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Abstract This paper aims at the straight and U-shaped
assembly line balancing. Due to the uncertainty, variability
and imprecision in actual production systems, the processing
time of tasks are presented in triangular fuzzy numbers. In
this case, it is intended to optimize the efficiency and idle-
ness percentage of the assembly line as well as and con-
currently with minimizing the number of workstations. To
solve the problem, a modified genetic algorithm is proposed.
One-fifth success rule in selection operator to improve the
genetic algorithm performance. This leads genetic algorithm
being controlled in convergence and diversity simultaneously
by the means of controlling the selective pressure. Also a
fuzzy controller in selective pressure employed for one-fifth
success rule better implementation in genetic algorithm. In
addition, Taguchi design of experiments used for parame-
ter control and calibration. Finally, numerical examples are
presented to compare the performance of proposed method
with existing ones. Results show the high performance of the
proposed algorithm.
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Introduction

The competitive market leads producers to promote their
manufacturing systems bymore efficient and effective plan in
a short period of time. So, in actual design of amanufacturing
system, programmingan efficient assembly line continuously
was an important and controversial issue in the past decades
(Baudin 2002). The manufacturing assembly line for the first
time introduced by Henry Ford in the early 1900s (Fonseca
et al. 2005). The assembly line balancing problem (ALBP)
involves assigning needed tasks for producing a product as
series or batches to a set of workstations, so that objective
functions being optimized subject to limitations (Boysen et
al. 2007). From this point of view, tasks sequence is the most
important issue that should be considered in an assembly line
development (Kao 1976).

There are numerous reviews about ALBP in the litera-
ture (Boysen et al. 2007; Battaïa and Dolgui 2013; Baybars
1986b; Becker and Scholl 2006; Ghosh and Gagnon 1989;
Scholl 1999; Scholl and Becker 2006; Tasan and Tunali
2008), and classified it generally into two main types of
Simple ALBP (SALBP) and Generalized ALBP (GALBP).
GALBP versions have the extra features such as cost goals,
station parallelization, mixed-model production, etc. in com-
parison with SALBPs (Becker and Scholl 2006). SALBP
versions from goal point of view presented in Table 1.

SALBP-F is a feasibility problem for a given combi-
nation of time cycle and workstations number. SALBP-
1andSALBP-2 are dual of each other, because the SALBP-
1goal isminimizing theworkstation number for a given cycle
time, while the SALBP-2 goal is minimizing the cycle time
for a given workstations number. In SALBP-E cycle time
and workstations number ought to be minimized simultane-
ously so that efficiency can be maximized. In addition to the
presented classification, assembly lines can be divided into
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Table 1 Versions of SALBP (Scholl and Becker 2006)

No. of workstation Cycle time

Given Minimize

Given SALBP-F SALBP-2

Minimize SALBP-1 SALBP-E

two categories, respecting to their layout, Straight Assem-
bly Lines and U-Shaped Assembly Lines. Straight assembly
line considered as one of the most important traditional mass
production sections, and then U-shaped assembly lines was
defined to reduce the costs and improve Just-In-Time (JIT)
(Monden 1983). On the other hand, it can be divided into
single models and mixed models respecting to their types of
products (Boysen et al. 2007). In the single model of assem-
bly line, only one product can be produced in manufacturing
line, and others that can produce more than one product,
called mixed model assembly lines.

SALB problem is a single model for straight assem-
bly line balancing and U-shape layout SALB called Simple
U-line balancing (SULB).

The ALBPs were proven to be NP-hard by Gutjahr and
Nemhauser (1964) and Ajenblit and Wainwright (1998).
Therefore, according to the difficulty of such problems,
lots of efforts exploited to development and expansion of
heuristic methods such as the ranked positional weighting
technique (RPWT) (Helgeson and Birnie 1961), COMSOAL
technique (Arcus 1966), MALB technique (Dar-El 1973),
MUST technique (Dar-El and Rubinovitch 1979, and LBHA
method (Baybars 1986a), A critical path method (CPM)
based approach (Avikal et al. 2013), and also meta-heuristic
methods such as genetic algorithm (GA) (Ajenblit and
Wainwright 1998; Falkenauer and Delchambre 1992), sim-
ulated annealing (SA) (Baykasoglu 2006), Tabu search (TS)
(Peterson 1993; Lapierre et al. 2006), Particle swarm opti-
mization (PSO) (Jian-sha et al. 2009), and ant colony opti-
mization (ACO) (Sabuncuoglu et al. 2009).

A multi-objective GA for solving U-shaped Assembly
Line problem proposed by Hwang et al. (2008), and they
did a comparison between Straight and U-shaped Assembly
Lines. Kim et al. (2009) rendered a mathematical model and
GA for A two-sided assembly line. In Hwang and Katayama
(2009) work a multi-decision genetic approach for solving
mixed-model U-shaped lines have been proposed which val-
idated through a case study. A TS algorithm for solving two-
sided assembly line problem prepared by Özcan and Toklu
(2009) and the results benchmarked by existed approaches.
An adaptive GA for solving ALBP offered by Yu and Yin
(2010) which they proofed their algorithm efficiency with
an example. In another noteworthy work a hybrid GA pro-
posed by Akpınar and Mirac Bayhan (2011) and deployed
for solving ALB mixed model with parallel workstation and

zoning constraints. Zhang and Gen (2011) used a multi-
objective GA to solve mixed-model assembly lines. Kazemi
et al. (2011) proposed a two-stage GA for solving mixed-
modelU-shaped assembly lines. Nearchou (2011) used novel
method based on PSO for SALBP and compared it with exist-
ing method. Rabbani et al. (2012) proposed a heuristic algo-
rithmbasedonGAformixed-model two-sided assembly line.
Chang et al. (2012) focused on productivity in printed circuit
board assembly line and rendered a GA with External Self-
evolving Multiple Archives solving this problem. Chutima
and Chimklai (2012) used a PSO to solve multi-objective
two-sided mixed-model assembly line and showed if their
proposed algorithm be combined with local search scheme
quality of its solution set would be better. In another work,
Purnomo et al. (2013) offered a mathematical model for two-
sided assembly line and solved it with GA and iterative first-
fit rule method, and lastly compared result of these meth-
ods. Manavizadeh et al. (2013) proposed a SA for a mixed
model assembly U-line balancing type-I problem and com-
pared algorithm results with exact method. Yuan et al. (2013)
proposed an integer programming modeland a new meta-
heuristic for mixed-model assembly line problem. Hamza-
dayi and Yildiz (2013) used a SA algorithm for problems
line balancing and model sequencing in U-shaped assembly
lines. Dou et al. (2013) proposed a discrete PSO for solv-
ing SALBP-1 and compared their results with GA. Kalayci
and Gupta (2013) used a PSO with a neighborhood-based
mutation operator for solving sequence-dependent disassem-
bly line balancing. Li et al. (2014) created a mathematical
model and a novel multi-objective optimization algorithm to
solvetwo-sided assembly line. Delice et al. (2014) proposed a
modified PSO for two-sided assembly line problem. Zha and
Yu (2014) proposed a hybrid ant colony algorithm for solv-
ing U-line balancing and rebalancing problem and compared
their algorithm results with existing methods. Al-Zuheri et
al. (2014) considered mixed-model assembly line and used
a GA to solve it.

Among these meta-heuristic methods, most of studies
were devoted to GA and these previous research has indi-
cated that there must be sufficient motivation to use this pop-
ular algorithm for solving emerged and defined problem. To
perform a controlled random search for identifying the opti-
mal solution, an alternative traditional optimal technique in
the complex circumstances was provided (Tasan and Tunali
2008).

Concentration of many researchers on GA and its popu-
larity was author motivation to improve the performance of
this meta-heuristic through a modification as a part of con-
tribution of this paper and put it into practice to solve the
mentioned controversial problem.

Numerous works reviewed which solved ALBPs in crisp
circumstance whilst actual world problems usually deal with
uncertainty and vagueness. To represent uncertainty, fuzzy
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numbers can reflect the ambiguity of real data well. There
is a considerable attention in the ALBPs literature that only
some of themmanaged to solve such problems in fuzzy envi-
ronment. In other words, in comparison with crisp ALBPs,
a few numbers of researchers focused on fuzzy ALBP so far
(Scholl and Becker 2006; Tasan and Tunali 2008). Between
the articles used in solving fuzzyALBP by précisedmethods,
researches (Toklu and özcan 2008; Kara et al. 2009; Zhang
and Cheng 2010; La Scalia 2013) are noticeable.

Through the studies in this area, ones that use heuristic
and meta-heuristic methods for solving the ALBP in fuzzy
environment are rare. In the 90s Tsujimura et al. (1995) and
Gen et al. (1996) initialized using fuzzy GA for this prob-
lem. With a typical GA provided that the tasks processing
time was presented in fuzzy numbers, they solved SALBP-
1. While Brudaru and Valmar (2004) proposed a combined
GA with Branch and Bound method to solve SALBP-1.
Fonseca et al. (2005) presented modified Ranked Positional
Weighting Technique and COMSOAL method with fuzzy
numbers, and applied it to solve these sort of problems.
Hop (2006) proposed a heuristic method to solve a fuzzy
mixed-model ALBP. Zhang et al. (2009) prepared a heuris-
tic method to solve SULBP with fuzzy numbers. Özbakır
and Tapkan (2010) presented a model for two-sided ALBP
and solved this problem by Bees algorithm. Zacharia and
Nearchou (2012) also introduced a multi-objective GA to
solve SALBP-2 with fuzzy numbers, in which they applied
weighted sum of objectives. Zacharia and Nearchou (2013)
presented a meta-heuristic algorithm based on genetic algo-
rithm for solving SALBP-E.

As mentioned, since numerous researchers used GA and
its popularity, this paper tends to improve performance of
this algorithm through a modification. Also this is notewor-
thy that no research considered and solved SULB-1 using
meta-heuristic methods in fuzzy circumstance. So this paper
considered the SALB-1 and SULB-1 inwhich amodifiedGA
presentedwith the one-fifth success rule that result in enhanc-
ing the performance. A fuzzy controller for better adapta-
tion between GA and one-fifth success rule have rendered
and also the parameters of proposed algorithm calibrated by
Taguchi design of experiments. Due to the uncertainty in the
real world, fuzzy numbers have been used to represent the
assembly line cycle and processing time.

The rest of the paper is organized as follows: In “Problem
formulation” section, the main characteristics of SALBP and
SULBP are represented. In “Fuzzy numbers arithmetic and
ranking” section, fuzzy arithmetic is provided as well as a
number of criteria to sort fuzzy numbers. Genetic algorithm,
one-fifth success rule and also the procedure of genetic algo-
rithm modification with one-fifth success rule are presented
in “Genetic algorithm” section. In “Comparison” section, at
first the parameters of proposed algorithm would be cali-
brated using Taguchi method, and after that the proposed

algorithm would be examined by benchmarks and its result
would be compared with existing methods. Finally, conclu-
sions and some guidelines for future studies are provided in
“Conclusion” section.

