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Abstract The Internet of Things (IoT) has a significant
effect on the development of manufacturing technology.
Therefore, according to the analysis of the challenges and
opportunities faced by manufacturing industry, this study
uses the assembly process of mechanical products as the
research object and analyzes the characteristics of IoT-based
manufacturing systems. To improve the interconnection, per-
ception, efficiency, and intelligence of the assembly system,
this study proposes the concept of IoT-enabled intelligent
assembly system for mechanical products (IIASMP). The
IIASMP framework, which is based on advanced techniques
such as information and communication technology, sen-
sor network, and radio-frequency identification, is then pre-
sented. Key technologies under this framework, including
assembly resources identification, information interaction
technology, multi-source data perception and fusion, intel-
ligent assembly agent, and value-added data and dynamic
self-adaptive optimization, are described. Finally, the cur-
rent results of IIASMP are described in the case study. The
proposed framework and methods aims to have an important
reference value for applying the key technologies and be used
widely in the intelligent manufacturing field.
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Introduction

Global competition in the manufacturing field is becom-
ing fierce, and manufacturing systems are unable to cope
with the requirements of mass customization (Michalos et al.
2010). Therefore, the manufacturing industry must achieve
the main objective (i.e., to produce high-quality products
at the lowest possible cost) to cope with the said require-
ments. With sharply increasing costs and competition, the
growing complexity of achieving this objective has forced
manufacturing enterprises to look for alternatives to the tra-
ditional approaches of design, manufacturing, and manage-
ment (Nasr and Kamrani 2008). The rapid development of
advanced technologies has led to the rapid evolution of intel-
ligentmanufacturing systems (IMSs) and the improvement of
IMS characteristics (Nasr andKamrani 2008; Oztemel 2010)
such as adaptation, autonomy, self-progress, learning, and
automated maintenance. New technology-enabled systems
are being developed with short time frames. IMS is becom-
ing increasingly dominant in industrial and manufacturing
areas, and the changes of IMS surprises both the academic
and industrial community (Oztemel 2010).

Many governments and organizations have recognized the
trend of deploying the Internet of Things (IoT) and related
services in the manufacturing industry to achieve intelligent
manufacturing (IM), promote the intelligence of the pro-
duction system, and achieve the main objectives. Germany
proposed the Industry 4.0 strategy, which presents that the
IoT and related services enable the creation of networks that
incorporate the entire manufacturing processes that convert
factories into smart environments. The United States, Japan,
South Korea, and some European and Asian countries have
formulated their own IoT strategies and market positions.
Many companies are trying to develop and apply IoT tech-
nologywith the encouragement of theChinese government to
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enhance the intelligence of the production system. Therefore,
IoT technology has a significant effect on the development
of manufacturing technology. Some advanced technologies
(e.g., information and communication technology (ICT), sen-
sor network, and radio-frequency identification (RFID)) have
been rapidly developed over the last decade, thus nurturing
the emergence of the IoT. IoT technology aims to capture
and monitor real-time object information to achieve smart
perception, recognition, optimization, and management in
enterprises, factory, shopfloors, etc. IoT technology has com-
prehensive sense, reliable delivery, and intelligent process-
ing features. IoT technology are now used in the industry
manufacturing field, but a complete IMS based on IoT and
other advanced manufacturing technologies still need some
time to be formed. Thus, manufacturing systemswill become
increasingly intelligent with the development of IoT technol-
ogy. “Smart” has been considered as a core characteristic of
the future manufacturing system. Therefore, issues related to
the process of representing, interconnecting, integrating, and
organizing the information generated by IoT will become
popular.

