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Abstract This study combined the artificial neural network
(ANN) with a genetic algorithm (GA) to establish an inverse
model of injection molding for optical lens form accuracy.
The Taguchi parameter design was used for screening exper-
iments of the injection molding parameters, and the signifi-
cant factors influencing lens form accuracy were found to be
mold temperature, cooling time, packing pressure, and pack-
ing time. These significant factors were used for full facto-
rial experiments, and the experimental data then were used
as training and checking data sets for the ANN prediction
model. Finally, the ANN prediction model was combined
with the GA to construct an inverse model of injection mold-
ing. Lens form accuracies of 0.5, 0.7, and 1μm were taken
as examples for validation, and when the error of the set lens
form accuracy target value was within 2% there were 26,
17, and six sets of the injection molding parameters, respec-
tively, that met the desired form accuracy obtained by using
the inverse model. The result indicated that the proposed
strategy was successful in identifying process parameters for
products with reliable accuracy. In addition, using the GA as
a global search algorithm for the optimal solution could fur-
ther optimize the Taguchi optimal process parameters. The
validation experiments revealed that the form accuracy of the
lens was improved.
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Introduction

Plastics have better characteristics than general traditional
industrial materials. These characteristics, such as a low den-
sity, corrosion resistance, workability, and low prices, have
caused plastic products to increasingly be used as a substi-
tute for metal and glass wares. In recent years, with the rapid
development of electro-optical and information technology
industries, the demand for various optical elements and pho-
tovoltaic systems has greatly increased. Optical lenses are
indispensable components of these systems. The common
methods used for producing plastic goods include injec-
tionmolding, compressionmolding, blowmolding, extrusion
molding, and co-injection molding. The injection molding
method is characterized by high productivity and yield, mak-
ing it feasible for automation and the production of parts with
complicated shapes. The injection molding process can be
divided into several stages according to the operating cycles,
including plastication, filling, packing, cooling and ejection.
First, plastic pellets are plasticized into melt after screw
shearing and feed pipe heating. Then, the melt is injected
into the runner system of the mold to fill the cavities. Finally,
the finished product is ejected after cooling. During the injec-
tion molding process, the melt is a non-Newtonian fluid with
complex and highly nonlinear material characteristics. The
temperature, shear rate, velocity, and pressure in the injection
molding process can influence the quality of the final molded
products. Building the prediction models, such as the artifi-
cial neural network (ANN) model to predict warpage (Yen et
al. 2006), shrinkage (Altan 2010), flash (Zhu andChen 2006),
short shot and weld line (Sadeghi 2000), thickness reduction
and porosity creation (Kwak et al. 2005), and weight and
length (Chen et al. 2009b), as well as a regression model to
predict warpage (Chen et al. 2009a) and a response surface
methodology (RSM)model to predict weld line (Ozcelik and
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Erzurumlu 2005; Ozcelik 2011), in order to master the corre-
lation between process parameters and the quality of molded
products, are effective solutions.Many researchers have used
different optimization approaches to obtain the optimal injec-
tion molding parameters, such as genetic algorithms (GA) to
minimize warpage (Ozcelik and Erzurumlu 2005; Yin et al.
2011), particle swarm optimization (PSO) to minimize prod-
uct and mold costs (Che 2010) and optimize product quality
(Katherasan et al. 2014), the hybrid adaptive network based
fuzzy inference system (ANFIS) with a multi-input multi-
output (MIMO) strategy to optimize product quality (Huang
and Chang 2011), hybrid ANN/GA to minimize shrinkage
(Shen et al. 2007) and warpage (Yin et al. 2011), combined
design of experiment (DOE)/ANN/GA to minimize warpage
(Ozcelik and Erzurumlu 2005, 2006; Kurtaran et al. 2005),
as well as research and applications regarding quality moni-
toring (Chen and Turng 2005; Lau et al. 2005; Li et al. 2009).
The use of different optimization methods to obtain a predic-
tion model for products is called forward modeling.

During molding trials, the operator will set up an ini-
tial process point based on his experience. This procedure
depends on many factors, such as the molding material, the
part geometry, the mold layout, and the molding machine.
The process parameters will be adjusted repeatedly until the
molding trial fully and successfully satisfies the quality of
the molded parts. Parameter setting is a highly skilled job
that is based on the skilled operator’s “know-how” and intu-
itive sense acquired through long-term experience rather than
through a theoretical and analytical approach. However, in
a globally competitive industry such as injection molding, it
is no longer enough to use the experience approach to deter-
mine the process parameters for injectionmolding. Typically,
the inverse problem for injection molding is used to deter-
mine the process parameters for producing products with
the desired quality values. A number of researchers have
attempted various approaches to facilitate injection molding
process setups that can reduce the time to market and obtain
consistent quality products (Mok et al. 1999), such as fuzzy
(Li et al. 2009), fuzzy-ANN (He et al. 1998;Mok andKwong
2002; Huang and Chang 2011), fuzzy-GA (Lau et al. 2005),
ANN-GA (Mok et al. 2001; Chen et al. 2009b), intelligent
hybrid systems based on ANN-GA (Mok et al. 2000), data
envelopment analysis (DEA) (Loera et al. 2008), and sim-
plex (Kamoun et al. 2009). By using these methods, a set of
process parameters can be determined, either on-line or off-
line, to produce a near-optimal quality product. In reality,
however, multiple sets of process parameters can be identi-
fied for near-optimal quality products.