Problem formulation

This section represents the main characteristics of SALBP-
1 and SULBP-1. As mentioned before, assembly line is a
series of locations which is called workstations, and a subset
of tasks that are performed and need to be done for produc-
tion of a unit in these locations (Gen et al. 1996). For these
problems, the available information is as follows (Miltenburg
and Wijngaard 1994):

• A given set of tasks J = {i |i = 1, 2, . . . n}.
• The set of tasks’ needed time which is shown as T ={

t̃i |i = 1, 2, . . . n
}
.

• Each task’s allocated time that will be presented as trian-
gular fuzzy number (TFN).

• The set of precedence relations P = {(a, b)|task a must
be completed before task b}.

• Maximum allowed fuzzy cycle time
(
C̃max

)
.

Symbols of this article are listed below:

• t̃i : Fuzzy processing time that is represented by TFNs.
• Sk : Set of activities which done in k workstation Sk =

{i |task i is done at workstation k},∀k = 1, . . . ,m
• t̃ (Sk): Fuzzy time that every workstation needs to com-
plete all the required tasks.

• c̃ : Assembly line’s fuzzy cycle time, i.e. max
k

{
t̃ (Sk)

}
.

• C̃max : Maximum allowed fuzzy cycle time.
• T̃ : Total processing time.
• Ĩk : Fuzzy idle time for workstation Sk, (k = 1, . . . ,m).
• Ẽ : Fuzzy balance efficiency.
• Ĩ D Fuzzy idle percentage of assembly line.

In this problem, there are a number of workstations which are
presented by set of WS = {ws1, ws2, . . . , wsm}, and each
task should be assigned only to one of these workstations. In
addition, the “J” set should be allocated into workstations,
so that the limits of Eqs. (1)–(3) are satisfied (Tsujimura et
al. 1995; Gen et al. 1996):

m⋃

k=1

Sk = J (1)

Sk
⋂

k �=l

Sl = ∅ (2)

∑

iεSk

t̃i ≤ C̃max k = 1, 2, . . . ,m (3)
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The first and second constraints guarantee that all tasks allo-
cated to the workstations and each task will be allocated only
to one workstation. The third one ensures that each worksta-
tion cycle time will not be greater than maximum allowable
fuzzy cycle time. In SALB, j th work can be allocated to kth
workstation, only when its prior tasks have been assigned
to 1, 2 . . . kth workstations, whilst in SULB, the j th task
can be allocated to kth workstation, only when all its pre-
decessor tasks or/and all its successor tasks have been allo-
cated to 1, 2 . . . kth workstations (Miltenburg andWijngaard
1994). Thus, in tasks allocation, constraint equation (4) for
SALB and constraint equation (5) for SULB should be met
(Miltenburg and Wijngaard 1994).

I f (a, b) ∈ P, a ∈ Sk, b ∈ Sl , then k ≤ l, f or all a;
(4)

I f (a, b) ∈ P, a ∈ Sk, b ∈ Sl , then k ≤ l, f or all a;
or, I f (b, c) ∈ P, b ∈ Sk, c ∈ Sr , then r ≤ k, f or all c;

(5)

Constraint (4) is defined for SALB and ensures its com-
pliance with predecessor constraints. Also constraint (5) is
defined for SULB, guaranteeing the compliance of at least
one of the predecessor or successor constraints.

Beside the main goal of SALBP-1andSULBP-1, that is
minimizing the number of workstations, it’s possible to
define other goals for comparing the solutions with same
workstation numbers. According to the problem, there are
following result [Eqs. (6)–(11)] (Fonseca et al. 2005; Zhang
et al. 2009):

t̃ (Sk) =
∑

iεSk

t̃i , k = 1, . . . ,m (6)

c̃ = max
k

{
t̃ (Sk)

}
(7)

Ĩk = C̃max − t̃ (Sk) , k = 1, . . . ,m (8)

T̃ =
m∑

k=1

t̃ (Sk) (9)

Ẽ = T̃ /(m × c̃) (10)

˜I D =
∑m

k=1
(C̃max − t̃ (Sk))

/
(m × C̃max ) (11)

Figure 1 determines the main difference between SALB
and SULB. It depicts a SALB and a SULB, with the cycle
time of 10min. Each node represents a task and the number
above, represents the processing time for each node. As seen,
in the SALB, the tasks are allocated to fiveworkstations (with
efficiency of 39/50). Instead, in SULB, tasks are allocated to
4 workstations (with efficiency of 39/40).

Equation (6) calculates the fuzzy cycle time of each work-
station andEq. (7) calculates the fuzzy cycle timeof assembly
line. Formula (8) calculates the fuzzy idle percentage of the
assembly line. By Eqs. (9) and (10), the fuzzy efficiency of

Fig. 1 Straight assembly line (a), U-Shaped assembly line (b)

X

Fig. 2 Triangular fuzzy number

assembly line and by Eq. (11) fuzzy idle percentage of the
assembly line could be calculated.

Fuzzy numbers arithmetic and ranking

This section provides fuzzy arithmetic as well as a num-
ber of criteria to rank fuzzy numbers. Because of vagueness
and uncertainty in the real world, data are fuzzy numbers.
In this paper, as shown in Fig. 2, TFNs are used to present
the processing time of the tasks. A TFN can be characterized
by three parameters Ã = (A1, A2, A3). The reason of using
triangulated data in this paper is because of its computational
simplicity in comparison with other fuzzy data, as its con-
sidered calculations in Eqs. (12)–(15) (Kaufmann and Gupta
1991):

Ã + B̃ = (A1 + B1, A2 + B2, A3 + B3) (12)

Ã − B̃ = (A1 − B1, A2 − B2, A3 − B3) (13)

Ã × B̃ = (A1 × B1, A2 × B2, A3 × B3) (14)

Ã/B̃ = (A1/B3, A2/B2, A3/B1) (15)

The operator ≤ used for comparing two fuzzy numbers in
formula (3) whilst for comparison and TFNs ranking fol-
lowing criteria will be used for prioritization (Bortolan and
Degani 1985):
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• Criterion 1: The data is greater which in terms of the
three points weighted average (Beginning, Peak, End) be
greater [Eq. (16)]

• Criterion 2: The data is greater which in terms of the
midpoint, be greater [Eq. (17)].

• Criterion 3: The data is larger so which in terms of dis-
tance between the beginning and end point is greater
[Eq. (18)].

F1 = A1 + 2 × A2 + A3

4
(16)

F2 = A2 (17)

F3 = A3 − A1 (18)

For comparing some TFNs, initially, the criterion1
[Eq. (16)] is used, If the first criterion cannot determine the
major TFN, the criterion2 [Eq. (17)] is used, and so on.

Genetic algorithm

Genetic algorithm (Holland 1975) is a popularmeta-heuristic
algorithms. The majority of GAs consists of the following
steps:

Step 1. Determine population size (nPop), maximum
number of iteration (Itr), migration rate (α%), crossover
rate (β%), and the mutation rate (γ%), so that satisfy
α + β + γ = 100% (α is the ratio of chromosomes that
migrate from a generation into the next. Also β and γ are
the ratio of chromosomes which are advent in each gen-
eration by the crossover and mutation operations respec-
tively).
Step 2. Generate initial population, using random num-
bers.
Step 3. Calculate fitness function for each chromosome.
Step 4. In case of satisfying the stopping criteria, the
algorithm stops, otherwise goes to step five.
Step 5.Create the newgeneration, by the followingmeth-
ods:

• Selection of α%of chromosomes from previous gen-
eration (this selection is based on fitness, or random,
or other methods) and placing them in the next gen-
eration.

• Crossover act on the β% of the generation and place
their children in the next generation.

• Mutation act on the γ% of the previous generations
and placing new chromosomes in the next generation
(to escape from the local optimum).

Step 6. Repeat the Steps 3 and 4.

The GA’s general diagram is displayed in Fig. 3.

Yes

No

Stop

Start

Set nPop, Itr, 

Initial Generation

Fitness Evaluation

Iteration > MaxItr

CrossoverMutation

Migration 
Population 
Selection

New Population

Fig. 3 General diagram of genetic algorithm (Holland 1975)

If the GA operators are defined properly and well adapted
to the problem, this algorithm would be efficient to solve the
problem. So, first of all, the algorithm operators ought to be
defined for the ALBP. To generate the initial chromosomes,
permutations from one to the number of tasks will be gener-
ated randomly, and to satisfy the predecessor restrictions, the
generated chromosome should be repaired, if it’s necessary.
For example, suppose that there are eight tasks that should be
optimal, in terms of sequencing. Using random numbers, a
permutation would be generated from one to eight, for exam-
ple [1 3 5 4 7 8 2 6], as a chromosome.

Suppose that one of the precedence relation constraints is
necessary for second task to be done before fifth task that
it makes the generated chromosome infeasible and must be
repaired. To repair this chromosome, a gene containing the
second task is to be placed before the gene containing fifth
task, and after repairing the initial chromosome it would be
reordered into: [1 3 2 5 4 7 8 6].

After repairing the chromosomes, the tasks should be allo-
cated to workstations. If the current workstation is k, for
assigning tasks to theSALB, the task of assigning sorted tasks
in chromosome to kth workstation will continue, until the
workstation’s cycle time doesn’t pass the maximum allowed

fuzzy cycle time (if the expression
{∑

iεSk t̃i + t̃ j ≤ C̃max

}

is satisfied, then t̃ j will be assigned into the current worksta-
tion, otherwise a new workstation will be built).

Differences between the task allocations to SALB with
allocation of the same task to the SULB is that in the SALB
the tasks should be selected from the beginning of the chro-
mosome and be assigned to the workstations, whilst in the
SULB tasks can be selected from the beginning or from the
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end of the chromosome. After allocating tasks to the work-
stations, one has to calculate fitness function or cost for each
chromosome and then with the help of existing operators
(Selection, Crossover, and Mutation) produces a new gener-
ation. For “Selection” operator, Random selection, Roulette
Wheel selection, Tournament selection etc. can be exploited
(Haupt and Haupt 2004). Also, In this paper, three methods
of Single-Point Crossover, Two-Point Crossover and Uni-
form Crossover are used for “Crossover” operator (Haupt
and Haupt 2004). There are different methods for the “Muta-
tion” operator. In this paper, two genes and swapping them
with eachother is selected randomly (Haupt andHaupt 2004).
What should be noted here is that after crossover and muta-
tion, the child chromosome (due to predecessor constraints)
may be infeasible in this case, so the produced chromosome
should be repaired.