Currently, technologies such as different types of bar-
codes, active and passive RFIDs, and sensor networks play
important roles in promoting IoT. Atzori et al. (2010) pre-
sented that IoT is a novel paradigmwith three visions: things-
oriented vision, Internet-oriented vision, and semantic-
oriented vision. IoT needs identification technology, sens-
ing technology, communication technology, and middle-
ware technology as key enabling technologies. Identifica-
tion and sensing technology are involved in things-oriented
vision, communication technology is used for Internet-
oriented vision, and middleware technology is for semantic-
oriented vision. The functionalities offered by IoT-enabled
smart items can be grouped into five abstract categories,
including information storage, information collection, com-
munication, information processing, and performing actions
(Chaves and Nochta 2011). The production system con-
sists of marketing, design, scheduling, and manufacturing
processes (Oztemel 2010). The manufacturing processes are
composed of several stages, including resources identifica-
tion, resources recognition, data collection, data transmis-
sion, data mining, and feedback control. The manufactur-
ing system can better achieve the production objectives only
through these stages.Assembly processes are important steps
in product manufacturing and directly affect the quality of
products. Therefore, on the basis of analyzing the manufac-
turing processes stages and IoT visions, IoT has the following
specific contextual meaning in the current research: resource
identification, sensing, communication and interaction, data
fusion and integration (middleware), and IoT-based applica-
tions.

The competitive market environment and advanced tech-
nologies accelerates the development of IM. Some progres-

sive technologies (e.g., RFID and sensors) have been widely
used in manufacturing systems. Although enterprises have
been enriched with new technologies for high flexibility
potential, the following research questions still exist:

1. How should manufacturing resources be encoded to sup-
port the data parsing, exchange, processing, and sharing
under an IoT environment?

2. How should the massive data captured by IoT-enabled
heterogeneous devices be transferred and integrated?

3. What methodology should be used for value-added infor-
mation to support the decision-making process of the
enterprise?

4. How to achieveoptimization formanufacturingprocesses
based on real-time information perception?

The research object of this paper is the assembly processes of
mechanical products. To address the above research issues, an
IoT-enabled smart assembly system for mechanical products
is proposed on the basis of the analysis of IMS and IoT fea-
ture characteristics. These IoT-enabled assembly systems are
composed of smart machines, storage systems, and produc-
tion facilities, which are capable of exchanging information
autonomously while triggering actions and controlling each
other independently.

In the IoT-enabled intelligent assembly environment,
the concept, infrastructure, and key technologies of IoT-
enabled intelligent assembly system for mechanical prod-
ucts (IIASMP) are proposed on the basis of the analysis of
manufacturing process stages, IoT visions, IoT features, and
IMS characteristics. The presented IIASMP framework inte-
grates some key technologies (e.g., information perception,
transmission, and extraction) to implement the decision opti-
mization of assembly processes and intelligent operations of
the assembly system. These key technologies are for the steps
of different processes.

The remainder of this paper is organized as follows. The
definition and characteristics of IIASMP are presented after
reviewing the literature. On the basis of these concepts, the
framework and key technologies for IIASMP are presented
in detail. Thereafter, the relationships between IIASMP and
other enterprise systems are shown. The limitations, prob-
lems, and expected benefits of the proposed approaches are
expressed. A case of study is then discussed to demonstrate
the current research on IIASMP. In the last section, con-
clusions are drawn and the challenges and future works of
IIASMP are discussed.

Literature review

The following literature categories are relevant to this
research.
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Resource catalog, coding, identification, and information
collection techniques

Manufacturing resources play an important role in produc-
tion systems and information interaction. Therefore, a basic
standardization resource catalog and coding can simplify
information parsing, exchange, processing, integration, and
sharing. Zhang et al. (2006) presented an effective coding
approach for multi-objective integrated-resource selection
and operation sequence problems in IMS. Jiang et al. (2006)
constructed the hierarchical structure of the ontology infor-
mation coding system by analyzing the relationship between
sub-domains and information objects.

