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Abstract Condition monitoring of rotating machinery has
attracted more and more attention in recent years in order
to reduce the unnecessary breakdowns of components such
as bearings and gears which suffer frequently from failures.
Vibration based approaches are the most commonly used
techniques to the condition monitoring tasks. In this paper,
we propose a bearing fault detection schemebased on support
vector machine as a classification method and binary particle
swarm optimization algorithm (BPSO) based on maximal
class separability as a feature selection method. In order to
maximize the class separability, regularizedFisher’s criterion
is used as a fitness function in the proposed BPSO algorithm.
This approach was evaluated using vibration data of bearing
in healthy and faulty conditions. The experimental results
demonstrate the effectiveness of the proposed method.

Keywords Support vector machines (SVMs) · Particle
swarm optimization (PSO) · Regularized linear discriminant
analysis (RLDA) · Features selection ·Condition monitoring

Introduction

The importance of fault diagnosis of rotating machinery
in manufacturing industry is increasing due to the demand
for machines availability. However, the traditional engineer-
ing approaches require a significant degree of engineer-
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ing expertise to apply them successfully. Therefore, simpler
approaches are needed to allow relatively unskilled operators
to make reliable decisions without the need of a specialist to
examine the data and to diagnose the problems. Hence, there
is a demand to incorporate techniques that can make deci-
sion on the health of the machine automatically and reliably
(Yang et al. 2005). The vibration analysis, for machine con-
dition monitoring, has proven to be an appreciated tool for a
few decades for industries (Jack and Nandi 2002; Samanta et
al. 2001; Wang and Too 2002; Rafiee et al. 2007; Kurek and
Osowski 2010; Konar and Chattopadhyay 2011). Its use is
articulated around three levels of analysis: themonitoring, the
diagnosis, and the follow-up of the equipments health state.
Fault diagnosis can be carried out by learning from known
problems, such as unbalance, shaft misalignment, gears and
bearing defects. Generally, it includes three crucial steps: fea-
ture extraction, sensitive feature selection, and fault patterns
recognition.

The popularly diagnosis methods used in machine con-
dition monitoring which are based on Artificial Intelligence
(AI) belongs to two broad categories: supervised and unsu-
pervised learning. If the classes of the observations in the data
set used to train the model are known, then it is a supervised
learning approach, otherwise it is an unsupervised learning
approach (Mortada et al. 2013).

In (Gryllias and Antoniadis 2012) was reported that unsu-
pervised learning procedures present some inherent disad-
vantages over supervised learning. The data clusters result
in an unsupervised way cannot be easily attributed to spe-
cific faults, they require a-posterior intervention of experi-
enced personal. Moreover, most existing unsupervised learn-
ing methods still present stability, convergence and robust-
ness problems.

In supervised learningmethods, themostwell knownArti-
ficial Neural Networks (ANN) have been extensively used in
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fault diagnosis (Samanta et al. 2001; Jack and Nandi 2002;
Samanta et al. 2003; and Rafiee et al. 2007). Expert system
was applied in (Yang et al. 2012) for fault diagnosis of gear
box in wind turbine. Another application of this method was
presented in (Qian et al. 2008). In (Li et al. 2013b) a Fuzzy
k-Nearest Neighbor (FKNN) classifier was proposed to the
fault pattern identification of a gearbox, and two case studies
were carried out to evaluate the effectiveness of the proposed
diagnostic approach; one is for the gear fault diagnosis, and
the other is to diagnose the rolling bearing faults of the gear-
box.

Support vector machines (SVMs) introduced by Vapnik
(1995) is a relatively new computational supervised learning
method based on Statistical Learning Theory. Unlike to the
above classification methods, SVM has a global optimum
and exhibits better prediction accuracy due to its implemen-
tation of the Structural Risk Minimization (SRM) princi-
ple which considers both the training error and the capac-
ity of the classifier model. Moreover, SVM does not require
a large number of training samples (Burges 1998) and can
solve the learning problem even when only a small amount
of training samples is available (Gryllias and Antoniadis
2012). Due to the fact that it is hard to obtain sufficient fault
samples in practice, SVMs have been already proposed, for
numerous practical applications in rotating machine health
condition monitoring (Samanta et al. 2001; Yang et al.
2007; Kurek and Osowski 2010; Konar and Chattopadhyay
2011). For all the above reasons SVM is considered in this
paper.