One-fifth success rule

One-fifth success rule is introduced by Rechenberg (1973)
for the evolutionary strategies (ES) algorithm (that is a meta-
heuristic method per se) at first, that is a meta-heuristic
method per se. Like GA, ESs use mutation and crossover
of chromosome for evolution of the generations. Each chro-
mosome is presented as (x1, x2, . . . , xn, σ ) that xi s are the
problem’s variables and presented by real numbers, and σ

is the mutation step length. Rechenberg (1973) mathemati-
cally had been proved one-fifth success rule for theESswith a
chromosome and a child. This rule says that if the ratio of the
number of successful mutations to number of total mutations
is equal to one-fifth, then the convergence rate to the optimum
solution will be maximum rate. For mutation in ES, several
methods are proposed that one of them as formula (19) is
adding a random normal value to all genes.

x ′
i = xi + N (0, σ ) (19)

The value of σ is determined by one-fifth success rule, dur-
ing the algorithm. One-fifth success rule will follow three
conditions to achieve the maximum convergence rate:

• Mode1. If the probability of success in past k-populations
was equal to one-fifth, the mutation step length (σ ) will
not change.

• Mode2. If the probability of success in past k-populations
wasmore than one-fifth, themutation step length (σ )will
increase.

• Mode3. If the probability of success in past k-populations
was less than one-fifth, the mutation step length (σ ) will
decrease.

In the cited modes, mode 2 used for prevent premature con-
vergence by creating diversity in generations and mode 3

Fig. 4 General diagram of one-fifth rule

used for increase the speed of convergence. In fact, this algo-
rithm considers diversity and convergence, simultaneously.
If the diversity of chromosomes is low, to escape the local
optimum, the step length to search awider area of the solution
space increased here and if the convergence of chromosomes
is low, for converge chromosomes to optimum solution, the
search space narrowed by reducing the step length. The gen-
eral diagram of one-fifth success rule is shown in Fig. 4 (C is
a constant,β is equal to 1

past k−populations , Ps is the probabil-
ity of success in past k generations, t is the iteration number,
Xt presents the chromosomes in the time of t , F(Xt) is the
chromosomefitness function in the time of t , σ 0 and σ are the
Standard deviation from first step and next steps respectively.

Combined GA with one-fifth success rule

As mentioned before, the one-fifth success rule considers
diversity and convergence simultaneously for better search.
Also in GA for simultaneous influence on diversity and con-
vergence, one could use selective pressure (the probability
of selecting the best member of the population, compared to
the average probabilities of selecting the other members of
the population). In other words, by controlling the selective
pressure, diversity and convergence could be optimum simul-
taneous. To do this, the selection operator must be defined
according to the fitness and selective pressure that has to be
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entered in selective operator. In this paper, to link between fit-
ness of each chromosome and its selection probability,Boltz-
mann method is used Goldberg (1990), as in Eq. (20) (SP is
the Selective Pressure, fv is the fitness of vth chromosome,
and Pv is the probability of selecting vth chromosome).

Pv ∝ eSP× fv (20)

According to the Eq. (20), the more fitness of the chromo-
some means more probability of selection of the chromo-
some. Summation of all probabilities ought to be equal to
one. Thus, the probability of selecting each chromosome is
divided by the summation of probabilities (Eq. (21), N is
population size).

Pv = eSP× fv

∑N
i=1 e

SP× fv
(21)

In order to be able to successfully enter the one-fifth success
rule in probabilities, initially it should sort the existing popu-
lation on the basis of chromosome fitness. Then, by increas-
ing or decreasing of the SP, it has tried the ratio of total
probability of the bottom half of the population [the Weaker
Half Probability (WHP)] be equal to one-fifth, in the other
hands invoking the one-fifth success rule tend to tune the SP
[formula (22)].

WHP =
N∑

v=[ N2 ]+1

Pv = 1

5
(22)

SP controller

However, due to the continuous nature of the solution space,
reach to the number of one-fifth is difficult (or even impos-
sible). So, fuzzy terms and fuzzy rules are applied as SP
controller in this paper. Some of used fuzzy terms defined as
“Small”, “Good”, and “Big”. These fuzzy termsmembership
functions are presented in Fig. 5.
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Fig. 5 Fuzzy terms membership function

If the WHP is small, the SP should be limited [For-
mula (23)] otherwise it could be aroused [Formula (24)],
(DoF = Degree of Firing).

IfWHPisSmall; then, SPt+1

= SPt ×
{
1 +

(
WHP − 1

5

)
× DoFSmall

}
(23)

IfWHPisBig; then, SPt+1

= SPt ×
{
1 +

(
WHP − 1

5

)
× DoFBig

}
(24)

As seem in rules (23) and (24), more distance ofWHP from
one-fifth (center of good membership function) lead to more
SP variation in direction of one-fifth. Also, DoF help for
lower fluctuation and SP convergent. Besides, use ofmomen-
tum can be useful to increase the convergence celerity (For-
mula (25)–(26)).

IfWHPisSmall; then, SPt+1

= SPt ×
{
1 +

(
WHP − 1

5

)
× DoFSmall

}
+ α (�SPt )

(25)

IfWHPisBig; then, SPt+1

= SPt ×
{
1 +

(
WHP − 1

5

)
× DoFBig

}
+ α (�SPt )

(26)

α presents the momentum in formula (25)–(26). In fact, SP’s
variation and direction in every iteration (�SPt ) have an
effect on SP in the next iteration (SPt+1) that tend to con-
vergence celerity.

Defined fuzzy rules effect on SP iteratively, whilst the
WHP satisfy the defined fuzzy term of good. Scilicet WHP
approximately being equal to the 1

5

(
WHP ∼= 1

5

)
.

Comparison

In this section, first of all the parameter control mechanism
would be considered an after that the proposed modified GA
would be benchmarked with standard functions and after that
proposed algorithm examined with bench-marks of SALBP-
1 and SULBP-1. And lastly comparison between proposed
algorithm and existing method would be rendered.

Problem parameters control using Taguchi method

There are variousmethod to calibrate themeta-heuristic algo-
rithm parameters that some of them are full factorial design,
i.e. they examine all possible combinations (Ruiz et al. 2006;
Montgomery 2008), that is intrinsically time and cost con-
suming. Taguchi method (Taguchi 1986) uses special design
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of orthogonal arrays to study the whole parameters space
with a small number of experiments.

Taguchi method clusters factors into two main groups:
controllable and noise factors (uncontrollable). Since noise
factors are uncontrollable and their elimination is unpractical
and almost impossible, the Taguchi method tries to reach to
the best controllable factors level from robustness point of
view. In addition to determine the best factors level, Taguchi
establishes the relative importance of each factorwith respect
to its main impacts on the objective function (Naderi et al.
2009). To analyze the experimental data and find optimal
factor combination, Taguchi method uses a criterion entitled
signal-to-noise (S/N) ratio which expected to be maximum.

Taguchi method divides objective functions into three
groups:

The smaller the better In case that approaching objective
function value to zero is better come in handy. In this sit-
uation, S/N ratio would be calculated by formula (27), (e)
determines number of experiment, Obje is objective function
value in eth experiment, and nExp is number of parameters
combination which should be examined.

S/N ratio = −10 log10

(
∑

e

Obj2e
nExp

)

(27)

The larger the better In case that upper value of objective
function is better come in handy. In this situation, S/N ratio
would be calculated by formula (28).

S/N ratio = −10 log10

⎡

⎣

(
Obj

2/
s2

)

nExp

⎤

⎦ (28)

Nominal is best: In case that there is a specific target value
for objective function come in handy. In this situation, S/N
ratio would be calculated by formula (29).

S/Nratio = −10 log10

[
∑

e

(
1/Obj2e

)

nExp

]

(29)

Controllable factors which selected for this portion are pop-
ulation size, maximum number of iteration, crossover rate,
and mutation rate In addition to the S/N ratio, the means as
a criterion is useful for finding the best factors combination.
As mentioned the S/N ratio should be maximized regardless
to the objective function type whilst for means the type of
objective function is important and because that in assembly
line problem, most of objective functions should be mini-
mized, clearly the lower means value the better. To sum up,
a level for parameters should be selected which in that level,
S/N ratio has maximum value and means criterion has min-
imum value in comparison with the other levels, and just in
case that for a level these criteria weren’t satisfied simultane-
ously, another experiment for that specific parameter should
be design.

Proposed algorithm has been examinedwith three types of
benchmarks (benchmarks were classified into three classes
of A, B, and C according to their size). So, for every fac-
tor according to the benchmark size three levels consid-
ered which each level value caught through trial and error
(Table 2).

TheMinitab 17 used for Taguchi method implementation.
The Taguchi experiments for each three class of A, B, and C
have done separately. S/N ratio and means criteria for A, B,
and C classes exposed in Figs. 6, 7, and 8 respectively.

As clear in Fig. 6, for nPopA and γ A third level would be
selected, because in comparison with other level S/N ratio
has maximum value and means has minimum value in this
level. But for determination of ItrA and βA, extra experi-
ment should be designed. The same analysis for Figs. 7 and
8 comes in handy. Using exposed diagram and after com-
plimentary experiments, selected levels for parameters pre-
sented in Table 3.

Table 2 Parameters and their
levels Class Parameter Symbol Level

Class A Population size nPopA nPopA(1):10, nPopA(2):20, nPopA(3):30

Maximum number of iteration ItrA ItrA(1):5, ItrA(2):10, ItrA(3):15

Crossover rate βA βA(1) : 0.7, βA (2) : 0.8, βA (3) : 0.9
Mutation rate γ A γ A(1) : 0.1, γ A (2) : 0.15, γ A (3) : 0.2

Class B Population size nPopB nPopB(1):30, nPopB(2):50, nPopB(3):70

Maximum number of iteration ItrB ItrB(1):10, ItrB(2):20, ItrB(3):30

Crossover rate βB βB(1) : 0.7, βB (2) : 0.8, βB (3) : 0.9
Mutation rate γ B γ B(1) : 0.1, γ B (2) : 0.15, γ B (3) : 0.2

Class C Population size nPopC nPopC(1):70, nPopC(2):100, nPopC(3):130

Maximum number of iteration ItrC ItrC(1):30, ItrC(2):50, ItrC(3):70

Crossover rate βC βC (1) : 0.7, βC (2) : 0.8, βC (3) : 0.9
Mutation rate γC γC (1) : 0.1, γC (2) : 0.15, γC (3) : 0.2
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Fig. 6 Mean of means and S/N ratio for each parameter in Class A
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Fig. 7 Mean of means and S/N ratio for each parameter in Class B
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Fig. 8 Mean of means and S/N ratio for each parameter in Class C

Table 3 Selected level of the parameters

Parameter Symbol Class A Class B Class C

Population size nPopA nPopA(3):30 nPopB(3):70 nPopC(3):130

Maximum number of iteration ItrA ItrA(1):5 ItrB(2):20 ItrC(3):70

Crossover rate βA βA(2) : 0.8 βB(1) : 0.7 βC(3) : 0.9
Mutation rate γ A γ A(3) : 0.2 γ B(1) : 0.1 γC(2) : 0.15
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Numerical results over evolutionary standard benchmarks

Proposed algorithm could be benchmarked rendered algo-
rithms using standard functions and this also invoked for
benchmarking proposed modified GA with the listed stan-
dard function in Table 4 (Molga and Smutnicki 2005).