The precision requirement for plastic optical lenses is
higher than that for general plastic molded products, and
if the molded lens profile is excessively deviated from the
design value, the optical properties of the lens will be dete-
riorated and even unworkable. Therefore, this study investi-
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Fig. 1 Flow chart for this study

gated the form accuracy of a plastic optical lens and proposed
a process parameter optimization model for injection mold-
ing, in which the most appropriate process parameters were
inversely obtained according to the demand for form accu-
racy of optical lenses, in order to allow operators to rapidly
obtain the appropriate process parameters needed to deliver
the required product quality. A hybrid DOE, ANN and GA
modeling approachwas presented, fromwhich several sets of
process parameters could be quickly determined. To validate
the feasibility of the approach, a case study on setting the
processing parameters in injection molding was conducted,
with promising results.

Optimization strategy

A hybrid DOE, ANN and GA approach was developed to
determine the sets of process parameters meeting the desired
lens form accuracy. The overall procedure was as shown in
Fig. 1. Taguchi experiments were used to identify the sig-
nificant factors affecting the form precision of the lens for
the injection molding process, as well as to determine the
optimal parameters. The significant factors were then used
to implement a full factorial experiment, and the experimen-
tal data were used to establish the ANN prediction model for
form accuracy of the lens. Finally the trained ANN model
was combined with a GA to establish the reverse model for
injection molding and to identify multiple sets of process
parameters for producing lenses with the desired form accu-
racy. TheANNandGAmodelswere also used to improve the
optimal parameters obtained from the Taguchi method. Con-
firmation experiments were performed to verify the accuracy
of the hybrid model.

Taguchi method

The qualities of the molded parts for injection molding are
affected by a number of process parameters. This study inves-
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tigated the form accuracy of a spherical lens using a Taguchi
experiment to identify significant influencing factors. The
form accuracy of a lens is a Smaller-the-Better (STB) qual-
ity characteristic. The signal to noise ratio (S/N ratio) of the
STB is defined (Montgomery 2001; Taguchi et al. 2005) as:

S/N = −10 log10

(
1

n

n∑
i=1

y2i

)
(dB) (1)

After the significant factors were identified, a series
of confirmation experiments using the optimized parame-
ter were subsequently performed. The successful confirma-
tion experiments indicated that the set of significant factors
obtainedwere valid and that the Taguchimethodwas applica-
ble. If the confirmation result failed, the set of factors that had
been selected earlier would be considered inadequate; conse-
quently, the procedures would be repeated. In order to simply
the process, the authors used an L18(21 × 37) array in this
study.

Neural network

The artificial neural network (ANN) is a parallel computa-
tional model that is similar to the biological neural mech-
anism, namely, using computer calculations to simulate a
human cerebral nerve cell network. The back-propagation
neural network (BPNN) is one of the most representative
and popular neural network among numerous neural net-
works (Ozcelik 2011; Katherasan et al. 2014; Ashhab et al.
2014). BPNN is a multilayer feedforward network that uses
a supervised learning method to handle the nonlinear rela-
tions between the input and output variables. This study used
a three-layer BPNN with a hidden layer to build an optical
lens form accuracy predictionmodel. The output of each neu-
ron is calculated based on the sum of the weights of all the
connected nodes from the preceding layer plus a bias, and
the activation function generates an output according to the
following:

neti =
n∑
j=0

wi j x j + boi (2a)

Yi = f (neti ) (2b)

where, neti is the aggregation function of the i th neuron in the
layer, n denotes the number of neurons, wi j is the associated
weight between the i th and j th neurons, x j represents the
output of the j th neuron, and boi is the bias weight on the ih
neuron and output of the ith neuron in the computing layer.
Yi = f (neti ) is generated by processing the input (neti )
through an activation function.

The activation function for the hidden layer and are out-
put layer of the network are a positive logarithmic sigmoid

0

1

x

f(x)

Fig. 2 Positive logistic function

function, and the input–output relationship is:

f (neti ) = 1

1 + e−(λneti )
(3)

where, λ is the gain factor of the neurons. The value of this
activation function approaches 0 and 1, respectively, when
the independent variable approaches plus-minus infinity, as
shown in Fig. 2.

In the process of training the neural network of this study,
the performance functionwas representedby themean square
error (MSE), i.e. the average of the square errors between the
neural network inference value and the target value, defined
as follows:

MSE = 1

n

n∑
i=1

(Ti − Ai )
2 (4)

where Ti is the target value of the i th training data or checking
data, Ai is the network inference value of the i th training
data or checking data, and n is the number of training data
or checking data.