One of the most important and indispensable tasks in any
pattern recognition system is the use of feature selection
methods to overcome the curse of dimensionality problem.
Kudo and Sklansky (2000) indicate that the reasons behind
using features selection methods are: (1) to reduce the cost
of extracting features, (2) to improve the classification accu-
racy, and (3) to improve the reliability of the estimated per-
formance. Usually two main approaches for features selec-
tion: wrapper methods, in which the features are selected
using the classifier, and filter methods, in which the selection
of features is independent of the classifier used. In the past
few years, the choice of an algorithm for selecting features
from an initial set was the focus of a great deal of research,
and a large number of algorithms have been proposed such
as Principal Components Analysis (PCA) (Sun et al. 2006),
Kernel PCA (Zhang et al. 2013a), Independent Components
Analysis (ICA) (He et al. 2013), Differential Evolution (DE)
(Khushaba et al. 2011), and Simulated Annealing (SA) (Lin
et al. 2008). In addition to the above different features selec-
tion methods, population based search procedures like: Ant
Colony Optimization (ACO), Genetic Algorithms (GA), and
Particle swarm optimization (PSO) were the focus of a great
deal of research in the past few years (Chen et al. 2010;
Jack and Nandi 2002; Yuan and Chu 2007). Some compar-

ative studies of features selection methods have been car-
ried out in (Kudo and Sklansky 2000) and (Khushaba et al.
2011).

Among the population based approaches, the application
of PSO to features selection has attracted a lot of atten-
tion. Samanta and Nataraj (2009) presented a study on the
application of PSO combined with Artificial Neural Net-
works (ANNs) and SVMs for bearing fault detection. In
this study PSO was even used to optimize classifier para-
meters such as number of nodes in the hidden layer for
ANNs and kernel parameters for SVMs. Yuan and Chu
(2007) proposed a new method that jointly optimizes the
features selection and the SVM parameters with a modi-
fied discrete particle swarm optimization. Li et al. (2007)
presented an improved PSO algorithm for training SVMs.
The PSO algorithm presented in this paper is combined
with Proximal Support Vector Machines (PSVM) for fea-
tures selection. One of the advantages of PSO method is
that the user does not have to specify the desired number
of features, as it is embedded in the optimization process.
Moreover, unlike GA and other evolutionary algorithms,
PSO is easy to implement and does not have many para-
meters that need to be handled properly to achieve a reason-
ably good performance (Du et al. 2012; Gaitonde and Karnik
2012).

In the studies mentioned above, the fitness function used
in PSO algorithms was chosen according to the classifier
performance or a desired number of selected features. In this
paper, we present a new Binary particle swarm optimiza-
tion (BPSO) which selects a feature subset that maximizes
class separability and consequently increases the classifica-
tion performance. In order to maximize the class separabil-
ity, Regularized Fisher’s Criterion (RFC) (Friedman 1989) is
chosen as a fitness function in the proposed BPSO algorithm.
Another reason behind the choice of this features selection
scheme is the formulation of SVM method which is based
on maximizing the margin between two different classes. In
addition, in real applications, the classification accuracy is
widely penalized by the overlap between the classes, espe-
cially in the multiclass case where the classifier is trained
with samples of different known levels of defects. On the
other hand, the object of the proposed fault diagnosis scheme
is not only limited to identify the presence of damage but also
to quantify its extent.

The rest of the paper is organized as follows: in the next
section, basic principle of SVMs, PSO, and Fisher’s Lin-
ear Discriminant Analysis (LDA) is presented. Third section
describes the proposed hybrid BPSO-RFC+SVM fault diag-
nosis scheme. The vibration data and features extraction pro-
cedure is given in “Experimental application” section. Fifth
section presents the performance evaluation of the proposed
fault diagnosis scheme. Finally, sixth section is dedicated to
the conclusion.
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Basic principles

Support vector machines (SVMs)

SVMis a computational learningmethodproposedbyVapnik
(1995). The essential idea of SVM is to place a linear bound-
ary between two classes of data, and adjust it in such a way
that the margin is maximized, namely, the distance between
the boundary and the nearest data point in each class is max-
imal. The nearest data points are used to define the margins
and are known as support vectors (SVs) (Samanta et al. 2003;
Konar and Chattopadhyay 2011). Once the support vectors
are selected, all the necessary information to define the clas-
sifier are provided.