Obviously, the proposed modified GA improves the per-
formance respect to the selection operator. So, it seems that
this is necessary to compare between selection methods in
traditional GA and rendered one. There are several methods
for selection that Roulette Wheel, Tournament, and Random
compared with the proposed method (Table 5).

As it can be observed in Figs. 9, 10, 11, 12 and 13, the
proposed method is convergent into better solution for stan-
dard function in comparison with others barring Tournament
in Sphere. Moreover, it has partly better convergence rate.
Here, the convergence rate of proposed algorithm is better
than Random and Roulette Wheel but rather than Tourna-
ment it lowers in some of functions. As mentioned before,
focusing on diversity and convergence makes the conver-
gence rate lessen and stopping algorithm in local solution
respectively. Tournament method in rather to the proposed
algorithm has more focus on convergence that this tends to
boosting in convergence rate and also make ceasing Tourna-

Table 4 Standard function (Molga and Smutnicki 2005)

Row Test function’s name Test function

1 De Jong’s function (sphere model) f (x) = ∑n
i=1 x

2
i ,−10 ≤ xi ≤ 10, i = 1 . . . n; (n = 5) Global minimum f (x) = 0

is obtainable for xi = 0, i = 1 . . . n

2 Rosenbrock’s Valley f (x) = ∑n−1
i=1

{
100 ∗ (

xi+1 − x2i
)2 + (

1 − x2i
)2}

,−3 ≤ xi ≤ 3, i =
1 . . . n; (n = 5) Global minimum f (x) = 0 is obtainable for xi = 0, i = 1 . . . n

3 Goldstein-Price’s function f (x) = {
1 + (x + y + 1)2 .

(
19 − 14x + 3x2 − 14y + 6xy + 3y2

)} ·{
30 + (2x − 3y)2 · (18 − 32x + 12x2 + 48y − 36xy + 27y2

)}
,−2 ≤ x, y ≤ 2,

Global minimum f (x) = 3 is obtainable for (x, y) = (0,−1)

4 Ackley’s function f (x) = −ae−b
√

1
n

∑n
i=1 x

2
i −e

{
1
n

∑n
i=1 cos(cxi )

}

+a+e a = 20, b = 0.2, c = 2π,−5 ≤
xi ≤ 5, i = 1 . . . n, (n = 5) Global minimum f (x) = 0 is obtainable for xi = 0, i =
1 . . . n

5 Easom’s function f (x) = −cos (x)·cos (y)·e−{
(x−π)2+(y−π)2

}
,−100 ≤ x, y ≤ 100,Globalminimum

f (x) = −1 is obtainable for (x, y) = (π, π)

Table 5 Methods details

Selection method Parent selection New generation

Roulette Wheel Roulette Wheel (fitness proportion selection) Roulette Wheel & elitism selection

Tournament Tournament tournament & elitism selection

Random Random selection Random selection & archive

One-fifth success rule Fitness proportion selection and none-liner scaling
using one-fifth success rule

Selection base scaled fitness proportion & elitism
selection

Fig. 9 Algorithms results for
De Jong’s function
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Fig. 10 Algorithms results for
Rosenbrock’s Valley function
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Fig. 11 Algorithms results for
Goldstein-Price’s function
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Fig. 12 Algorithms results for
Ackley’s function
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ment in local solution more possible. In another word, low
focus on the diversity is the main cause of Tournament worst
results in comparison with proposed algorithm.

Numerical results over SALBP-1 and SULBP-1
benchmarks

In this section the proposed algorithm will examine on the
benchmarks of SALBP-1 and SULBP-1. More details of
these benchmarks are reachable on Scholl (1993) and http://
alb.mansci.de. These benchmarks have defined in crisp state,

so for transfer that to fuzzy state, postulated that input num-
ber in crisp state equals to peak point (A2) in fuzzy state.
For calculation of beginning point (A1) and end point (A3)

formula (1) come in hand. In this paper the value of ψ and
χ for tasks processing time got used to be 0.1 and for C̃max

is 1.

Ã = (A2 − χ, A2, A2 + ψ) (30)

Selected benchmarks according to number of tasks (n)

are divided into A, B, & C. These groups consist of

123

http://alb.mansci.de
http://alb.mansci.de


324 J Intell Manuf (2017) 28:313–336

Fig. 13 Algorithms results for
Easom’s function
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Table 6 Selected benchmarks for each class (A, B, C)

Class A Class B Class C

Benchmark name Benchmark size Benchmark name Benchmark size Benchmark name Benchmark size

Mertens 7 Roszieg 25 Kilbridge 45

Bowman 8 Heskiaoff 28 Hahn 53

Jaeschke 9 Buxey 29 Warnecke 58

Jackson 11 Sawyer 30 Tonge 70

Mansoor 11 Lutz1 32 Wee-Mag 75

Mitchell 21 Gunther 35 Arcus1 83

Table 7 Summarized reached solutions for SALBP-1

Problem class Average of %Deviation %Optimal solution

Class A 0.00 100

Class B 1.42 90.61

Class C 2.65 63.75

Total 1.36 84.79

small-sized benchmarks (n < 25), medium-sized bench-
marks (25 ≤ n < 45), and big-sized benchmarks (n ≥ 45)
respectively. Selected benchmarks for each class are show in
Table 6.

The proposed algorithm implemented in MATLAB and
run on a computerwith “Core 2Duo2.2, 2GHzPC”.Because
of stochastic behavior in meta-heuristic algorithm, the algo-
rithm was tried out 10 runs by each benchmark and the best
solutions summarized in Tables 7 and 8. Output solutions
compared with optimums by formula (31).

%Deviation =
{

(x − x∗)
x

∗}
· 100 (31)

Tables 7 and 8 consist of below information:

• Average of %Deviation: shows the average percent of
deviations.

Table 8 Summarized reached solutions for SULBP-1

Problem class Average of %Deviation %Optimal solution

Class A 0.00 100

Class B 3.32 71.16

Class C 3.80 58.26

Total 2.37 76.48

• %Optimal solution: expose the optimum solution per-
centage.

As cleared in Tables 7 and 8, proposed algorithm tends to
the optimum results in the all A class benchmarks that shows
the high performance of this algorithm for this class. The
bigger solution space, the lower solutions quality, and this
are clear in B and C classes. All in all proposed algorithm
has good performance in solving the class B and also good
in class C. In SALB-1 rather than SULB-1 has better result
rather than algorithm, that it is stem in smaller size of solution
space, although the algorithm has high performance in both
of SALB-1 and SULB-1 whichever apparently presented in
the last row of Tables 7 and 8.More results exposed in details
in Tables 9 and 10.

Run time depends to the problem size completely clear. In
another word the more number of the tasks in ALBP the fur-
ther computer run-time. The average CPU time for running
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Table 9 Result of proposed algorithm for fuzzy SALBP-1

Benchmark
name

Size Optimal values for
deterministic SALBP-1

Result of proposed GA for fuzzy SALBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

Mertens 7 6 6 6 (5.80, 6.00, 6.20) (6.67, 19.44, 45.67) (0.76, 0.81, 0.85)

7 7 5 5 (6.80, 7.00, 7.20) (4.50, 17.14, 39.00) (0.79, 0.83, 0.87)

7 8 5 5 (6.80, 7.00, 7.20) (12.22, 27.50, 47.71) (0.79, 0.83, 0.87)

7 10 3 3 (9.80, 10.00, 10.20) (0.00, 3.33, 17.41) (0.92, 0.97, 1.00)

7 15 2 2 (14.70, 15.00, 15.30) (0.00, 3.33, 13.21) (0.92, 0.97, 1.00)

7 18 2 2 (14.70, 15.00, 15.30) (11.32, 19.44, 28.53) (0.92, 0.97, 1.00)

Bowman 8 20 5 5 (16.80, 17.00, 17.20) (18.29, 25.00, 32.42) (0.86, 0.88, 0.90)

Jaeschke 9 6 8 8 (5.80, 6.00, 6.20) (8.21, 22.92, 49.75) (0.73, 0.77, 0.82)

9 7 7 7 (6.80, 7.00, 7.20) (10.00, 24.49, 47.38) (0.72, 0.76, 0.80)

9 8 6 6 (7.80, 8.00, 8.20) (10.19, 22.92, 42.62) (0.73, 0.77, 0.81)

9 10 4 4 (9.70, 10.00, 10.30) (1.82, 7.50, 21.94) (0.88, 0.93, 0.98)

9 18 3 3 (16.60, 17.00, 17.40) (23.68, 31.48, 40.98) (0.69, 0.73, 0.76)

Jackson 11 7 8 8 (6.70, 7.00, 7.30) (5.78, 17.86, 39.79) (0.77, 0.82, 0.88)

11 9 6 6 (8.70, 9.00, 9.30) (6.33, 14.81, 31.46) (0.80, 0.85, 0.90)

11 10 5 5 (9.70, 10.00, 10.30) (3.27, 8.00, 22.44) (0.87, 0.92, 0.97)

11 13 4 4 (11.70, 12.00, 12.30) (2.68, 11.54, 23.13) (0.91, 0.96, 1.00)

11 14 4 4 (11.70, 12.00, 12.30) (8.17, 17.86, 29.04) (0.91, 0.96, 1.00)

11 21 3 3 (15.60, 16.00, 16.40) (19.55, 26.98, 35.17) (0.91, 0.96, 1.00)

Mansoor 11 48 4 4 (47.40, 48.00, 48.60) (2.40, 3.65, 6.44) (0.95, 0.96, 0.98)

11 62 3 3 (61.60, 62.00, 62.40) (0.00, 0.54, 2.79) (0.98, 0.99, 1.00)

11 94 2 2 (92.70, 93.00, 93.30) (0.11, 1.60, 3.28) (0.99, 0.99, 1.00)

Mitchell 21 14 8 8 (13.60, 14.00, 14.40) (0.67, 6.25, 16.44) (0.89, 0.94, 0.98)

21 15 8 8 (13.60, 14.00, 14.40) (4.30, 12.50, 22.41) (0.89, 0.94, 0.98)

21 21 5 5 (20.50, 21.00, 21.50) (0.00, 0.00, 7.10) (0.96, 1.00, 1.00)

21 26 5 5 (20.50, 21.00, 21.50) (13.26, 19.23, 25.68) (0.96, 1.00, 1.00)

21 35 3 3 (34.20, 35.00, 35.80) (0.00, 0.00, 5.00) (0.96, 1.00, 1.00)

21 39 3 3 (35.30, 36.00, 36.70) (5.75, 10.26, 15.00) (0.93, 0.97, 1.00)

Roszieg 25 14 10 10 (13.50, 14.00, 14.50) (4.93, 10.71, 21.15) (0.84, 0.89, 0.94)

25 16 8 8 (15.60, 16.00, 16.40) (0.59, 2.34, 11.25) (0.93, 0.98, 1.00)

25 18 8 8 (15.60, 16.00, 16.40) (5.59, 13.19, 21.69) (0.93, 0.98, 1.00)

25 21 6 6 (20.50, 21.00, 21.50) (0.00, 0.79, 7.92) (0.95, 0.99, 1.00)