Various resource-encoding schemes are used to accom-
modate the data captured by data collection devices. The
rapid development of advanced techniques has led to the
abundance of various types of identification technology
(e.g., barcodes, RFID, and sensors) for manufacturing sys-
tems. Youssef and Salem (2007) presented an effective
method to use barcodes for positioning and recognition
purposes. However, some enterprises still use barcode sys-
tems to manage manufacturing processes. These systems
often require human intervention during the manufacturing
process. Recently, sensors, images, and visual recognition
technologies have been widely used for item identification.
For example, Atlas et al. (1996) addressed the advantage
of using sensors to monitor machine status and manufactur-
ing processes. Edinbarough et al. (2005) presented a neural-
network-based vision-inspection system interfaced with a
robot to detect and report IC lead defects online. Golnabi and
Asadpour (2007) discussed the designmethodology of indus-
trialmachine-vision systems and reported a genericmachine-
vision model. RFID is also being widely used to manage and
control manufacturing systems, such as real-time production
management systems for motorcycle assembly lines (Liu et
al. 2012), manufacturing information tracking infrastructure
(Zhang et al. 2012), manufacturing execution system (Dai
et al. 2012), and shop-floor material management. These
approaches contribute to the revitalization of RFID efforts
in manufacturing industries by presenting a real-life case
study that involves the use of RFID for managing mater-
ial distribution in a complex assembly shop floor at a large
air conditioner manufacturer (Qu et al. 2012). Zhang et al.
(2012) proposed the IM resources with the combination of
traditional resources, RFID, barcodes, and sensor techniques.

Information communication and interaction techniques
in enterprises

The Internet is a milestone for information and commu-
nication technologies. Research on the Internet started in
the early 1960s, advanced in 1973, and was popularized in
the 1990s. In recent decades, various types of information

interactions and communication techniques [e.g., bluetooth,
infrared, ZigBee, bus, sensor network, and electronic product
code (EPC) network] are available for manufacturing sys-
tems with the rapid industrialization and informatization for
enterprises. Some relevant cases have been illustrated. The
infrared imager is used to monitor the health of a few manu-
facturing processes (Al-Habaibeh and Parkin 2003). Aguilar-
Ponce et al. (2007) presented a type of sensor network archi-
tecture for sensor-based scene surveillance for detection and
tracking objects of interest through the application of agents.
Profibus networks are used in real-time systems with flexible
scheduling (Silvestre andSempere 2007). The lean enterprise
service bus architecture is proposed to enhance the interoper-
ability between the production system and global enterprise
information system in terms of business and manufacturing
requirements and establishes semantic interoperability for
industrial semantics (Zayati et al. 2012). As early as 1999,
the Auto-ID center practically drove the rapid and escalating
diffusion of the EPC. Cutting-Decelle et al. (2007) proposed
a way of managing modularity in production management
systems by using standardized information models. Drath et
al. (2008) indicated that the basic architecture of the neutral
data format automation markup language (AutomationML).
AutomationML is a neutral data format based on XML for
the storage and exchange of plant engineering information.
AutomationML is provided as an open standard. The goal
of AutomationML is to interconnect the heterogeneous tool
landscape of modern engineering tools in different disci-
plines, e.g., mechanical plant engineering, electrical design,
HMI development, programmable logic controller (PLC),
and robot control. Thiesse et al. (2009) also discussed the
technology, standards, and deployments of the EPC network.
An application of ZigBee combined with an embedded sys-
tem for industrial real-time measurements represents innov-
ative technology (Sung and Hsu 2011).