Genetic algorithm (GA)

The genetic algorithm is an optimizationmethod based on the
Darwinian fitness. The basic mathematical units of the GA
include the chromosomes, population size, bit length, and
fitness function, as well as the three major operating mech-
anisms of selection (reproduction), crossover, and mutation,
which are used to imitate the process of organic evolution.
The GA is an algorithm for the global search of optimal solu-
tions (Ozcelik 2011). In this study, the implementation of the
GA consisted of the following four parts: (1) encoding, (2)
fitness function, (3) selection mechanism, and (4) crossover
and mutation mechanism. The parameters for the GA were
encoded by binary encoding into strings of 0 and 1, and the
initial population was randomly generated.

In a GA, a fitness function as an objective function can
be designed according to different problems and demands,
and the optimal solution is searched for according to a pre-
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set range of parameters. This study used the trained ANN
prediction model for the fitness function. Since the goal out-
put of an ANN prediction model is normalized, the values
are between 0 and 1, whereas the GA generally searches the
maximum value of a system. Therefore, subtracting a prede-
fined positive integer with the prediction value of the ANN
model transforms the system into aminimizing problem. The
searching range for the fitness function of the GA is typi-
cally the domain of the operating parameters of a machine;
in this study the Taguchi optimal parameter values ±20%
were taken as the GA searching range to increase computa-
tion efficiency. Two fitness functions were defined and used
to optimize the process parameters for injection molding, as
follows:

1. Fitness function for inverse calculation of the process
parameters
Minimize:

obj = 1 − |PV − A| (5)

Subject to:
The optimal values of the four significant factors identi-
fied by the Taguchi method ±20%.
where obj is the fitness function, PV is the specified value
of the lens form accuracy, and A is the inference value of
the trained ANN model.

2. Fitness function for improvement of Taguchi optimal
parameters
Minimize:

obj = 1 − A (6)

Subject to:
The optimal values of the four significant factors identi-
fied by the Taguchi method, ±20%.

In this study, theGAwas used to determine the appropriate
parameter sets meeting the desired form accuracy of the lens.
The optimal process parameters obtained from the Taguchi
method were assigned to the baseline (initial population).

Coefficient of determination

In theANNmodel, in order to express the fitness of themodel
for experimental data, the coefficient of determination (R2)

is often used to determine the accuracy of the model. The
larger the R2 is, the higher the fitness will be, i.e., the closer
the model prediction value will be to the experimental value.
R2 is defined (Montgomery 2001) as:

R2 = Regression sum of squares (SSR)

Total sum of squares (SST)

= 1 − Error sum of squares (SSE)

Total sum of squares (SST)
(7)

where, SST (total sum of squares) is the total variance, SSR
(regression sumof squares) is the amount of variation that can
be explained by the model, and SSE (error sum of squares) is
the amount of random variation that cannot yet be explained
by the model.

Experimental setup

This study combined ANN and GA to establish an inverse
model of injection molding, and two experiments were con-
ducted. The first experiment was the Taguchi experiment,
which screened out the significant factors influencing lens
form accuracy and obtained the Taguchi optimal parameters,
and the second experiment was a full factorial experiments
based on significant factors. The second experimental data
was used to establish theANNpredictionmodel for lens form
accuracy.

Experimental equipment and material

This study used an injection molding machine and various
measuring instruments. A 220S 250-60 precision injection
molding machine produced by Arburg (Germany) was used
for the injection molding experiments, and the surface form
accuracy of the lens was measured via a Form Talysurf PGI-
840 surface contour profilometer made by Taylor Hobson
(Britain). The ANN and GA programs for form accuracy
data used MATLAB� software with neural network Tool-
box (R2012b). The experimental material was optical grade
PMMA-80N (polymethyl methacrylate), manufactured by
Asahi Kasei (Japan). Five specimens were sampled at the
same cavity of the four-cavity mold, and the average value
was taken as the experimental data.

Experimental mold

A plano-convex lens was adopted, as shown in Fig. 3a, and a
four-cavity layout of the product was designed in a mold, as
shown in Fig. 3b. The diameter of the lens was 15mm, the
effective spherical diameter of the lens was 13mm and the
maximum thickness at the lens center was 1.4243mm.

Results and discussion

Significant factors

The Taguchi parameter design used an L18(21 × 37) orthog-
onal array. The eight control factors were melt tempera-
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Fig. 3 Dimensions of the plano-convex lens. a Dimensions of the lens. b Part layout in the mold

Table 1 Factors and levels for the Taguchi experiment

Control factor Level 1 Level 2 Level 3

A. Melt temperature (◦C) 230 240

B. Injection velocity (mm/s) 80 90 100

C. Injection pressure (MPa) 90 100 110

D. VP switch over (mm) 6.12 6.24 6.36

E. Packing time (s) 5 7 9

F. Packing pressure (MPa) 100 110 120

G. Mold temperature (◦C) 70 85 100

H. Cooling time (s) 15 20 25

ture, injection speed, injection pressure, filling to packing
switchover position, packing pressure, packing time, mold
temperature, and cooling time. The factor levels are shown
in Table 1. The experimental result is shown in Table 2,
in which the lens form accuracies were the average value

of five parts. The response graph in Fig. 4 was obtained
according to the S/N ratio of the STB characteristic. It was
observed that the optimal parameter levels combination was
A2B2C3D3E2F2G2H3, i.e., a melt temperature of 240 ◦C, an
injection speed of 90mm/s, an injection pressure of 110MPa,
a filling to packing switchover position of 6.36mm, a packing
pressure of 110MPa, a packing time of 7 s, a mold tempera-
ture of 85 ◦C and a cooling time of 25s.