25 25 6 6 (20.50, 21.00, 21.50) (10.58, 16.67, 23.26) (0.95, 0.99, 1.00)

25 32 4 4 (31.40, 32.00, 32.60) (0.38, 2.34, 7.66) (0.94, 0.98, 1.00)

Heskiaoff 28 138 8 8 (129.50, 130, 130.50) (6.22, 7.25, 8.28) (0.978, 0.985, 0.991)

28 205 5 6 (172.10, 173, 173.90) (15.95, 16.75, 17.55) (0.979, 0.987, 0.994)

28 216 5 5 (205.40, 206, 206.60) (4.44, 5.19, 5.93) (0.989, 0.994, 1.000)

28 256 4 4 (255.30, 256, 256.70) (0.00, 0.00, 0.67) (0.995, 1.000, 1.000)

28 324 4 4 (257.00, 258, 259.00) (20.40, 20.99, 21.58) (0.986, 0.992, 0.999)

28 342 3 3 (341.40, 342, 342.60) (0.00, 0.19, 0.76) (0.994, 0.998, 1.000)

Buxey 29 27 13 13 (26.50, 27.00, 27.50) (4.26, 7.69, 12.69) (0.90, 0.92, 0.95)

29 30 12 12 (27.60, 28.00, 28.40) (5.67, 10.00, 14.63) (0.94, 0.96, 0.99)

29 33 11 11 (31.40, 32.00, 32.60) (6.93, 10.74, 15.03) (0.90, 0.92, 0.95)
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Table 9 continued

Benchmark
name

Size Optimal values for
deterministic SALBP-1

Result of proposed GA for fuzzy SALBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

29 36 10 10 (33.50, 34.00, 34.50) (6.24, 10.00, 13.97) (0.93, 0.95, 0.98)

29 41 8 8 (40.60, 41.00, 41.40) (0.00, 1.22, 4.66) (0.97, 0.99, 1.00)

29 47 7 8 (40.60, 41.00, 41.40) (10.70, 13.83, 17.09) (0.97, 0.99, 1.00)

29 54 7 7 (47.40, 48.00, 48.60) (11.45, 14.29, 17.22) (0.94, 0.96, 0.99)

Sawyer 30 25 14 14 (24.50, 25.00, 25.50) (4.37, 7.43, 12.80) (0.899, 0.926, 0.953)

30 27 13 13 (25.60, 26.00, 26.40) (3.35, 7.69, 12.72) (0.935, 0.959, 0.983)

30 30 12 12 (27.60, 28.00, 28.40) (5.65, 10.00, 14.66) (0.942, 0.964, 0.987)

30 33 11 11 (31.40, 32.00, 32.60) (6.98, 10.74, 15.06) (0.895, 0.920, 0.947)

30 36 10 10 (33.40, 34.00, 34.60) (6.22, 10.00, 14.00) (0.928, 0.953, 0.979)

30 41 8 8 (40.60, 41.00, 41.40) (0.00, 1.22, 4.69) (0.969, 0.988, 1.000)

30 47 7 8 (40.60, 41.00, 41.40) (10.68, 13.83, 17.12) (0.969, 0.988, 1.000)

30 54 7 7 (47.30, 48.00, 48.70) (11.43, 14.29, 17.25) (0.942, 0.964, 0.988)

30 75 5 5 (64.30, 65.00, 65.70) (11.32, 13.60, 15.95) (0.977, 0.997, 1.000)

Lutz1 32 1, 414 11 11 (1399.7, 1400, 1400.3) (8.99, 9.09, 9.19) (0.9178, 0.9182, 0.9186)

32 1, 572 10 10 (1525.6, 1526, 1526.4) (9.96, 10.05, 10.14) (0.9262, 0.9266, 0.9271)

32 1, 768 9 9 (1663.5, 1664, 1664.5) (11.05, 11.14, 11.22) (0.9437, 0.9442, 0.9447)

32 2, 020 8 8 (1859.4, 1860, 1860.6) (12.42, 12.50, 12.58) (0.9497, 0.9503, 0.9508)

32 2, 357 7 7 (2095.6, 2096, 2096.4) (14.23, 14.30, 14.37) (0.9633, 0.9637, 0.9641)

32 2, 828 6 6 (2487.4, 2488, 2488.6) (16.61, 16.67, 16.73) (0.9468, 0.9472, 0.9477)

Gunther 35 41 14 14 (39.50, 40.00, 40.50) (12.67, 15.85, 19.38) (0.85, 0.86, 0.88)

35 44 12 12 (43.40, 44.00, 44.60) (6.28, 8.52, 11.72) (0.90, 0.91, 0.93)

35 49 11 11 (47.30, 48.00, 48.70) (7.71, 10.39, 13.35) (0.90, 0.91, 0.94)

35 54 9 10 (49.50, 50.00, 50.50) (7.91, 10.56, 13.30) (0.95, 0.97, 0.98)

35 61 9 9 (55.40, 56.00, 56.60) (9.59, 12.02, 14.54) (0.94, 0.96, 0.98)

35 69 8 8 (63.20, 64.00, 64.80) (10.27, 12.50, 14.80) (0.92, 0.94, 0.96)

35 81 7 7 (73.30, 74.00, 74.70) (12.80, 14.81, 16.88) (0.92, 0.93, 0.95)

Kilbridge 45 56 10 10 (55.50, 56, 56.50) (0.25, 1.43, 4.09) (0.97, 0.99, 1.00)

45 57 10 10 (55.50, 56, 56.50) (0.90, 3.16, 5.80) (0.97, 0.99, 1.00)

45 62 9 10 (56.20, 57, 57.80) (8.49, 10.97, 13.52) (0.95, 0.97, 0.99)

45 69 8 9 (62.20, 63, 63.80) (8.81, 11.11, 13.48) (0.95, 0.97, 0.99)

45 79 7 8 (70.10, 71, 71.90) (10.55, 12.66, 14.82) (0.95, 0.97, 0.99)

45 92 6 6 (91.00, 92, 93.00) (0.00, 0.00, 1.92) (0.98, 1.00, 1.00)

45 110 6 6 (92.40, 93, 93.60) (14.64, 16.36, 18.12) (0.97, 0.99, 1.00)

45 111 5 5 (110.40, 111, 111.60) (0.00, 0.54, 2.27) (0.98, 0.99, 1.00)

45 138 4 4 (136.80, 138, 139.20) (0.00, 0.00, 1.55) (0.98, 1.00, 1.00)

45 184 3 3 (182.50, 184, 185.50) (0.00, 0.00, 1.37) (0.98, 1.00, 1.00)

Hahn 53 2, 004 8 8 (1,924.4, 1,926, 1,927.6) (12.42, 12.51, 12.60) (0.9092, 0.9103, 0.9114)

53 2, 338 7 7 (2,334.1, 2,336, 2,337.9) (14.22, 14.30, 14.38) (0.8567, 0.8578, 0.8588)

53 2, 806 6 6 (2,604.9, 2,607, 2,609.1) (16.62, 16.69, 16.76) (0.8956, 0.8967, 0.8978)

53 3, 507 5 5 (3,099.0, 3,100, 3,101.0) (19.95, 20.01, 20.08) (0.9043, 0.9049, 0.9055)

53 4, 676 4 4 (4,439.3, 4,441, 4,442.7) (24.96, 25.01, 25.07) (0.7890, 0.7896, 0.7902)
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Table 9 continued

Benchmark
name

Size Optimal values for
deterministic SALBP-1

Result of proposed GA for fuzzy SALBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

Warnecke 58 54 31 33 (52.60, 53.00, 53.40) (10.78, 13.13, 15.60) (0.875, 0.885, 0.895)

58 56 29 32 (55.70, 56.00, 56.30) (11.47, 13.62, 16.01) (0.856, 0.864, 0.872)

58 58 29 31 (56.70, 57.00, 57.30) (11.74, 13.90, 16.23) (0.868, 0.876, 0.884)

58 60 27 29 (58.60, 59.00, 59.40) (8.92, 11.03, 13.26) (0.895, 0.905, 0.914)

58 62 27 29 (59.80, 60.00, 60.20) (11.78, 13.90, 16.10) (0.883, 0.890, 0.896)

58 65 25 28 (63.60, 64.00, 64.40) (12.95, 14.95, 17.06) (0.855, 0.864, 0.873)

58 68 24 26 (66.60, 67.00, 67.40) (10.55, 12.44, 14.45) (0.880, 0.889, 0.897)

58 71 23 24 (69.60, 70.00, 70.40) (7.37, 9.15, 11.06) (0.913, 0.921, 0.930)

58 74 22 23 (72.60, 73.00, 73.40) (7.35, 9.05, 10.89) (0.914, 0.922, 0.931)

58 78 21 22 (76.70, 77.00, 77.30) (8.11, 9.79, 11.56) (0.907, 0.914, 0.921)

58 82 20 21 (80.50, 81.00, 81.50) (8.49, 10.10, 11.80) (0.901, 0.910, 0.919)

58 86 19 20 (84.50, 85.00, 85.50) (8.48, 10.00, 11.64) (0.902, 0.911, 0.919)

58 92 17 19 (87.60, 88.00, 88.40) (9.92, 11.44, 13.00) (0.918, 0.926, 0.934)

58 97 17 18 (93.50, 94.00, 94.50) (9.88, 11.34, 12.84) (0.907, 0.915, 0.923)

58 104 15 16 (101.50, 102.00, 102.50) (5.61, 6.97, 8.36) (0.940, 0.949, 0.957)

58 111 14 15 (108.50, 109.00, 109.50) (5.73, 7.03, 8.35) (0.939, 0.947, 0.955)

Tonge 70 160 23 24 (159.60, 160, 160.40) (7.81, 8.59, 9.46) (0.910, 0.914, 0.918)

70 168 22 23 (165.30, 166, 166.70) (8.34, 9.16, 10.00) (0.914, 0.919, 0.925)

70 176 21 22 (174.50, 175, 175.50) (8.58, 9.35, 10.16) (0.907, 0.912, 0.916)

70 185 20 20 (184.50, 185, 185.50) (4.42, 5.14, 5.90) (0.944, 0.949, 0.953)

70 195 19 20 (189.40, 190, 190.60) (9.26, 10.00, 10.75) (0.919, 0.924, 0.928)

70 207 18 18 (206.30, 207, 207.70) (5.23, 5.80, 6.50) (0.937, 0.942, 0.947)

70 220 17 18 (209.60, 210, 210.40) (10.68, 11.36, 12.05) (0.925, 0.929, 0.932)

70 234 16 16 (228.60, 229, 229.40) (5.61, 6.25, 6.89) (0.954, 0.958, 0.962)

70 251 14 15 (245.10, 246, 246.90) (6.16, 6.77, 7.39) (0.946, 0.951, 0.957)

70 270 14 14 (262.40, 263, 263.60) (6.56, 7.14, 7.73) (0.949, 0.953, 0.957)

70 293 13 13 (280.20, 281, 281.80) (7.30, 7.85, 8.40) (0.956, 0.961, 0.966)