Optimization techniques for manufacturing system

The manufacturing environment today is uncertain and con-
tinually changing. Uncertainty is an inevitable consequence
of the complexities that technological advancements and
other factors generate (Jain et al. 2013). To survive in the
fierce competition, manufacturing systems are required to
have the ability to quickly adjust to any changes, such as
product, processes, loads, and machine failures (Beach et al.
2000). Jain et al. (2013) concluded that process uncertainty
factors include machine, material and handling devices,
work in progress (WIP), buffer, multi-skilled workers, and
redundant equipment. Therefore, maintaining the stability of
manufacturing systems becomes the most important prob-
lem for enterprises. Optimization research for manufactur-
ing processes is conducted because of this problem. Some
relevant techniques have been proposed and widely used in
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manufacturing systems.Kumar et al. (2000) discussed a qual-
ity optimizationmethodology based on the Taguchi approach
and the utility concept. Deshpande and Cagan (2004) intro-
duced an agent-based optimization algorithm that com-
bines stochastic optimization techniques with knowledge-
based search. The differential evolution for sequencing and
scheduling optimization can be seen in the study ofNearchou
and Omirou (2006). The resource optimization deploy-
ment is modeled as a multi-objective optimization problem
(Changfeng et al. 2006). Chiu (2008) was concerned with the
optimization of production running time and considered the
stochastic breakdown and reworking of defective items. The
dynamic optimization driven by real-time perception data is
considered a core characteristic of next-generation manufac-
turing systems (Zhang et al. 2012).

Agent-based manufacturing technology

Given that agent technology is an important aspect within
artificial intelligence research, this technology is considered a
significant approach for developing manufacturing systems.
Agent-based technology has been employed to perform a
number of tasks including, but not limited to, production
planning, scheduling and execution control, enterprise inte-
gration and supply chain management, materials handling,
and inventory management (Madejski 2007). Studies have
disclosed various definitions and applications for agents.
Luck and d’Inverno (2001) applied formal methods to pro-
vide a defined framework for agent systems. Guo and Zhang
(2008) considered that the agent can possess basic attributes
(e.g., object, knowledge, and label) composed of functional
units, such as communication module, processing module,
inference module, and study module. Ruiz et al. (2011) dis-
cussed an agent-supported simulation environment for IM
andwarehousemanagement systems. Sabar et al. (2012) pro-
posed an approach for a multi-agent-based algorithm for per-
sonnel scheduling and rescheduling. This algorithm mainly
considers individual competencies, mobility, and employee
preference, as well as the competency requirements asso-
ciated with each assembly activity with respect to both the
currentmaster assembly schedule and line balancing for each
product. Agent-supported manufacturing systems have been
further promoted with the use of RFID technology, such as
RFID-enabled intelligent agent system (Trappey et al. 2009),
agent-based distributed production-control framework with
the UHF RFID technology (Tu et al. 2009), and agent-based
workflowmanagement for RFID-enabled real-time reconfig-
urable manufacturing (Zhang et al. 2010).

Internet of things

The basic idea of the IoT is that the pervasive presence around
us is composed of a variety of things or objects, such as

RFID tags, sensors, and actuators. These things or objects
can interact with each other and cooperate with their neigh-
bor resources to reach common goals through interaction
standards (Giusto et al. 2010). IoT is a novel paradigm that
have been widely used by researchers and practitioners to
describe the combination of real-world physical objects and
the virtual world of information technology (Atzori et al.
2010). However, the term “Internet of Things” is a fuzziness
term. The reason of the apparent fuzziness around this term
is a consequence of the name “Internet of Things,” which is
syntactically composed of two terms. The first word pushes
toward a network-oriented vision of IoT, whereas the second
word focuses on generic “objects” that will be integrated
into a common framework (Atzori et al. 2010). The vision
of IoT is still a broad vision. Atzori et al. (2010) presented
that the IoT paradigmwill be the result of the convergence of
threemainvisions, including things-orientedvision, Internet-
oriented vision, and semantic-oriented vision.

