤ m, if
yk > yk−1, it is clear that fk(x, y, ξ) is a strictly increas-
ing function respect to ξ0xyk−1+1, ξxyk−1+1xyk−1+2 , . . . , ξxyk 0.
For simplicity, we assume that g(x1, x2, . . . , xn) is a strictly
increasing function with respect to x1, x2, . . . , xn . We only
need to illustrate how to compute M{g(ξ1, ξ2, . . . , ξn) ≤
f̄ } as an example. We also assume that ξi are indepen-
dent uncertain variables with uncertainty distributions Φi ,
which are presented as Table1, i = 1, 2, . . . , n, respectively.
According to Theorem 3, the inverse uncertainty distribution
Ψ −1(α) of g(ξ1, ξ2, . . . , ξn) can be expressed as Table2.

Now, we can design the process for computing the uncer-
tain measureM{g(ξ1, ξ2, . . . , ξn) ≤ f̄ } as follows:

Table 2 Inverse uncertainty
distribution Ψ −1(α) of
g(ξ1, ξ2, . . . , ξn)

α 0.01 0.02 · · · 0.99

Ψ −1(α) g
(
t11 , t12 , . . . , t1n

)
g

(
t21 , t22 , . . . , t2n

) · · · g
(
t991 , t992 , . . . , t99n

)
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Step 1 Set i = 1.
Step 2 Let yi = g(t i1, t

i
2, . . . , t

i
n).

Step 3 If yi < f̄ , let i ← i + 1, and then Turn back to Step
2.

Step 4 Report α = 0.01i as the estimation of
M{g(ξ1, ξ2, . . . , ξn) ≤ f̄ }.

Representation

Suppose that there are n demanding locations and m vehi-
cles. In the GA, a decision vector x = (x1, x2, . . . , xn) is
represented by chromosome S = (s1, s2, . . . , sn), where
{s1, s2, . . . , sn} is a rearrangement of {1, 2, . . . , n}. In addi-
tion, a decision vector y = (y1, y2, . . . , ym−1) is repre-
sented by chromosome T = (t1, t2, . . . , tm−1), where 0 ≤
t1 ≤ t2 ≤ · · · ≤ tm−1 ≤ n. The matching between the
solution vector (x, y) and the chromosome vector (S, T ) is
x ≡ S, y ≡ T .

Initialization process

We initialize pop−size feasible chromosomes. Checking of
the feasibility of chromosomes is done by uncertain simula-
tion.

From integer set I = {1, 2, . . . , n}, an integer vector S =
(s1, s2, . . . , sn), where 1 ≤ si ≤ n and si 	= s j for i 	=
j, i, j = 1, 2, . . . , n, is generated randomly. Also, an integer
vector T = (t1, t2, . . . , tm−1), where 0 ≤ t1 ≤ t2 ≤ · · · ≤
tm−1 ≤ n, is generated from J = {0, 1, 2, . . . , n}. Then the
feasibility of (S, T ) is checked by uncertain simulation as
follows,

If y1 > 0,
y1∑
j=1

Ψ −1
x j (α) > C1, return 0;

If y2 > y1,
y2∑

j=y1+1

Ψ −1
x j (α) > C2, return 0;

· · ·
If ym > ym−1,

ym∑
j=ym−1+1

Ψ −1
x j (α) > Cm, return 0;

Otherwise, return 1;

inwhich 1means feasible, and 0 non-feasible. If (S, T ) is fea-
sible, it is taken as an initial chromosome.Otherwise, another
integer vector (S, T ) is generated until (S, T ) is proved to be
feasible and taken as an initial chromosome. Then,

(S1, T1), (S2, T2), . . . , (Spop−size, Tpop−size)

can be produced for initial feasible chromosomes by repeat-
ing the above process pop−size times.

Genetic algorithm

Following crossover, mutation, and selection, the new popu-
lation is ready for its next evaluation. The genetic algorithm
for solving the proposed uncertain programming models is
summarized as follows.

Step 1 Initialize pop−size chromosome vectors randomly, in
which uncertain simulation is used to check the fea-
sibility of the chromosome vectors.

Step 2 Update the chromosome vectors by crossover and
mutation operations.

Step 3 Compute thefitness of each chromosomevector in the
following way: Firstly, calculate the objective values
of the chromosome vectors by uncertain simulation;
Secondly, rearrange the chromosome vectors accord-
ing to the objective values;At last, compute thefitness
of each chromosome vector according to the rank-
based evaluation function.