70 320 11 12 (301, 302, 303) (8.07, 8.59, 9.12) (0.963, 0.969, 0.974)

70 364 10 10 (357.10, 358, 358.90) (3.10, 3.57, 4.05) (0.976, 0.980, 0.985)

70 410 9 9 (393.90, 395, 396.10) (4.43, 4.88, 5.32) (0.983, 0.987, 0.992)

70 468 8 8 (159.60, 160, 160.40) (5.84, 6.25, 6.66) (0.979, 0.984, 0.988)

70 527 7 7 (165.30, 166, 166.70) (4.46, 4.85, 5.24) (0.988, 0.993, 0.997)

Wee-Mag 75 28 63 63 (26.80, 27.00, 27.20) (10.69, 15.02, 19.72) (0.87, 0.88, 0.89)

75 29 63 63 (27.60, 28.00, 28.40) (13.67, 17.95, 22.59) (0.83, 0.85, 0.87)

75 30 62 62 (29.70, 30.00, 30.30) (15.31, 19.41, 23.94) (0.79, 0.81, 0.82)

75 31 62 62 (29.70, 30.00, 30.30) (17.84, 22.01, 26.48) (0.79, 0.81, 0.82)

75 32 61 61 (31.70, 32.00, 32.30) (19.34, 23.21, 27.58) (0.76, 0.77, 0.78)

75 33 61 61 (31.70, 32.00, 32.30) (21.52, 25.53, 29.84) (0.76, 0.77, 0.78)

75 34 61 61 (31.70, 32.00, 32.30) (23.72, 27.72, 31.97) (0.76, 0.77, 0.78)

75 35 60 60 (34.60, 35.00, 35.40) (24.88, 28.62, 32.77) (0.70, 0.71, 0.73)

75 36 60 60 (34.60, 35.00, 35.40) (26.77, 30.60, 34.69) (0.70, 0.71, 0.73)

75 37 60 60 (34.70, 35.00, 35.30) (28.66, 32.48, 36.50) (0.70, 0.71, 0.72)

75 38 60 60 (34.60, 35.00, 35.40) (30.49, 34.25, 38.22) (0.70, 0.71, 0.73)

75 39 60 60 (34.70, 35.00, 35.30) (32.23, 35.94, 39.85) (0.70, 0.71, 0.72)

75 40 60 60 (34.80, 35.00, 35.20) (33.88, 37.54, 41.39) (0.71, 0.71, 0.72)
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Table 9 continued

Benchmark
name

Size Optimal values for
deterministic SALBP-1

Result of proposed GA for fuzzy SALBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

75 41 59 59 (40.50, 41.00, 41.50) (34.55, 38.03, 41.80) (0.61, 0.62, 0.63)

75 42 55 55 (41.70, 42.00, 42.30) (31.96, 35.11, 38.74) (0.64, 0.65, 0.66)

75 43 50 50 (42.70, 43.00, 43.30) (27.54, 30.28, 33.74) (0.69, 0.70, 0.71)

75 47 33 35 (46.70, 47.00, 47.30) (6.90, 8.88, 11.71) (0.90, 0.91, 0.92)

75 49 32 33 (48.70, 49.00, 49.30) (5.24, 7.30, 10.01) (0.92, 0.93, 0.94)

75 50 32 33 (48.60, 49.00, 49.40) (6.65, 9.15, 11.84) (0.91, 0.93, 0.94)

75 52 31 32 (50.60, 51.00, 51.40) (7.45, 9.92, 12.53) (0.91, 0.92, 0.93)

75 54 31 31 (52.60, 53.00, 53.40) (8.06, 10.45, 12.99) (0.90, 0.91, 0.92)

75 56 30 30 (55.70, 56.00, 56.30) (8.75, 10.77, 13.24) (0.88, 0.89, 0.90)

Arcus1 83 3, 786 21 22 (3,690.9, 3,691, 3,691.1) (9.07, 9.11, 9.15) (0.9322, 0.9323, 0.9325)

83 3, 985 20 21 (3,857.5, 3,858, 3,858.5) (9.50, 9.53, 9.57) (0.9342, 0.9344, 0.9347)

83 4, 206 19 19 (4,177.4, 4,178, 4,178.6) (5.23, 5.26, 5.30) (0.9535, 0.9537, 0.9539)

83 4, 454 18 19 (4,241.6, 4,242, 4,242.4) (10.50, 10.54, 10.57) (0.9391, 0.9393, 0.9395)

83 4, 732 17 17 (4,678.6, 4,679, 4,679.4) (5.86, 5.89, 5.92) (0.9516, 0.9518, 0.9520)

83 5, 048 16 16 (4,954.3, 4,955, 4,955.7) (6.23, 6.27, 6.30) (0.9547, 0.9549, 0.9552)

83 5, 408 15 15 (5,281.5, 5,282, 5,282.5) (6.64, 6.67, 6.70) (0.9553, 0.9555, 0.9557)

83 5, 824 14 14 (5,565.5, 5,566, 5,566.5) (7.12, 7.15, 7.18) (0.9714, 0.9715, 0.9717)

83 5, 853 14 14 (5,599.3, 5,600, 5,600.7) (7.58, 7.61, 7.64) (0.9654, 0.9657, 0.9659)

83 6, 309 13 13 (6,042.2, 6,043, 6,043.8) (7.67, 7.69, 7.72) (0.9635, 0.9637, 0.9639)

83 6, 842 12 12 (6,508.9, 6,510, 6,511.1) (7.77, 7.79, 7.82) (0.9688, 0.9691, 0.9694)

83 6, 883 12 12 (6,561.5, 6,562, 6,562.5) (8.31, 8.34, 8.37) (0.9613, 0.9614, 0.9616)

83 7, 571 11 11 (7,090.7, 7,091, 7,091.3) (9.07, 9.09, 9.12) (0.9704, 0.9706, 0.9707)

83 8, 412 10 10 (7,921.8, 7,923, 7,924.2) (9.98, 10.00, 10.02) (0.9553, 0.9555, 0.9558)

83 8, 898 9 9 (8,527.4, 8,528, 8,528.6) (5.44, 5.46, 5.49) (0.9862, 0.9864, 0.9866)

8310, 816 8 8 (10,220.6, 10,222, 10,223.4) (12.49, 12.51, 12.53) (0.9256, 0.9258, 0.9260)

each benchmark have exposed in Fig.14. As cleared, process
time varies between 3 and 360s that proofs algorithm valu-
able convergence time.

Final comparison between proposed method and existing
methods

In this section, performance of the proposed algorithm is
examined using (Tsujimura et al. 1995) test problem. An
example of the problem is solved by the proposed algorithm
to illustrate the improvements and the results compared with
existingmethods in this problem that is presented in Table 11,
and finally the predecessor and successor constraints of the
test problem are displayed in Fig. 15.

The population and generation size of the algorithm
defined in small scale because of the size of this example
and power of the algorithm. The size of population is equal
to 3 and the number of maximum generation is limited to

5. The best obtained solution for fuzzy efficiency and fuzzy
idle time for SALB is as follow:

• Fuzzy efficiency = [0.73, 0.97, 1]
• Fuzzy idle percentage = [3.92, 16.67, 34.01]

Best solution for SULB is as follows:

• Fuzzy efficiency = [0.73, 0.99, 1]
• Fuzzy idle percentage = [3.92, 16.67, 34.01]

Commonly from every three run times of the algorithm, once
will converge to the best obtained solution. The results from
the proposed algorithm and the results from other existing
methods are shown in Table 12. The first and second rows of
the Table 12 present the results from the proposed algorithm
in this paper for SALB and SULB, respectively. The third
row of the table shows the results from the GA offered by
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Table 10 Result of proposed algorithm for fuzzy SULBP-1

Benchmark
Name

Size Optimal values for
deterministic SULBP-1

Result of proposed GA for fuzzy SULBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

Mertens 7 6 6 6 (5.80, 6.00, 6.20) (6.67, 19.44, 45.67) (0.76, 0.81, 0.85)

7 7 5 5 (6.80, 7.00, 7.20) (4.50, 17.14, 39.00) (0.79, 0.83, 0.87)

7 8 5 5 (6.80, 7.00, 7.20) (12.22, 27.50, 47.71) (0.79, 0.83, 0.87)

7 10 3 3 (9.80, 10.00, 10.20) (0.00, 3.33, 17.41) (0.92, 0.97, 1.00)

7 15 2 2 (14.70, 15.00, 15.30) (0.00, 3.33, 13.21) (0.92, 0.97, 1.00)

7 18 2 2 (14.70, 15.00, 15.30) (11.32, 19.44, 28.53) (0.92, 0.97, 1.00)

Bowman 8 20 5 5 (19.70, 20.00, 20.30) (3.21, 6.25, 12.89) (0.91, 0.94, 0.96)

Jaeschke 9 6 8 8 (5.80, 6.00, 6.20) (8.21, 22.92, 49.75) (0.73, 0.77, 0.82)

9 7 7 7 (6.80, 7.00, 7.20) (11.61, 24.49, 47.38) (0.72, 0.76, 0.80)

9 8 6 6 (7.70, 8.00, 8.30) (12.22, 22.92, 42.62) (0.72, 0.77, 0.82)

9 10 4 4 (9.70, 10.00, 10.30) (0.00, 7.50, 21.94) (0.88, 0.93, 0.98)

9 18 3 3 (13.60, 14.00, 14.40) (22.98, 31.48, 40.98) (0.84, 0.88, 0.93)

Jackson 11 7 7 7 (6.80, 7.00, 7.20) (0.00, 6.12, 26.43) (0.89, 0.94, 0.99)

11 9 6 6 (8.70, 9.00, 9.30) (6.00, 14.81, 31.46) (0.80, 0.85, 0.90)

11 10 5 5 (9.60, 10.00, 10.40) (3.45, 8.00, 22.44) (0.86, 0.92, 0.98)

11 13 4 4 (11.70, 12.00, 12.30) (2.50, 11.54, 23.13) (0.91, 0.96, 1.00)

11 14 4 4 (11.70, 12.00, 12.30) (8.17, 17.86, 29.04) (91, 0.96, 1.00)

11 21 3 3 (15.60, 16.00, 16.40) (19.55, 26.98, 35.17) (0.91, 0.96, 1.00)

Mansoor 11 48 4 4 (47.40, 48.00, 48.60) (2.40, 3.65, 6.44) (0.95, 0.96, 0.98)

11 62 3 3 (61.60, 62.00, 62.40) (0.00, 0.54, 2.79) (0.98, 0.99, 1.00)

11 94 2 2 (92.70, 93.00, 93.30) (0.11, 1.60, 3.28) (0.99, 0.99, 1.00)

Mitchell 21 14 8 8 (13.50, 14.00, 14.50) (1.33, 6.25, 16.44) (0.89, 0.94, 0.99)

21 15 8 8 (13.50, 14.00, 14.50) (4.61, 12.50, 22.41) (0.89, 0.94, 0.99)