If the training data are non-separable (i.e. they are not lin-
early separable) in the input space, it is possible to create a
hyperplane that allows linear separation in the higher dimen-
sion. This is achieved through the use of a transformation
that converts the data from an N-dimensional input space to
Q-dimensional feature space. A kernel can be used to per-
form this transformation and the dot product in a single step
provided the transformation can be replaced by an equivalent
kernel function. Among the kernel functions in common use
are linear functions, polynomials functions, radial basis func-
tions (RBF), and sigmoid functions. A deeper mathematical
treatise of SVMs can be found in the book of Vapnik (1995)
and the tutorials on SVMs (Burges 1998; Scholkopf 1998)

As mentioned before, SVM classification is essentially
a two-class classification technique, which has to be mod-
ified to handle the multiclass tasks in real applications e.g.
rotating machinery which usually suffer from more than two
faults. Two of the common methods to enable this adapta-
tion include the one-against-all (OAA) and One-against-one
(OAO) strategies (Yang et al. 2005).

The one-against-all strategy represents the earliest
approach used for SVMs. Each class is trained against the
remaining N − 1 classes that have been collected together.
The “winner-takes-all” rule is used for the final decision,
where the winning class is the one corresponding to the SVM
with the highest output (discriminant function value). For one
classification, N two-class SVMs are needed.

The one-against-one strategy needs to train N(N − 1)/2
two-class SVMs,where each one is trained using the data col-
lected from two classes. When testing, for each class, score
will be computed by a score function. Then, the unlabeled
sample x will be associated with the class with the largest
score.

Particle swarm optimization (PSO)

In PSO technique (Kennedy and Eberhart 1995), individuals
(particles) are composed of cells called position. The swarm
composed from these particles is randomly initialized, and

every particle in the swarm represents a potential solution.
The PSO successfully leads to a global optimum by an iter-
ative procedure based on the processes of movement and
intelligence in an evolutionary system.

Best values of each particle (personal best value pbesti,j,
global best value gbesti,j) are accumulated to be used in the
next step and also to obtain the optimal value. The velocity
and the position of the particles at the next iteration (t + 1)
are calculated in terms of the values at current iteration (t)
as follows:

vk,l(t + 1) = ωvk,l(t) + c1R1(pbestk,l − Xk,l(t))

+ c2R2(gbestk,l − Xk,l(t)) (1)

Xk,l(t + 1) = Xk,l(t) + vk,l(t + 1) (2)

where k is the index of particle, l is the index of position in
particle, t shows the iteration number, ω is called the “inertia
weight” that controls the impact of the previous velocity of
the particle on its current one. vk,l(t) is the velocity of the
kth particle in swarm on lth index of position in particle
vmin ≤ vk,l(t) ≤ vmax and Xk,l(t) is the position. R1 and R2

are the random numbers uniformly distributed in the interval
[0.0, 1.0]. c1 and c2 are positive constants with default values
2, called “acceleration coefficients”.

In the BPSO technique (Kennedy and Eberhart 1997),
each particle position is expressed as a binary bit vector com-
posed of 0’s and 1’s. The velocity vk,l is used to compute the
probability that the lth bit of the kth particle position xk,l takes
a value of 1. This determination of the position is performed
using the following formula:

Xk,l(t + 1) =
{
0 if rand() ≤ s(vk,l(t + 1))
1 otherwise

}
(3)

where rand() is the random numbers in the closed interval
[0.0, 1.0]. S(.) is a sigmoid function used to transform the
velocity vector into a probability vector as follows:

s(vk,l(t + 1)) = 1

1 + e−vk,l (t+1)
(4)

Fisher’s linear discriminant analysis (LDA)

In thepresentwork,weneed to evaluate howseparable a set of
classes are in a D-dimensional feature space by some criteria
such as the one discussed here. Fisher’s Linear Discriminant
Analysis (LDA) is a popular linear dimensionality reduction
method. LDA is given by a linear transformation matrix W
maximizing the so-called Fisher criterion (Duda et al. 2000):