Step 4 Select the chromosome vectors by spanning the
roulette wheel.

Step 5 Repeat Steps 2 to 4 for a given number of cycles.
Step 6 Take the best chromosome vector as an approximate

optimal solution.

Numerical examples

To show the applications of the proposed models and to test
the effectiveness of the designed hybrid intelligent algorithm,
we shall present some examples in this section. Our test plat-
form is a personal computer (CPU: Intel Pentium Dual-Core
T3400; Memory: 1GB DDRII).

In the procedure of the algorithm, the crossover proba-
bility Pc = 0.3, the mutation probability Pm = 0.2, the
population size pop−size = 10, and the parameter a in the
rank-based evaluation function is 0.05. Now, we simulate an
emergency situation when a pandemic disease happens in a
city and a certain quantity of medication need to be deliv-
ered from the airport to major downtown hospitals as soon
as possible. Assume that three vehicles are available in the
airport for seven hospitals in the city.We also assume that the
capacities of the vehicles are C1 = 45,C2 = 50,C3 = 40,
respectively. As mentioned before, the highly unpredictable
nature of emergencies and the severity of the accident may
lead to uncertainty both in demands and running times. For
this condition, the usual way is to obtain the uncertain data
by means of experience evaluation or expert advice.

In these examples, the running times ξi j (i, j = 0, 1, 2,
. . . , 7) and the demands ηi (i = 1, 2, . . . , 7) are assumed to
be independent zigzag uncertain variables listed in Tables3
and 4, respectively. In Table3, “hospital i” are replaced by
“hi” for short, i = 1, 2, . . . , 7, respectively. Suppose that the
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Table 3 The running time ξi j

i\ j Airport 0 h1 h2 h3

Airport 0 0 Z(2, 3, 5) Z(3, 4, 7) Z(3, 5, 6)

h1 Z(2, 4, 5) 0 Z(5, 7, 8) Z(4, 5, 7)

h2 Z(3, 5, 6) Z(2, 3, 5) 0 Z(4, 5, 7)

h3 Z(2, 5, 6) Z(2, 4, 5) Z(5, 6, 8) 0

h4 Z(4, 6, 7) Z(3, 4, 6) Z(6, 8, 9) Z(3, 5, 6)

h5 Z(2, 4, 5) Z(6, 8, 9) Z(4, 5, 8) Z(2, 4, 5)

h6 Z(6, 8, 9) Z(2, 5, 6) Z(4, 5, 7) Z(2, 3, 5)

h7 Z(2, 3, 5) Z(3, 6, 8) Z(3, 4, 6) Z(2, 4, 5)

i\ j h4 h5 h6 h7

Airport 0 Z(4, 5, 7) Z(2, 3, 5) Z(3, 5, 8) Z(3, 5, 6)

h1 Z(4, 6, 7) Z(3, 5, 6) Z(4, 6, 7) Z(2, 3, 5)

h2 Z(3, 5, 6) Z(5, 6, 8) Z(3, 4, 7) Z(4, 6, 7)

h3 Z(3, 4, 6) Z(3, 6, 7) Z(3, 5, 6) Z(2, 4, 5)

h4 0 Z(2, 4, 5) Z(2, 4, 7) Z(5, 7, 8)

h5 Z(3, 4, 6) 0 Z(2, 3, 6) Z(4, 6, 7)

h6 Z(4, 6, 7) Z(3, 5, 6) 0 Z(2, 3, 6)

h7 Z(2, 3, 5) Z(3, 5, 6) Z(3, 5, 6) 0

Table 4 The demand ηi of hospital i

Hospital i Demand ηi

1 Z(12, 16, 18)

2 Z(10, 13, 14)

3 Z(13, 15, 18)

4 Z(10, 11, 14)

5 Z(15, 17, 18)

6 Z(12, 15, 16)

7 Z(13, 14, 16)

satisfaction constraint for each route should hold at confi-
dence level α = 0.9.