21 21 5 5 (20.50, 21.00, 21.50) (0.00, 0.00, 7.10) (0.96, 1.00, 1.00)

21 26 5 5 (20.50, 21.00, 21.50) (13.26, 19.23, 25.68) (0.96, 1.00, 1.00)

21 35 3 3 (34.30, 35.00, 35.70) (0.00, 0.00, 5.00) (0.96, 1.00, 1.00)

21 39 3 3 (34.30, 35.00, 35.70) (5.75, 10.26, 15.00) (0.96, 1.00, 1.00)

Roszieg 25 14 9 9 (13.60, 14.00, 14.40) (0.00, 0.79, 10.68) (0.95, 0.99, 1.00)

25 16 8 8 (15.70, 16.00, 16.30) (0.00, 2.34, 11.25) (0.94, 0.98, 1.00)

25 18 7 7 (17.60, 18.00, 18.40) (0.00, 0.79, 8.82) (0.95, 0.99, 1.00)

25 21 6 6 (20.60, 21.00, 21.40) (0.00, 0.79, 7.92) (0.95, 0.99, 1.00)

25 25 5 5 (24.50, 25.00, 25.50) (0.00, 0.00, 6.25) (0.96, 1.00, 1.00)

25 32 4 4 (31.60, 32.00, 32.40) (0.00, 2.34, 7.66) (0.95, 0.98, 1.00)

Heskiaoff 28 138 8 8 (130.30, 131, 131.70) (6.22, 7.25, 8.28) (0.969, 0.977, 0.985)

28 205 5 5 (204.20, 205, 205.80) (0.00, 0.10, 0.86) (0.992, 0.999, 1.000)

28 216 5 5 (204.20, 205, 205.80) (4.44, 5.19, 5.93) (0.992, 0.999, 1.000)

28 256 4 4 (255.30, 256, 256.70) (0.00, 0.00, 0.67) (0.995, 1.000, 1.000)

28 324 4 4 (256.30, 257, 257.70) (20.40, 20.99, 21.58) (0.991, 0.996, 1.000)

28 342 3 3 (341.50, 342, 342.50) (0.00, 0.19, 0.76) (0.994, 0.998, 1.000)

Buxey 29 27 13 13 (26.50, 27.00, 27.50) (4.31, 7.69, 12.69) (0.90, 0.92, 0.95)

29 30 11 12 (28.60, 29.00, 29.40) (5.91, 10.00, 14.63) (0.91, 0.93, 0.95)

29 33 10 11 (30.50, 31.00, 31.50) (6.71, 10.74, 15.03) (0.93, 0.95, 0.97)

29 36 9 10 (33.40, 34.00, 34.60) (6.24, 10.00, 13.97) (0.93, 0.95, 0.98)

29 41 8 8 (40.40, 41.00, 41.60) (0.42, 1.22, 4.66) (0.96, 0.99, 1.00)
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Table 10 continued

Benchmark
Name

Size Optimal values for
deterministic SULBP-1

Result of proposed GA for fuzzy SULBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

29 47 7 7 (46.60, 47.00, 47.40) (0.00, 1.52, 4.63) (0.97, 0.98, 1.00)

29 54 6 6 (53.40, 54.00, 54.60) (0.00, 0.00, 2.80) (0.98, 1.00, 1.00)

Sawyer 30 25 14 14 (24.50, 25.00, 25.50) (4.07, 7.43, 12.80) (0.899, 0.926, 0.953)

30 27 13 13 (25.60, 26.00, 26.40) (3.30, 7.69, 12.72) (0.935, 0.959, 0.983)

30 30 11 12 (28.40, 29.00, 29.60) (5.94, 10.00, 14.66) (0.904, 0.931, 0.960)

30 33 10 11 (30.60, 31.00, 31.40) (6.68, 10.74, 15.06) (0.929, 0.950, 0.971)

30 36 9 10 (33.50, 34.00, 34.50) (6.22, 10.00, 14.00) (0.930, 0.953, 0.976)

30 41 8 8 (40.60, 41.00, 41.40) (0.00, 1.22, 4.69) (0.969, 0.988, 1.000)

30 47 7 7 (46.60, 47.00, 47.40) (0.00, 1.52, 4.66) (0.967, 0.985, 1.000)

30 54 6 7 (47.30, 48.00, 48.70) (11.43, 14.29, 17.25) (0.942, 0.964, 0.988)

30 75 5 5 (64.30, 65.00, 65.70) (11.32, 13.60, 15.95) (0.977, 0.997, 1.000)

Lutz1 32 1, 414 11 11 (1,399.5, 1,400, 1,400.5) (8.99, 9.09, 9.19) (0.9176, 0.9182, 0.9187)

32 1, 572 10 10 (1,451.6, 1,452, 1,452.4) (9.96, 10.05, 10.14) (0.9733, 0.9738, 0.9743)

32 1, 768 9 9 (1,603.6, 1,604, 1,604.4) (11.05, 11.14, 11.22) (0.9790, 0.9795, 0.9800)

32 2, 020 8 8 (1,787.8, 1,788, 1,788.2) (12.42, 12.50, 12.58) (0.9882, 0.9885, 0.9889)

32 2, 357 7 7 (2,057.5, 2,058, 2,058.5) (14.23, 14.30, 14.37) (0.9811, 0.9815, 0.9820)

32 2, 828 6 6 (2,403.4, 2,404, 2,404.6) (16.61, 16.67, 16.73) (0.9798, 0.9803, 0.9808)

Gunther 35 41 12 13 (39.30, 40.00, 40.70) (6.47, 9.38, 12.79) (0.91, 0.93, 0.95)

35 44 12 12 (42.40, 43.00, 43.60) (5.65, 8.52, 11.72) (0.92, 0.94, 0.96)

35 49 10 11 (46.30, 47.00, 47.70) (7.55, 10.39, 13.35) (0.91, 0.93, 0.96)

35 54 9 10 (49.30, 50.00, 50.70) (7.91, 10.56, 13.30) (0.95, 0.97, 0.99)

35 61 8 9 (55.40, 56.00, 56.60) (9.59, 12.02, 14.54) (0.94, 0.96, 0.98)

35 69 7 8 (61.60, 62.00, 62.40) (10.27, 12.50, 14.80) (0.96, 0.97, 0.99)

35 81 6 6 (80.40, 81.00, 81.60) (0.00, 0.62, 2.60) (0.98, 0.99, 1.00)

Kilbridge 45 56 10 10 (55.20, 56, 56.80) (0.21, 1.43, 4.09) (0.96, 0.99, 1.00)

45 57 10 10 (55.50, 56, 56.50) (0.90, 3.16, 5.80) (0.97, 0.99, 1.00)

45 62 9 9 (61.40, 62, 62.60) (0.14, 1.08, 3.55) (0.97, 0.99, 1.00)

45 69 8 9 (62.20, 63, 63.80) (8.81, 11.11, 13.48) (0.95, 0.97, 0.99)

45 79 7 8 (70.10, 71, 71.90) (10.55, 12.66, 14.82) (0.95, 0.97, 0.99)

45 92 6 6 (91.10, 92, 92.90) (0.00, 0.00, 1.92) (0.98, 1.00, 1.00)

45 110 6 6 (92.90, 94, 95.10) (14.64, 16.36, 18.12) (0.96, 0.98, 1.00)

45 111 5 5 (110.50, 111, 111.50) (0.00, 0.54, 2.27) (0.98, 0.99, 1.00)

45 138 4 4 (136.70, 138, 139.30) (0.00, 0.00, 1.55) (0.98, 1.00, 1.00)

45 184 3 3 (182.70, 184, 185.30) (0.00, 0.00, 1.37) (0.98, 1.00, 1.00)

Hahn 53 2, 004 8 8 (1,839.8, 1,840, 1,840.2) (12.42, 12.51, 12.60) (0.9524, 0.9529, 0.9533)

53 2, 338 7 7 (2,040.6, 2,042, 2,043.4) (14.22, 14.30, 14.38) (0.9802, 0.9813, 0.9823)

53 2, 806 5 6 (2,392.6, 2,393, 2,393.4) (16.62, 16.69, 16.76) (0.9763, 0.9769, 0.9774)

53 3, 507 5 5 (2,909.1, 2,910, 2,910.9) (19.95, 20.01, 20.08) (0.9633, 0.9640, 0.9646)

53 4, 676 3 3 (4,674.9, 4,676, 4,677.1) (0.00, 0.01, 0.07) (0.9992, 0.9999, 1.0000)

Warnecke 58 54 [30, 31] 33 (53.70, 54.00, 54.30) (10.98, 13.13, 15.60) (0.86, 0.87, 0.88)

58 56 29 32 (54.80, 55.00, 55.20) (11.32, 13.62, 16.01) (0.87, 0.88, 0.89)

58 58 28 31 (56.60, 57.00, 57.40) (11.73, 13.90, 16.23) (0.87, 0.88, 0.89)

58 60 27 29 (58.60, 59, 59.40) (8.92, 11.03, 13.26) (0.90, 0.90, 0.91)

58 62 [26, 27] 29 (61.60, 62, 62.40) (11.93, 13.90, 16.10) (0.85, 0.86, 0.87)
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Table 10 continued

Benchmark
Name

Size Optimal values for
deterministic SULBP-1

Result of proposed GA for fuzzy SULBP-1

n Cmax m∗ or
[
LB∗,UB∗] m c̃ Ĩ D Ẽ

58 65 [24, 25] 28 (62.70, 63, 63.30) (12.89, 14.95, 17.06) (0.87, 0.88, 0.89)

58 68 [23, 24] 25 (67.60, 68, 68.40) (7.43, 8.94, 10.91) (0.90, 0.91, 0.92)

58 71 [22, 23] 24 (69.60, 70, 70.40) (7.37, 9.15, 11.06) (0.91, 0.92, 0.93)

58 74 [21, 22] 23 (72.60, 73, 73.40) (7.35, 9.05, 10.89) (0.91, 0.92, 0.93)

58 78 20 22 (76.50, 77, 77.50) (8.10, 9.79, 11.56) (0.90, 0.91, 0.92)

58 82 [19, 20] 20 (81.60, 82, 82.40) (4.19, 5.61, 7.27) (0.94, 0.94, 0.95)

58 86 18 20 (84.60, 85, 85.40) (8.49, 10.00, 11.64) (0.90, 0.91, 0.92)

58 92 17 18 (91.60, 92, 92.40) (5.24, 6.52, 8.05) (0.93, 0.93, 0.94)

58 97 16 18 (92.60, 93, 93.40) (9.88, 11.34, 12.84) (0.92, 0.92, 0.93)

58 104 15 16 (101.50, 102, 102.50) (5.61, 6.97, 8.36) (0.94, 0.95, 0.96)

58 111 14 15 (108.40, 109, 109.60) (5.73, 7.03, 8.35) (0.94, 0.95, 0.96)

Tonge 70 160 [22, 23] 24 (0.921, 0.926, 0.930) (7.74, 8.59, 9.46) (0.921, 0.926, 0.930)