JF (W ) = tr

(
WT SbW

WT SwW

)
(5)
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where Sb and Sw are the between-class scatter matrix and
the within-class scatter matrix, respectively. They have the
following expressions:

Sb =
∑c

i=1
ni (mi − m)(mi − m)T (6)

Sw =
∑c

i=1
Si (7)

where Si = ∑
x∈Di (x − mi )(x − mi )

T is the within-class
scatter matrix of class i . m = 1

n

∑c
i=1 nimi is the overall

mean vector. c is the number of classes, mi and ni are the
mean vector and number of samples of class i respectively.
tr denotes the trace of a square matrix, i.e. the sum of the
diagonal elements. W is a transformation matrix given by
the eigenvectors of Sb/Sw . Fisher’s criterion JF (W ) is a
measurement of the separability among all classes.

It is well-known that the applicability of LDA to high-
dimensional pattern classification tasks often suffers from
the so-called “small sample size” (SSS) problem arising from
the small number of available training samples compared to
the dimensionality of the sample space (Sharma and Pali-
wal 2012). Several methods have been proposed to over-
come the SSS problem. These include LDA based on the
generalized singular value decomposition (GSVD) (How-
land and Park 2004), uncorrelated linear discriminant analy-
sis (ULDA) (Ye et al. 2004), direct LDA method (DLDA)
(Yu and Yang 2001), and Regularized LDAmethod (RLDA)
(Friedman 1989). Some other related methods are reported
in (Ye and Xiong 2006) and a comparative study is done by
Park and Park (2007).

RLDA is a simple and competitivemethod. In thismethod,
when Sw is singular or ill-conditioned, a diagonal matrix λI
with λ > 0 is added to Sw. Since Sw is symmetric positive
semi definite, Sw + λI is non singular with any λ > 0.
The background theory of this method is well discussed in
(Friedman 1989; Park and Park 2007). Following the same
notation, and by replacing the regularized matrix Sw in (5),
the RFC becomes:

JF (W ) = tr

(
WT SbW

WT (Sw + λI )W

)
(8)

Therefore, the problem of singularity of the classical LDA is
solved, and the RFC can be applied in our feature selection
algorithm to measure the class separability.

The proposed BPSO-RFC+SVM based fault diagnosis
method

As shown in Fig. 1, the vibration signals are processed for
the extraction of different features. Then, the obtained dataset
matrix of size (M × L) is normalized within ±1, where M
is the number of individuals (signals) and L is the number
of features. The main advantage of the normalization is to

avoid higher valued features to suppress the influence of the
smaller ones. Another advantage is to make machine learn-
ing perform well during the calculation. Kernel values usu-
ally depend on the inner products of feature vectors, and as
a result large features values might cause numerical prob-
lems.

BPSO is used to select the most suitable features that
maximize the class separability, and consequently improve
the classification performance. The BPSO algorithm starts
with a population of particles (swarm) wherein each parti-
cle represents a possible solution of the problem of class
separability which requires to be maximized. The position
X and the velocity v of all particles of the population are
initialized randomly and have the same dimensions as the
number of features (L) in the dataset considered. The par-
ticle position is initialized randomly with 0’s and 1’s. For
example X = [

0 1 1 0 1 0 0 1 . . . 1
]
is a position vec-

tor of a particle where the bit 1 when assigned causes the
selection of the corresponding feature in the dataset and
bit 0 causes the feature to be discarded. This generates
a new feature subset corresponding to the particle under
consideration. Hence, for a population of NP particles, Np

corresponding subsets are generated. The objective of the
BPSO algorithm is to find the optimal solution (particle)
where its corresponding subset maximizes the class sepa-
rability.

The fitness value of each particle is evaluated via the RFC
according to Eq. (8). The RFC measures the distribution of
between-class scatter over the within-class scatter. The par-
ticle having a high fitness value indicates that the difference
between classes is large since the magnitude of RFC value
determines the degree of separation of classes. During the
evolutionary process looking for larger value of fitness, the
between-class scatter is maximized and at the same time the
within-class scatter is minimized. For the fitness computa-
tion, the following procedure is executed:

1. Suppose there is total K number of 1’s in the position X
of the particle under consideration.

2. Generate a new subset from the initial datasetwith only K
features to which bit 1 has been assigned. The new subset
generated is of size (M × K ). Where K represents the
number of selected features. 1 ≤ K ≤ L .