Analysis of variance (ANOVA) is usually used to iden-
tify the influence of control factors. Table 3 is the ANOVA
table of the lens form accuracy S/N ratio, which shows that
the most significant influence factor was the mold tempera-
ture. In addition, according to the contribution rate, four con-
trol factors were selected for 34 full factorial experiments to
obtain learning and testing data for the ANNmodel. The fac-
tors included mold temperature, cooling time, packing pres-
sure and packing time.

Table 2 Form accuracies and
S/N ratio for L18(21 × 37) Run Control factor Experiment S/N (dB)

A B C D E F G H

1 1 1 1 1 1 1 1 1 0.829 1.63

2 1 1 2 2 2 2 2 2 0.603 4.39

3 1 1 3 3 3 3 3 3 0.958 0.37

4 1 2 1 1 2 2 3 3 0.833 1.59

5 1 2 2 2 3 3 1 1 0.697 3.14

6 1 2 3 3 1 1 2 2 0.571 4.87

7 1 3 1 2 1 3 2 3 0.647 3.78

8 1 3 2 3 2 1 3 1 1.018 −0.15

9 1 3 3 1 3 2 1 2 0.565 4.96

10 2 1 1 3 3 2 2 1 0.555 5.11

11 2 1 2 1 1 3 3 2 1.203 −1.61

12 2 1 3 2 2 1 1 3 0.566 4.94

13 2 2 1 2 3 1 3 2 1.088 −0.73

14 2 2 2 3 1 2 1 3 0.554 5.13

15 2 2 3 1 2 3 2 1 0.632 3.99

16 2 3 1 3 2 3 1 2 0.683 3.31

17 2 3 2 1 3 1 2 3 0.553 5.15

18 2 3 3 2 1 2 3 1 1.049 −0.42
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Fig. 4 Response graph of S/N
ratio for the form accuracy of
the lenses
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Factors and Levels

Table 3 Analysis of variance
for S/N ratio

F(0.05,2,11) = 3.98
* The terms are not significant
and can be merged to residuals

Factors SS DF MS F value Contr. rate (%)

A 0.0047 1 0.0047 * 0.005

B 0.8375 2 0.4188 * 0.884

C 1.3936 2 0.6968 * 1.471

D 1.1938 2 0.5969 * 1.260

E 2.4081 2 1.2040 * 2.541

F 5.1935 2 2.5968 4.1837 5.480

G 77.4363 2 38.7182 62.3783 81.714

H 5.3078 2 2.6539 4.2757 5.601

Residual 0.9902 2 0.4951 1.045

(Residuals) (6.8279) (11) (0.6207)

Total 94.7656 17 100

The optimal parameter level combination could be
obtained by the Taguchi experiment. However, the results
needed to be experimentally verified because the number of
Taguchi experimentswas too small. In theL18 Taguchi exper-
iments, the average value of the S/N ratio was 2.75dB. Based
on the significant factors inANOVA, i.e., the four control fac-
tors listed above, the predicted value of the S/N ratio of the
optimal conditions was estimated as:

η̂ = T + (
F2 − T

) + (
G2 − T

) + (
H3 − T

)
= F2 + G2 + H3 − 2 × T

= 3.46 + 4.55 + 3.49 − 2 × 2.75

= 6 (dB) (8)

An important step in the Taguchi optimization technique
is conducting a confirmation experiment to validate the pre-
dicted result. The confidence interval (CI) is the maximum
and minimum value between which the true value should fall
at some stated percentageof confidence.The95%confidence
interval for the predicted value of the optimal parameter level
combination on a confirmation test can be calculated by the

following equation (Ross 1996; Chaulia and Das 2008; Tang
et al. 2013). In this work, the optimal condition was used
for five confirmation experiments to calculate CI, in which
F0.05,1,11 = 4.84. From the ANOVA Table, Ve = 0.6207
and r = 5, and then:

CISN =
√
Fα;v1;v2 × Ve ×

(
1

neff
+ 1

r

)

=
√
4.84 × 0.6207 ×

(
1

2.571
+ 1

5

)
= 1.33 (dB) (9)

where, Fα;ν 1,ν 2 denotes the F value of α at a level of signif-
icance, the level of confidence is 1 − α, v1 is the degree of
freedom (DF) for the mean which is always = 1, v2 denotes
the DF of the pooled error variance, Ve is the pooled error
variance, nef f is the number of effective experimental values,
and r is the number of replication for confirmation experi-
ments.
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Table 4 The result of the Taguchi confirmation experiments

Optimal parameters A2B2C3D3E2F2G2H3

Prediction S/N 6 ± 1.33 (4.67–7.33) dB

Experiment PV (μm) 0.509 0.465 0.491 0.461 0.473

S/N 5.87 6.65 6.18 6.73 6.50

neff = Total run of experiments (N)

1 + Degree of freedom for significant factors (DF)

= 18

1 + (2 + 2 + 2)
= 2.571 (10)

The predicted S/N ratio of the optimal process parameters
was 6 ± 1.33dB (4.67–7.33dB). The results of the five vali-
dation experiments are shown in Table 4. It was observed that
the S/N ratios of all experimental runs were within the con-
fidence interval, proving that the Taguchi experiment result
was reliable.