70 168 21 23 (0.910, 0.914, 0.917) (8.34, 9.16, 10.00) (0.910, 0.914, 0.917)

70 176 [20, 21] 22 (0.907, 0.912, 0.917) (8.57, 9.35, 10.16) (0.907, 0.912, 0.917)

70 185 19 20 (0.944, 0.949, 0.953) (4.42, 5.14, 5.90) (0.944, 0.949, 0.953)

70 195 18 20 (0.919, 0.924, 0.928) (9.26, 10.00, 10.75) (0.919, 0.924, 0.928)

70 207 17 18 (0.937, 0.942, 0.947) (5.23, 5.80, 6.50) (0.937, 0.942, 0.947)

70 220 16 17 (0.934, 0.939, 0.943) (5.58, 6.15, 6.82) (0.934, 0.939, 0.943)

70 234 15 16 (0.959, 0.962, 0.966) (5.61, 6.25, 6.89) (0.959, 0.962, 0.966)

70 251 14 15 (0.943, 0.947, 0.952) (6.16, 6.77, 7.39) (0.943, 0.947, 0.952)

70 270 13 14 (0.949, 0.953, 0.957) (6.56, 7.14, 7.73) (0.949, 0.953, 0.957)

70 293 12 13 (0.956, 0.961, 0.966) (7.30, 7.85, 8.40) (0.956, 0.961, 0.966)

70 320 11 12 (0.955, 0.959, 0.963) (8.07, 8.59, 9.12) (0.955, 0.959, 0.963)

70 364 10 10 (0.973, 0.978, 0.982) (3.10, 3.57, 4.05) (0.973, 0.978, 0.982)

70 410 9 9 (0.978, 0.982, 0.987) (4.43, 4.88, 5.32) (0.978, 0.982, 0.987)

70 468 8 8 (0.981, 0.986, 0.991) (5.84, 6.25, 6.66) (0.981, 0.986, 0.991)

70 527 7 7 (0.987, 0.991, 0.995) (4.46, 4.85, 5.24) (0.987, 0.991, 0.995)

Arcus1 83 3, 786 21 22 (3,690.6, 3,691, 3,691.4) (9.07, 9.11, 9.15) (0.9321, 0.9323, 0.9325)

83 3, 985 20 21 (3,872.7, 3,873, 3,873.3) (9.50, 9.53, 9.57) (0.9307, 0.9308, 0.9310)

83 4, 206 19 19 (4,191.4, 4,192, 4,192.6) (5.23, 5.26, 5.30) (0.9503, 0.9505, 0.9508)

83 4, 454 18 18 (4,437.5, 4,438, 4,438.5) (5.54, 5.57, 5.60) (0.9475, 0.9477, 0.9479)

83 4, 732 17 17 (4,663.8, 4,664, 4,664.2) (5.86, 5.89, 5.92) (0.9547, 0.9548, 0.9550)

83 5, 048 16 16 (4,989.5, 4,990, 4,990.5) (6.23, 6.27, 6.30) (0.9480, 0.9482, 0.9484)

83 5, 408 15 15 (5,237.4, 5,238, 5,238.6) (6.64, 6.67, 6.70) (0.9633, 0.9636, 0.9638)

83 5, 824 14 14 (5,618.4, 5,619, 5,619.6) (7.12, 7.15, 7.18) (0.9622, 0.9624, 0.9626)

83 5, 853 13 14 (5,585.3, 5,586, 5,586.7) (7.58, 7.61, 7.64) (0.9678, 0.9681, 0.9683)

83 6, 309 13 13 (5,992.3, 5,993, 5,993.7) (7.67, 7.69, 7.72) (0.9715, 0.9717, 0.9720)

83 6, 842 12 12 (6,516.4, 6,517, 6,517.6) (7.77, 7.79, 7.82) (0.9679, 0.9681, 0.9683)

83 6, 883 12 12 (6,522.5, 6,523, 6,523.5) (8.31, 8.34, 8.37) (0.9670, 0.9672, 0.9674)

83 7, 571 11 11 (7,058.4, 7,059, 7,059.6) (9.07, 9.09, 9.12) (0.9748, 0.9750, 0.9752)

83 8, 412 10 10 (7,911.9, 7,913, 7,914.1) (9.98, 10.00, 10.02) (0.9565, 0.9567, 0.9570)

83 8, 898 9 9 (8,554, 8,555, 8,556) (5.44, 5.46, 5.49) (0.9830, 0.9833, 0.9835)

83 10, 816 7 8 (9,924.2, 9,925, 9,925.8) (12.49, 12.51, 12.53) (0.9533, 0.9535, 0.9537)
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Fig. 14 CPU time versus problem size

Table 11 Fuzzy processing time of tasks (Tsujimura et al. 1995)

Task no. Task processing time Task no. Task processing time

1 (5 6 8) 7 (15 16 18)

2 (3 5 6) 8 (3 5 6)

3 (7 8 9) 9 (5 7 8)

4 (8 10 11) 10 (11 15 17)

5 (5 7 8) 11 (9 10 11)

6 (16 18 20) 12 (16 18 19)

Given C̃max = [49, 50, 51]

Fig. 15 Predecessor and successor constraints graph (Tsujimura et al.
1995)

Tsujimura et al. (1995). The fourth and fifth lines also show
the results of fuzzy RPWT and modified COMSOAL pro-
posed by Fonseca et al. (2005); and finally, the last line
dedicated to the results of a fuzzy heuristic algorithm for

SULB problem that offered by Zhang et al. (2009). As it
is observed, none of the existing methods, rather from the
number of workstations, rather than in terms of the line per-
formance and rather from the idleness percentage are not
better than our proposed modified algorithm. This shows the
high performance of the proposed algorithm.

In addition to the detailed example, the proposed algo-
rithm and other methods examined with bench-marks of
SALBP-1 and SULBP-1 and results presented in Tables 13
and 14.

As presented in Tables 11 and 12, result of proposed
algorithm averagely is better than other method in both
“Average of %Deviation” and “%Optimal Solution” indexes
each of which proof high performance for the proposed
algorithm.

Conclusion

In this paper, the single model of straight and U-shaped
assembly line balancing with fuzzy processing data have
been considered. According to the uncertainty, variability,
and imprecision in actual systems, task processing time
as the problem input data presented as triangular fuzzy
data. The main goal of problem which is minimizing the
number of task stations subject to the Maximum allowed

fuzzy cycle time
(
C̃max

)
and problem constraints whilst

for result comparison, some criteria were presented in
addition to this goal. After mathematical formulation of
the problem in fuzzy state, a combined genetic algorithm
with One Fifth Success Rule has proposed, then the pro-
posed algorithm parameters calibrated using Taguchimethod
and lastly the algorithm examined on different benchmarks
and the experimental results proof its powerful capabil-
ity.

However, it is limited by the assembly line balancing sin-
gle model and it is hoped that future researchers be able to
solvemore complex problems such asmixedmodel of assem-
bly line balancing using fuzzy processing times. In addition,
the fuzzy problem of SALB-1 and SULB-1 could be solved
by othermeta-heuristic algorithms such asACOand compare
the results with proposed algorithm.
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Table 12 Result of existing method for test problem

Algorithm K Allocated tasks t̃(Sk ) Ĩk c̃

Modified GA for SALB 1 1, 2, 4, 5, 3, 8 (31, 41, 48) (1, 9, 20) (36, 43, 47)

2 6, 7, 9 (36, 41, 46) (3, 9, 15)

3 10, 11, 12 (36, 43, 47) (2, 7, 15)

Fuzzy efficiency = (0.7305, 0.969, 1)

Fuzzy idle percentage =(3.9216, 16.6667, 34.0136)

Modified GA for SULB 1 1, 6, 12 (37, 42, 47) (2, 8, 14) (37, 42, 47)

2 2, 5, 8, 10, 11 (31, 42, 48) (1, 8, 20)

33 3, 4, 7, 9 (35, 41, 46) (3, 9, 16)

Fuzzy efficiency = (0.7305, 0. 992, 1)

Fuzzy idle percentage = (3.9216, 16.6667, 34.0136)

GA forSALB by Tsujimura et al. (1995) 1 1, 2, 4, 6 (32, 39, 45) (4, 11, 19) (32, 39, 45)

2 5, 3, 8, 10 (26, 35, 40) (9, 15, 25)

3 7, 9, 11 (29, 33, 37) (12, 22)

4 12 (16, 18, 19) (30, 32, 35)

Fuzzy efficiency = (0.572, 0.8013, 1)

Fuzzy idle percentage = (26.9608, 37.5,51.53061)

Fuzzy RPWT for SALB by Fonseca et al.
(2005)

1 1, 4, 2, 3, 5, 8 (31, 41, 48) (1, 9, 20) (11, 15, 21)

2 7, 10, 6 (42, 49, 55) (0, 1, 9)

3 9, 11, 12 (30, 35, 38) (11, 15, 21)

Fuzzy efficiency = (0.624242, 0.85034, 1)

Fuzzy idle percentage = (7.843137, 16.6667, 34.0136)

Modified COMSOAL for SALB by Fonseca et
al. (2005)

1 1, 5, 4, 2, 7 (36, 44, 51) (0, 6, 15) (6, 12, 20)

2 6, 3, 9, 8 (31, 38, 43) (6, 12, 20)

3 10, 11, 12 (36, 43, 47) (2, 7,15)

Fuzzy efficiency = (0.647799, 0.94697, 1)

Fuzzy idle percentage = (5.228758, 16.6667, 34.0136)

Heuristic algorithm for SULB by Zhang et al.
(2009)

1 1, 4, 11, 12 (38, 44, 49) (0, 6, 13) (12, 17, 24)

2 2, 3, 5, 7, 8, 9 (38, 48, 55) (0, 2, 13)

3 6, 10 (27, 33, 37) (12, 17, 24)

Fuzzy efficiency = (0.624242, 0.85034, 1)

Fuzzy idle percentage = (7.843137, 16.6667, 34.0136)

Table 13 Summarized result of existing method for SALBP-1

Problem class Modified GA (%) GA by Tsujimura et al.
(1995) (%)

FuzzyRPWTbyFonseca et al.
(2005) (%)

Modified COMSOAL by Fon-
seca et al. (2005) (%)

Average of %Deviation

A 0.00 0.93 8.06 1.62

B 1.42 3.28 3.30 4.30

C 2.65 3.41 4.06 4.59

Total 1.36 2.54 5.14 3.50

%Optimal solution

A 100 97.22 75.00 91.67

B 90.61 75.66 72.22 64.81

C 63.75 58.75 59.24 53.06

Total 84.79 77.21 68.82 69.85
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Table 14 Summarized result of existing method for SULBP-1

Problem class Modified GA (%) Heuristic for SULB by
Zhang et al. (2009) (%)

Average of %Deviation

A 0.00 10.67

B 3.32 8.33

C 3.80 6.30

Total 2.37 8.44

%Optimal solution

A 100 63.89

B 71.16 35.19

C 58.26 46.60

Total 76.48 48.56
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