3. Compute the scatter matrixes Sb and Sw of the subset
generated by this particle using Eqs. (6) and (7) respec-
tively.

4. Estimate the transformation matrix W by the eigenvec-
tors of Sb/(Sw+λ I ), where λ is the regularization para-
meter (λ > 0) and I is an identity matrix.

5. When Sb,Sw and W are obtained, then the RFC value
(considered as the fitness value of the particle) is calcu-
lated according to the Eq. (8)
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Fig. 1 Flow chart of the proposed BPSO-RFC+SVM based fault diagnosis

At each iteration of the BPSO algorithm, the fitness value of
each particle is compared with the fitness value of its pre-
vious best personal position (Pbest). If the current position
has the better fitness value it is designated as the new Pbest
of the particle. Then, the current positions of all particles are
compared with the previous best global position (gbest) of
the population in terms of fitness value. If current position of
any one of particles is better than the previous gbest, then the
current position is designated as the new gbest.

To generate the next population (Swarm), velocities and
positions of each particle are updated according to Eqs. (1)
and (3) respectively.

Stopping the algorithm is fixed according to the number of
iterations which is initially given. The number of iterations
should be sufficient to allow the algorithm to converge to the
best solution.

The final best solution (gbest) found by the BPSO algo-
rithm is used to generate the optimal subset from the initially
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dataset (i.e the subset which allows the best class separabil-
ity). Then, the M individuals of this subset are divided into
two equally parts; the first one is used to train SVM, while
the remaining part is used to test the performance of SVM in
machine condition prediction.

Experimental application

Vibration data

Vibration data used in this paper have been obtained from
the bearing test data set of the Western Reserve University
Bearing Data Center website (Loparo 2012). These bearing
fault signals have been widely used to validate the effective-
ness of new algorithms for bearing fault diagnosis (Gryllias
and Antoniadis 2012; Zhang et al. 2013a; Shen et al. 2013).
As shown in Fig. 2, the test bed consists of a motor (left), a
coupling (center), a dynamometer (right) and control circuits
(not shown).

Motor bearings were seeded with faults using electro-
discharge machining (EDM). Faults ranging from 0.007 in.
in diameter to 0.040 in. in diameter were introduced sepa-
rately at the inner raceway, rolling element (i.e. ball) and
outer raceway. Faulted bearings were reinstalled into the test
motor and vibration data was recorded for motor loads (0, 1,
2 and 3HP), and respective rpm of each load is 1,797, 1,772,
1,750 and 1,730. The bearing monitored is a deep groove
ball bearing manufactured by SKF. The drive end bearing is
a 6205-2RS JEM with a BPFI, BPFO, and a BSF equalling
5.4152, 3.5848, and 4.7135 times the shaft frequency respec-
tively. The theoretical estimations of the expected BPFO
BPFI and BSF frequencies are presented at Table 1. The
Vibration data were collected at a sampling rate equal to
12,000Hz using accelerometers, which were attached to the
housing with magnetic bases.

Signal processing and features extraction

The features extraction is very important in vibration based
fault diagnosis. Different features and different feature

Fig. 2 The test bed

Table 1 Faults characteristic frequencies

Motor
load (HP)

Motor
speed (rpm)

Fault characteristic frequency ( f )

BPFI (Hz) BPFO (Hz) BSF (Hz)

0 1,797 162.18 107.36 141.16

1 1,772 159.92 105.87 139.20

2 1,750 157.94 104.56 137.47

3 1,730 156.13 103.36 135.90

Fig. 3 Time domain signals acquired under 2hp motor load for normal
and faulty bearing with inner race fault. a Normal, b Fault diameter of
0.007 in., c Fault diameter of 0.014 in., d Fault diameter of 0.021 in., e
Fault diameter of 0.028 in.

extractionmethods have been proposed, including signal sta-
tistical analysis in the time domain, low and high-pass fil-
tering, time synchronous averaging (TSA), Empirical Mode
Decomposition (EMD), envelope analysis, Fourier trans-
form, cepstral analysis, and wavelet transform. See (Teti et
al. 2010) for more details. This section presents a brief dis-
cussion of features extraction from time-domain, frequency-
domain, and time–frequency domain of vibration signals
which will be used in this paper.