ANN learning data set experiments

This study used four significant factors, including mold tem-
perature, cooling time, packing pressure, and packing time,
for the full factorial experiments. According to the aforesaid
S/N ratio response graph of lens form accuracy, the longer the
cooling time, the better the form accuracy would be. There-
fore, in order to obtain better lens form accuracy, the range
of the cooling time was reset as 20–30s. The levels for the
mold temperature, packing pressure, and packing time were
maintained as in the range of the Taguchi experiment, and
the other fixed injectionmolding parameters used the optimal
process parameters obtained from the Taguchi experiment.
The factor levels of 34 full factorial experiments are shown in
Table 5. A total of 81 experimental runs were implemented,
and the results were as shown in Table 6, in which 60 groups
were the training data sets for learning the neural network
model, and the remaining 21 groups were the testing data
sets.

Table 5 Factors and levels for the 34 full factorial experiments

Control factor Value

Melt temperature (◦C) 240

Injection velocity (mm/s) 90

Injection pressure (MPa) 110

VP switch over (mm) 6.36

Packing time (s) 5 7 9

Packing pressure (MPa) 100 110 120

Mold temperature (◦C) 70 85 100

Cooling time (s) 20 25 30

Table 6 Form accuracy of the lenses for the 34 experiments

Run Mold temp Packing
press

Packing
time

Cooling
time

PV (μm) σ

1 70 100 5 20 0.711 0.064

2 70 100 5 25 0.692 0.069

3 70 100 5 30 0.761 0.099

4a 70 100 7 20 0.541 0.051

5 70 100 7 25 0.542 0.081

6 70 100 7 30 0.595 0.102

7 70 100 9 20 0.615 0.082

8a 70 100 9 25 0.562 0.055

9 70 100 9 30 0.528 0.043

10 70 110 5 20 0.587 0.029

11 70 110 5 25 0.515 0.026

12a 70 110 5 30 0.589 0.055

13 70 110 7 20 0.572 0.072

14 70 110 7 25 0.651 0.067

15 70 110 7 30 0.594 0.02

16a 70 110 9 20 0.510 0.056

17 70 110 9 25 0.475 0.028

18 70 110 9 30 0.536 0.038

19 70 120 5 20 0.712 0.058

20a 70 120 5 25 0.614 0.079

21 70 120 5 30 0.510 0.031

22 70 120 7 20 0.640 0.068

23 70 120 7 25 0.610 0.074

24a 70 120 7 30 0.503 0.059

25 70 120 9 20 0.523 0.052

26 70 120 9 25 0.457 0.023

27a 70 120 9 30 0.574 0.078

28 85 100 5 20 0.511 0.035

29 85 100 5 25 0.521 0.061

30 85 100 5 30 0.503 0.041

31a 85 100 7 20 0.492 0.05

32 85 100 7 25 0.486 0.035

33 85 100 7 30 0.513 0.02

34 85 100 9 20 0.523 0.04

35a 85 100 9 25 0.514 0.029

36 85 100 9 30 0.500 0.021

37 85 110 5 20 0.589 0.059

38 85 110 5 25 0.509 0.031

39a 85 110 5 30 0.471 0.029

40 85 110 7 20 0.453 0.019

41 85 110 7 25 0.463 0.016

42 85 110 7 30 0.475 0.033

43a 85 110 9 20 0.514 0.038

44 85 110 9 25 0.534 0.041

45 85 110 9 30 0.516 0.021

46 85 120 5 20 0.576 0.071
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Table 6 continued