Example 2 If the decision maker prefers optimizing the
objective function in the sense of expected running time,
then we can construct the following uncertain programming
model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min max1≤k≤3 E[ fk(x, y, ξ)]
subject to :
M

{∑yk
j=yk−1+1 ηx j ≤ Ck

}
≥ 0.9, if yk > yk−1

k = 1, 2, 3
1 ≤ xi ≤ 7, i = 1, 2, . . . , 7
xi 	= x j , i 	= j, i, j = 1, 2, . . . , 7
0 ≤ y1 ≤ y2 ≤ 7
xi , i = 1, 2, . . . , 7, integers
y j , j = 1, 2, integers.

(5)
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Fig. 1 The evolution process of Example 2

Table 5 Comparison of the objective values of Example 2

pop−size Pm Pc Generation Objective value Error (%)

10 0.2 0.3 1,000 14.095 0.00

10 0.5 0.3 1,000 14.105 0.07

10 0.3 0.2 1,000 14.360 1.88

30 0.3 0.4 3,000 14.095 0.00

30 0.3 0.6 3,000 14.095 0.00

30 0.6 0.2 3,000 14.095 0.00

We use the proposed algorithm to solve the problem of
Example2. A run of the algorithm with 1,000 generations
shows that the optimal solution is

x∗ = (4, 5, 2, 1, 7, 6, 3),

y∗ = (2, 5).

In other words, the optimal operational plan is

Vehicle 1: airport → 4 → 5 → airport

Vehicle 2: airport → 2 → 1 → 7 → airport

Vehicle 3: airport → 6 → 3 → airport

whose objective value is 14.095. Figure1 is the evolution
process.

As we know, the objective value will be different if we
change the parameters in the algorithm. Thus, we take more
experiments for this example. The values of parameters and
the corresponding objective values are shown in Table5. To
compare the objective values, we give an index called rela-
tive error, i.e., error= (objective value − the best objective
value)/the best objective value ×100%. Obviously, by using
different parameters in the algorithm, the errors of objective
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Fig. 2 The evolution process of Example 3

values are not larger than 1.88%. This fact states that the
hybrid intelligent algorithm is much steady and robust.

Example 3 If the decision maker predetermines a time at
18, and sets the goal as maximizing the minimum uncertain
measure that the running time is no more than the given time,
then the belief degree-chance programming model can be
built as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max min1≤k≤3M{ fk(x, y, ξ) ≤ 18}
subject to :
M

{∑yk
j=yk−1+1 ηx j ≤ Ck

}
≥ 0.9, if yk > yk−1

k = 1, 2, 3
1 ≤ xi ≤ 7, i = 1, 2, . . . , 7
xi 	= x j , i 	= j, i, j = 1, 2, . . . , 7
0 ≤ y1 ≤ y2 ≤ 7
xi , i = 1, 2, . . . , 7, integers
y j , j = 1, 2, integers.

(6)

The optimal solution, obtained by using the proposed algo-
rithm, of Example 3 is x∗ = (2, 3, 5, 6, 7, 1, 4), y∗ = (2, 5),
whose objective value is 0.8. Figure2 is the evolution process.

Conclusion

This paper mainly investigated the problem of dispatching
medical supplies in emergency events based on uncertainty
theory. As is well known to us, many uncertain factors appear
in emergency events.We are frequently lack of observed data,
and the estimated probability distributionmay be far from the
cumulative frequency. In this case, uncertainty theory offers a
powerful tool to deal with uncertain factors. In this paper, the
running times and the demands were assumed to be uncertain
variables. In order to deliver the medical supplies from the
depot to the demanding locations as soon as possible, two

uncertain programming models were presented via uncer-
tain programming. Since the proposed models are complex,
we provided an algorithm to solve the models in general
cases. In addition, some numerical examples were provided
to illustrate the application of the models. The results of the
experiments show that the designed algorithm is robust to the
set parameters in GA.

Comparison of the present paper with the previous works,
the main contributions can be summarized as following
aspects: (1) As a new tool to deal with uncertain factors in
the real world, uncertain programming was introduced into
the problem of dispatching medical supplies in emergency
events. (2) Our models provided a useful way to reflect fair-
ness among demanding locations, while traditional models
depend heavily on the total running time. (3) A hybrid intelli-
gent algorithmwas proposed to seek the approximate optimal
solutionbasedonuncertain simulation andgenetic algorithm.

Moreover, in this paper it is assume that the parameters in
indeterminacy environment are uncertain variables. It will be
interesting to investigate the dispatch strategies in uncertain
random environment, in which uncertainty and randomness
coexist.
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