In time-domain (Fig. 3), signals are processed to extract
the nine following statistical features: mean, crest factor,
skewness, kurtosis, and normalised five to nine central statis-
tical moments. Mathematical formula of these features can
be found in (Soong 2004).

In spectral domain, the fact that the spectrum of the raw
signal often contains little diagnostic information about bear-
ing faults because fault impulses are amplified by structural
resonances (Randall 2011), It has been established over the
years that the benchmark method for bearing diagnostics is
the envelope analysis (Sheen and Liu 2012; Stepanic et al.
2009; Yang et al. 2007; Randall et al. 2001; Li et al. 2012).
This is the reason why the envelope analysis method is used
in this paper. Usually, an envelope analysis consists of four
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Resonance band  

2*fr
2*BPFI

3*BPFI 4*BPFI 
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(a)

(b)

Fig. 4 Spectrum signal of the inner race fault acquired under 0HP
motor load. a spectrum of original signal, b envelope spectrum

operations: (a) the resonant frequency band of the structure
is determined in the original signal spectrum (Fig. 4a); (b)
a band-pass filtering is performed on the original signal in
the resonant frequency band, by which most disturbances
beyond this band are removed or greatly suppressed, and
the weak impulsive components become prominent in the
rest components; (c) the envelope signal of the filtered sig-
nal is obtained using Hilbert transform (HT); (d) fast Fourier
transform (FFT) of the envelope signal is calculated to obtain
the envelope spectrum. As shown in Fig. 4b, the fault char-
acteristics frequencies are clearly identified in the envelope
spectrum than in the original signal spectrum. In our case,
the resonance frequency band was found between 2,400 and
3,800Hz.

By using this method, the low frequency noise is elim-
inated so that the characteristic bearing frequencies can be
extracted successfully. Afterwards, features extracted from
enveloped signal are composed of the sum of Power Spectral
Density (PSD) values, calculated at f ±σ f , 2∗ f ±σ f , 3∗ f ±
σ f , 4∗ f ±σ f, where f is the average fault characteristic fre-

Fig. 5 Wavelet packet Decomposition tree at level 3

quency (BPFO, BPFI, or BSF), and σ f is the standard devi-
ation of fault frequencies estimated with four motor speeds
of Table1. Hence, a feature set containing 5 features for each
sample is obtained, where the fifth one is the sum of PSD
values calculated in the total band [ f − σ f , 4∗ f + σ f ].

Taking into account the non-stationary property of the
bearing vibration signals, which contains numerous non-
stationary or transitory characteristics, Wavelet Packet
DecompositionWPD is a suitable tool which has been inten-
sively investigated and applied on nonstationary vibrations
signal processing, especially on vibration signal features
extraction (Li et al. 2013; Zhang et al. 2013b).Wavelet packet
decomposition is developed fromwavelet, which shows good
performance on both high and low frequency analysis (Mal-
lat 2003). The selection of the mother wavelet can influence
the WPT efficiency. Rafiee et al. (2010) have shown that the
Daubechies 44 wavelet is the most effective for both faulty
gears and bearings. Hence, db44 is adopted in this paper.
The signal is firstly decomposed into p wavelet coefficients
(p = 2q , and q denotes the wavelet level). In general, the
maximum wavelet packet decomposition depth of 3 is effec-
tive for features extraction purpose (Shen et al. 2013). By
applying three depths WPT decomposition to the original
signal with Db44 mother wavelet, the WPT decomposition
coefficients are obtained (Fig. 5). In order to obtain further
input features for SVM, the kurtosis and energy of the 14
coefficients obtained from all depths are calculated. As result
another feature set containing 28 features is obtained.

The procedure of features extraction in time domain, spec-
tral domain, and time-spectral domain is repeated with all
vibration signals, and as result a total of 42 features are
obtained.