Run Mold temp Packing
press

Packing
time

Cooling
time

PV (μm) σ

47a 85 120 5 25 0.549 0.034

48 85 120 5 30 0.516 0.057

49 85 120 7 20 0.445 0.025

50 85 120 7 25 0.496 0.033

51a 85 120 7 30 0.489 0.027

52 85 120 9 20 0.498 0.018

53 85 120 9 25 0.552 0.074

54a 85 120 9 30 0.487 0.035

55 100 100 5 20 0.666 0.046

56 100 100 5 25 0.748 0.053

57 100 100 5 30 0.792 0.014

58a 100 100 7 20 0.989 0.067

59 100 100 7 25 0.941 0.039

60 100 100 7 30 1.004 0.058

61 100 100 9 20 1.06 0.062

62a 100 100 9 25 1.089 0.074

63 100 100 9 30 1.058 0.072

64 100 110 5 20 0.542 0.075

65 100 110 5 25 0.797 0.069

66a 100 110 5 30 0.861 0.047

67 100 110 7 20 0.886 0.046

68 100 110 7 25 1.019 0.051

69 100 110 7 30 1.006 0.086

70a 100 110 9 20 1.062 0.043

71 100 110 9 25 1.167 0.083

72 100 110 9 30 1.008 0.126

73 100 120 5 20 0.549 0.027

74a 100 120 5 25 0.707 0.036

75 100 120 5 30 0.79 0.104

76 100 120 7 20 0.875 0.065

77 100 120 7 25 0.959 0.032

78a 100 120 7 30 0.996 0.075

79 100 120 9 20 0.991 0.047

80 100 120 9 25 1.054 0.071

81a 100 120 9 30 1.031 0.05

a Testing data set for ANN model fitting

ANN model for quality prediction

The supervised BPNN model was constructed according to
the 81 sets of full factorial experimental data as shown in
Table 6, in which 60 groups were the training data sets and
the remaining 21 groups were the testing data sets that deter-
mined the convergence step size, gradient direction, and stop
learning of ANN. The training of this neural network model
used the Levenberg–Marquardt algorithm with the gradient

Table 7 Training variables for the back-propagation neural network

Parameter Value

Epochs 2,000

Performance goal 0

Learning rate 0.01

Gradient 1E−20

descentweight bias learning function,which has a higher net-
work convergence rate. The other network training settings
were as shown in Table 7.

The input variable of the BPNN was the significant fac-
tors influencing lens form accuracy, and the output variable
was the lens form accuracy discussed in this study. A back-
propagation multilayer neural network consists of three lay-
ers of neurons termed as the input, hidden, and output layers,
as shown in Fig. 5. The flow chart of the learning and testing
procedures for the proposed ANNmodel are shown in Fig. 6.
The procedure was performed as an optimization algorithm.
To obtain the optimal neural network, usually the number
of neurons in the hidden layer is successively determined
by experience or experimentation. In this study, an experi-
ment was implemented to determine the number of hidden
neurons. A neural network model of four to 12 neurons, at
intervals of 2 neurons, was used to compare the coefficient
of determination (R2) for the hidden layer. Simplistically,
the experimental data sets shown in Table 6 were used to
implement the training ANN model with a different num-
ber of neurons on the hidden layer. The results are shown in
Table 8. According to the results, the larger the number of
neurons, the smaller the MSE would be, and the lower the
coefficient of determination. This is because the increase in
the number of neurons resulted in overfitting, namely, in the
training process, the error of the training data set was very
small, while the error of the checking data set increased. In
addition, the coefficient of determination of four neuronswas
better than that of six neurons; however, theMSE in the train-
ing process was larger, as shown in Fig. 7, which could result
in a larger error in subsequent inverse modeling. Therefore,
this study decided on six neurons in the hidden layer. The
average error between the inference values of this ANN and
the 21 test groups was 4.89%, and R2 was 0.9675.

Inverse model

Hybrid ANN and GA

This study combined ANN with GA in order to construct
an inverse model of the injection molding process. First, the
process parameters were encoded into a binary format and
the initial process parameters were randomly generated. The
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Fig. 5 Architecture of the ANN
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Fig. 6 Flow chart of the ANN learning and testing

above-trained ANNmodel for quality prediction was used to
the fitness function of the GA, and the process parameters
meeting the fitness function target were obtained through the
evolutionary process of the GA. In the evolutionary process,
parameters with higher fitness values were reserved in the
next generation for crossover in order to obtain better process
parameters, until the fitness value of the process parameters
met the desired requirement and the optimal process para-
meters could be obtained.

The flow chart of the hybrid ANN and GA model is
shown in Fig. 8. The required form accuracy of the lens was
first assigned and the searching ranges for the four signifi-
cant factors were determined. The data were then encoded
and imported into the hybrid ANN and GA model. In this
model, roulette wheel selection based on a ranking algorithm
was used as the selection mechanism. Chromosomes were

Table 8 Comparison of different the number of hidden nodes

Hidden nodes Epochs MSE (training) R-square (checking)

4 2,000 3.4E−04 0.9681

6 2,000 1.69E−04 0.9675

8 2,000 3.24E−05 0.9455

10 2,000 3.55E−06 0.9254

12 2,000 9.42E−07 0.8955

selected in quantities according to their relative fitness after
ranking in the roulette wheel operator, and they were then
fed into the intermediate population. The population size was
30. Single-point crossover and uniform mutation operators
were used, and the probabilities of the crossover and muta-
tion operators were 0.7 and 0.05, respectively. In addition,
in the binary encoding of the process parameters in the GA,
the string length of the genes determined the accuracy of the
process parameter, i.e., the resolution. In terms of the pack-
ing pressure, the minimum resolution of the machine was
set as 1MPa, the search interval of the packing pressure was
from 100 to 120MPa, and the range of the GA parameters
was obtained by broadening the upper and lower limits of the
Taguchi optimal process parameters. The range is shown in
Table 9. The string length was set as 5 in this study, meaning
the range between 100 and 120 was divided into 25 equal
parts. Each part was 0.625, which was lower than 1MPa of
the machine, and which met the optimization requirements.
Therefore, the trained ANN model could precisely predict
the form accuracy of lenses produced using the process para-
meters. The GAwas then applied to obtain the robust process
parameter settings for the investigated range.