Performance evaluation of the proposed fault diagnosis
scheme

In the present section, the ability of the proposed method to
detect faults is evaluatedwith two different cases. First, SVM
performance is evaluated using the entire feature set extracted
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Table 2 Description of data set considered in fault identification case

Case study Number of classes Training samples Testing samples Operating condition Fault size (in.)

Fault identification 4 32 32 Normal –

Inner race 0.007

Outer race 0.007

Rolling element 0.007

Table 3 Description of data sets considered in 3 cases of fault level identification

Case study Number of classes Training samples Testing samples Operating condition Fault size (in.)

Inner race fault level 5 40 40 Normal –

Inner race 0.007

Inner race 0.014

Inner race 0.021

Inner race 0.028

Outer race fault level 4 32 32 Normal –

Outer race 0.007

Outer race 0.014

Outer race 0.021

Rolling element fault level 5 40 40 Normal –

Rolling element 0.007

Rolling element 0.014

Rolling element 0.021

Rolling element 0.028

in the above sub section (42 features). In the second, SVM
performance is evaluated with only the optimal feature set.

SVM performance with the entire feature set

In real cases of studies when damage appears, the estima-
tion of the bearing’s remaining useful life and the machine
performance would require not only the process of identify-
ing the presence of damage but also to quantify the extent
of damage based on the information extracted from the mea-
sured system response. For this reason, the performance of
SVM is firstly evaluated in fault identification case (inner
race, outer race, or rolling element). Table 2 describe the
vibration data set used in this case which is composed of 20
vibration signals and cover a normal condition and the three
above faulty conditions of bearingwith the smallest fault size
(0.007 in.) in each one, which means early detection of the
defect. Secondly, after detection and identification of fault,
SVM performance is evaluated in fault level identification.
In this case, three vibration data sets were used where each
one cover a normal condition and all levels of the faulty con-
dition. Table 3 describe the vibration data sets used in these
cases of fault level identification.

In order to obtain sufficient samples for all classification
cases, each signal was divided into 4 equal samples. After-
wards, the 42 features described in “Signal processing and
features extraction” section are extracted from each sample.
The procedure of features extraction was repeated with all
samples in different cases studies. Hence, we obtain a data
base of 64 × 42 in fault identification case. While in fault
level identification we obtain three data bases; 80 × 42 in
inner race case, 64 × 42 in outer race case, and 80 × 42
in rolling element case. Then, each data base is partitioned
into two equally sized subsets; the first one is used to train
SVMs, while the second is used for the test. Data sets were
normalised by dividing each column by its absolute maxi-
mum value keeping the inputs features within ±1 for better
speed and success of the SVM training.

A large corpus of experiments has been carried out. Table 4
and Table 5 illustrate the classification performance using the
entire feature set with two different multiclass SVM strate-
gies; OAO and OAA. Each value indicates the classification
accuracy obtained with three different kernels; linear, RBF,
and sigmoid. A specific point worth noting is that the penalty
parameter “c” and kernel parameters “σ” are selected among
those which lead to the best classification performance using
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Table 4 SVMs performance in fault identification using the entire fea-
ture set

Case study Kernel SVM test accuracy (%)

OAO OAA

Fault identification Linear 96.87 93.75

RBF 100 96.87

Sigmoid 93.75 90.62

Table 5 SVMs Performance in fault level identification using the entire
feature set

Case study Kernel SVM test accuracy (%)

OAO OAA

Inner race fault level Linear 95 92.5

RBF 97.5 97.5

Sigmoid 95 95

Outer race fault level Linear 84.37 81.25

RBF 96.87 90.62

Sigmoid 93.75 87.5

Rolling element fault level Linear 92.5 72.5

RBF 90 90

Sigmoid 82.5 77.50

cross validationmethodwhere “c” varies in the range [1, 103]
and “σ” varies in the range [10−1, 10]. Results show that the
use of different kernels affects significantly the classification
performance. Clearly, the best performance for both multi-
class SVM strategies is obtained using RBF kernel. Further
analysis of these results shows that OAO strategy has higher
classification accuracies than OAA in all considered cases.
Using RBF kernel and OAO strategy, SVM achieved 100%
in fault identification case, while in fault level identifica-
tion cases it achieved respectively 97.5% in inner race case,
96.87% in outer race case, and 90% in rolling element case.