Case study

According to the aforesaid results, mold temperature was
the most significant factor influencing lens form accuracy.
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Therefore, the process parameters that met the form accu-
racy requirements at different mold temperatures could be
obtained using the inverse model. This study took a form
accuracy of 0.5, 0.7, and 1μm, respectively, as the examples,
and used an ANN with a GA to develop the inverse model of
the injectionmold parameters. The fitness function of theGA
used Eq. (5), within a targeted value of a 2% error, and conse-
quently 26, 17, and 6 sets of the process parameters that met
the quality requirements could be obtained by the proposed
model, respectively. The details are shown in Tables 10, 11

Table 9 Variables for the genetic algorithm

Parameter Lower bound Upper bound

Packing time (s) 5 9

Packing pressure (MPa) 100 120

Mold temperature (◦C) 70 100

Cooling time (s) 20 30

Population size 30

Bit length 5

Generations 500

Crossover rate 0.7

Mutation rate 0.02

and 12. The range of the process parameters was obtained, as
shown in Table 13.When the form accuracy requirement was
1μm, there were only six sets of process parameters meeting
the requirements, as the 1μm form accuracy could only be
obtained if the mold temperature was higher than 95 ◦C.

In addition, the process parameters thatmet form accuracy
requirements were drawn in three process parameter process
windows. Figs. 9, 10 and 11 show the 3D process windows
for a form accuracy of 0.5, 0.7, and 1μm, respectively. The
points in the figures are the operating pointswhere the desired
form accuracy was obtained. The process window enabled
the operators to see the range of process parameters that met
the quality requirements, in order to rapidly select the process
parameters with a shorter cooling time or lower mold tem-
perature according to actual production requirements, such
as shortening the production cycle time or reducing machine
energy consumption. According to the process windows, the
form accuracy of the lens deteriorated with an increasing
mold temperature.

In order to verify the accuracy of the inversemodels estab-
lished by ANNwith GA, some experimental conditions were
selected at each mold temperature for the validation exper-
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Table 10 Parameters set of the process window at the form accuracy
of 0.5μm

Mold
temp.

Packing
press.

Packing
time

Cooling
time

PV (μm) Error (%)

70 110 8.4 21.3 0.501 0.2

71 120 8.7 28.7 0.503 0.6

72 109 8.5 27.1 0.5 0

73 109 8.2 23.9 0.501 0.2

74 117 5.6 27.1 0.499 0.2

75 117 5.4 29 0.498 0.4

76 104 6.3 20.6 0.499 0.2

77 113 6.5 27.4 0.501 0.2

78 106 8.6 27.4 0.503 0.6

79 101 6.7 27.1 0.502 0.4

80 108 5.6 21.3 0.504 0.79

81 101 6.5 21.9 0.497 0.6

82 114 5.4 28.7 0.497 0.6

83 100 6.5 25.8 0.501 0.2

84 111 6.8 21 0.5 0

85 100 6.3 28.1 0.5 0

86 103 8.9 24.8 0.498 0.4

87 101 5.4 24.5 0.497 0.6

88 105 8.2 25.5 0.5 0

89 101 6.7 25.5 0.503 0.6

90 101 5.6 22.3 0.497 0.6

91 117 5.4 21 0.5 0

92 119 5.9 21.3 0.499 0.2

93 107 5.9 26.1 0.5 0

94 107 5.4 26.1 0.501 0.2

95 111 5 30 0.5 0

Average 0.3

iment. The error between the experimental values and the
prediction values of the inverse models was calculated as
follows:

Error(%) =
∣∣∣∣Experimental value−Predicted value

Experimental value

∣∣∣∣×100%

(11)

The results of experiments are shown in Table 14. The
results showed that the maximum error between the experi-
ment value and the prediction value for themodelwas 16.7%,
the smallest error was 2.63%, and the average error was
8.27%. Therefore, the inverse model via ANN with GA in
this study demonstrated acceptable accuracy.

Improving the taguchi optimal process parameters

GA is capable of obtaining a global minimum value. This
study was based on the Taguchi optimal process parameters,

Table 11 Parameters set of the process window at the form accuracy
of 0.7μm

Mold
temp.

Packing
press.

Packing
time

Cooling
time

PV(μm) Error (%)

70 101 5 26.8 0.695 0.72

71 115 5.5 21 0.699 0.14

72 100 5 26.8 0.694 0.86

73 113 6.2 20 0.697 0.43

74 113 6.3 20 0.689 1.6

89 119 8.9 30 0.705 0.71

90 117 8.7 22.6 0.693 1.01

91 112 8.7 22.9 0.693 1.01

92 119 8.2 28.7 0.696 0.57

93 112 8.4 29.7 0.707 0.99

94 107 7.8 26.1 0.696 0.57

95 107 7.3 26.8 0.698 0.29

96 107 6.8 27.4 0.7 0

97 112 5.8 24.8 0.7 0

98 112 5.3 25.5 0.702 0.28

99 103 5.1 20 0.698 0.29

100 112 5.1 20.3 0.689 1.6

Average 0.65

Table 12 Parameters set of the process window at the form accuracy
of 1μm

Mold temp. Packing
press.