BPSO-RFC+SVM performances

In order to investigate SVMs classification performance with
a sensitive selected feature subset, the proposed BPSO-
RFC+SVM is applied on the all cases mentioned in Table 1
and Table 2. BPSO-RFC algorithmwas implemented inMat-
lab and has been initialized with the following parameters
values:

• Swarm size=30 particles.(values recommended by
Samanta and Nataraj (2009) between 20 and 50)

• Particle size=42 (Equal to the number of the extracted
features, see “Signal processing and features extraction”
section)

Fig. 6 Convergence ofBPSO-RFCalgorithm to the best fitness respect
to the iterations number

• ωmin = 0.1, ωmax = 0.6, vmin = −2, vmax = 2, c1 = 2,
c2 = 2, R1 and R2: randomly generated between 0 and 1
(see “Particle Swarm Optimization (PSO)” section).

• Number of iteration Ni = 200.

In order to analyze the results, one can start by looking at
the convergence of the proposed BPSO-RFC based features
selection algorithm. Figure 6 shows that BPSO-RFC algo-
rithm reaches the global best solution after around 30 gener-
ations. This can prove that the number of iterations initially
given is sufficient. On the other hand, Figs. 7, 8, 9, and 10
present 3D scatter plot of data using PCA which illustrate
graphically the influence of the selected feature subset on
class separability. It is very clear that in all cases of study,
data is well separated with the selected feature subset than
using the entire feature set initially extracted.

In order to evaluate how the proposed BPSO-RFC+SVM
approach improves the classification performance, SVM is
trained with the optimal feature subset, and then the test data
set is used to evaluate SVM performance. Table 6 shows the
classification performances in fault identification case, while
Table 7 shows the performance in fault level identification
cases. By comparison of results in Tables 6 and 7 with those
of Tables 4 and 5, respectively, it can be seen that BPSO-
RFC+SVM has high classification accuracy than SVM with
the entire feature set. Sure enough, BPSO-RFC+SVM with
RBF kernel achieve 100% in fault identification case with
only 21 features, and 100% in all fault level identification
cases with 28 features in inner race case, 19 features in outer
race case, and only 13 features in rolling element case. This
can confirm the efficiency of the proposed BPSO-RFC algo-
rithm in selecting the optimal feature set which maximize
class separability and consequently increase the classifica-
tion accuracy of SVM.
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Fig. 7 Scatter plots of data used in fault identification case; a using the entire feature set, b using the selected feature subset (21 features)

Fig. 8 Scatter plots of data used in inner race fault level identification; a using the entire feature set, b using the selected feature subset (28 features)

Fig. 9 Scatter plots of data used in outer race fault level identification case; a using the entire feature set, b using the selected feature subset (19
features)
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Fig. 10 Scatter plots of data used in rolling element fault level identification case; a using the entire feature set, b using the selected feature subset
(13 features)

Table 6 BPSO-RFC+SVM
Performance in fault
identification case

Case study Input features Kernel BPSO-RFC+SVM test accuracy (%)

OAO OAA

Fault identification 21 Linear 100 100

RBF 100 100

Sigmoid 100 96.87

Table 7 BPSO-RFC+SVM
Performance in fault level
identification cases

Case study Input
features

Kernel BPSO-RFC+SVM
test accuracy (%)

OAO OAA

Inner race fault level 28 Linear 100 100

RBF 100 100

Sigmoid 100 97.5

Outer race fault level 19 Linear 100 96.87

RBF 100 100

Sigmoid 100 100

Rolling element fault level 13 Linear 92.5 90

RBF 100 97.5

Sigmoid 95 95

Conclusion

In this paper, a BPSO-RFC+SVM algorithm is described.
In this approach, the selection of sensitive features is done
according to RFCwhichmeasures the class separability. This
later is used as a fitness function in the proposed BPSO
algorithm. Experimental data sets are used to evaluate the
performance of the proposed method in fault detection in
addition to fault level identification of bearing. Experimental
results demonstrate the effectiveness of our method. More-

over, BPSO-RFC has the ability to quickly converge to the
best solution. On the other hand, the performance of SVMs
has been found to be substantially better with the OAO strat-
egy and the best accuracy of SVMs was obtained with RBF
kernel.
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