Packing
time

Cooling
time

PV (μm) Error (%)

95 103 9 20 0.991 0.91

96 117 9 29 1 0

97 111 8.2 27.1 0.998 0.2

98 101 8.4 27.4 1 0

99 114 7.7 22.6 0.997 0.3

100 105 8 26.1 0.998 0.2

Average 0.27

Table 13 Process parameter ranges for different quality requirements

PV (μm) Mold
temp.

Packing
press.

Packing
time

Cooling
time

0.5 70–95 100–120 5–8.9 20.6–30

0.7 70–74 100–115 5–6.3 20–26.8

89–100 103–119 5.1–8.9 20–30

1 95–100 101–117 7.7–9 20–29

which broadened the upper and lower bounds of 20% for
the process parameter range, and the optimal process para-
meters within the parameter limitation was obtained by the
fitness function of Eq. (6). The result is shown in Table 15.
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Fig. 9 Process window for the
form accuracy of 0.5μm. a
Packing pressure versus cooling
time. b Mold temperature versus
cooling time. c Mold
temperature versus packing
pressure. d Combination of
three process parameters
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Fig. 10 Process window for the
form accuracy of 0.7μm. a
Packing pressure versus cooling
time. b Mold temperature versus
cooling time. c Mold
temperature versus packing
pressure. d Combination of
three process parameters
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The process parameters optimized by the GA were different
from those based on the Taguchi Method, and the optimal
form accuracy of the lens was better than that of the Taguchi
Method, which was 0.392μm. A confirmation experiment
was conducted for this prediction result, and due to the exper-
imental machine resolution, the process parameters opti-
mized by the GA were simplified by rounding. According

to the experimental results, the measured lens form accu-
racy was 0.415μm, and the error to the prediction value
was 5.54%. Therefore, the process parameters optimized by
the hybrid ANN and GA resulted in better lens form accu-
racy than the Taguchi experiment, and the form accuracy
improved from 0.479 to 0.415μm, for an improvement rate
of 13.36%.
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Fig. 11 Process window for the
form accuracy of 1μm.
a Packing pressure versus
cooling time. b Mold
temperature verus cooling time.
c Mold temperature versus
packing pressure.
d Combination of three process
parameters
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Table 14 Confirmation
experiment result for the inverse
model

Mold temp. Packing press. Packing time Cooling time Experiment avg Target Error (%)

70 110 8.4 21.3 0.551 0.5 9.26

75 117 5.4 29 0.593 0.5 15.68

80 108 5.6 21.3 0.484 0.5 3.31

85 100 6.3 28.1 0.531 0.5 5.84

90 101 5.6 22.3 0.558 0.5 10.39

95 111 5 30 0.6 0.5 16.7

70 101 5 26.8 0.679 0.7 3.09

73 113 6.2 20 0.765 0.7 8.5

90 117 8.7 22.6 0.66 0.7 6.06

95 107 7.3 26.8 0.756 0.7 7.41

100 112 5.1 20.3 0.803 0.7 12.83

95 103 9 20 1.061 1 5.75

97 111 8.2 27.1 1.027 1 2.63

100 105 8 26.1 1.091 1 8.34

Average 8.27

Table 15 Confirmation experiment result for improved Taguchi optimal value using the GA

Method Mold temp. (◦C) Packing press. (MPa) Packing time (s) Cooling time (s) PV (μm)

Taguchi experiment 85 110 7 25 0.479

GA prediction 83.5484 117.4194 7.5806 29.3548 0.392

GA confirm. exp. 84 117 7.6 29.4 0.415
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Conclusion

This study used an ANN as the lens form accuracy pre-
diction model, and employed a GA to inversely calculate
the process parameters meeting the product quality require-
ments. This method enabled operators to rapidly obtain the
optimal process parameters according to the required quality.
The conclusions were as follows:

1. The results of ANOVA clearly showed that themold tem-
perature, packing pressure, and cooling time were the
significant factors influencing lens form accuracy.

2. TheANNpredictionmodel could successfully character-
ize the relationship between process parameters and lens
form accuracy. The average error between the ANN pre-
diction values and the experimental values was 4.89%,
and the coefficient of determination was 0.9675.

3. The result indicated that the hybrid ANN and GA strat-
egy was successful in determining the process parame-
ters meeting the desired form accuracy of the lens in the
injection molding in the case studies.

4. According to the results of the hybrid ANN and GA
approach to improve the Taguchi optimal process para-
meters, better lens form accuracy could be obtained by
using the proposedmethod. The form accuracy improved
from 0.479 to 0.415μm, for an improvement rate of
13.36%.
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