The combination of the words “Internet” and “Things”
assume a meaning that introduces a disruptive level of
innovation into the ICT world. Although IoT is a popular
issue, this detail is not forgotten. IoT semantically means
“a world-wide network of interconnected objects that are
uniquely addressable on the basis of standard communi-
cation protocols” (Atzori et al. 2010). For ICT technology
in manufacturing, Chryssolouris et al. (2009) described the
evolution of information technology systems in manufactur-
ing (e.g., computer-aided technologies, manufacturing con-
trol, simulation, resource planning, and optimization), out-
lined their characteristics, and presented the challenges to
be addressed in the future. Global competition in the man-
ufacturing field is becoming increasingly fierce, and manu-
facturing systems are unable to cope with the requirements
of mass customization; thus, manufacturing industries be
enriched with new technologies for to achieve a high flex-
ibility potential. Michalos et al. (2010) presented that tech-
nologies directly dealing with assembly processes, such as
handling, joining, human resources, and supporting systems,
are mainly information technologies. At the operating level,
IT systems support different tasks, such asmaterial andwork-
flow planning, order control and monitoring, process opti-
mization modeling, shop floor documentation, quality man-
agement, maintenance management, vehicle identification,
and others (Michalos et al. 2010).

Intelligent manufacturing system

Themanufacturing industry has gone throughmany changes,
i.e., manual operation, mechanization, automatization,
informatization, integration, and intelligence. Industrializa-
tion realizes the liberation of human manual labor, and
informatization further realizes the liberation of humanmen-
tal work. IM has been developed in recent years. IM is a
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man–machine integrated intelligent system composed of an
intelligent machine and human experts, which can con-
duct smart activities, such as analysis, inference, judg-
ment, conception, and decision-making during manufactur-
ing processes (Guo and Zhang 2009). IMS can conduct
analyses, judgment inferences, conceptualizations, and deci-
sions regarding manufacturing problems. This system aims
to replace or extend part of the human brainwork in the man-
ufacturing environment and collect, store, improve, share,
inherit, and develop the manufacturing intelligence of a
human expert. The concepts of intelligent manufacturing
technology and IMS have been proposed in the late 1980s
and early 1990s with the development of artificial neural-
network techniques. Since the proposal of IMS, this system
has become one of the popular research points in the man-
ufacturing domain. Artificial intelligence techniques have
been used in IM for more than 25 years. As early as the
1993s, Monostori and Prohaszka (1993) described different
approaches for applying artificial neural-network techniques
formodeling andmonitoringmachining processes (e.g., turn-
ing and milling) with sensor integration. Zijm (2000) estab-
lished a basic framework for IM planning and control sys-
tems. McFarlane et al. (2003) explored the manner in which
both conventional control methods and distributed intelli-
gent control methods can be enhanced by the availability
of accurate and timely information about an item. Bargelis
et al. (2004) developed the knowledge-based framework of
an intelligent functional model. Oztemel and Tekez (2009)
introduced a reference model for intelligent IMS. Jardim-
Goncalves et al. (2011) presented a knowledge framework to
address this challenge and made interoperable IMSs a real-
ity, which proposes the use of semantically enriched interna-
tional product data standards and knowledge representation
elements as a basis for achieving seamless enterprise inter-
operability. Makris et al. (2012) discussed an integration-
driven framework for enabling the RFID-based identifica-
tion of parts to perform robotic assembly operations in a ran-
dom mix. The objective of this research is to enable robotic
cell control logic and to identify the component variants
that need to be welded, namely, the part dimensions and the
type of material. On the basis of the identification processes,
the robots should run the appropriate program to perform
the handling and joining processes. The rapid development
of advanced technologies will increase the popularity of
research on IoT-enabled IMS in the manufacturing domain.

Definition and characteristics of IIASMP

Manufacturing systems has to meet the following require-
ments to achieve their main objectives: interoperability,
fault tolerance, cooperation, scalability, information integra-
tion, distributed organization, heterogeneous environments,

open and dynamic structure, agility, and human–software–
hardware integration (Madejski 2007). On the basis of IMS
characteristic analysis (Madejski 2007; Nasr and Kamrani
2008; Oztemel 2010) and IoT features (e.g., comprehensive
sense, reliable delivery, intelligent processing features, and
so on), an IIASMP is proposed. The present research con-
siders that an intelligent assembly system for mechanical
products consists of smart equipment, an ubiquitous sensor
network, and an expert system. Assembly resources (mater-
ial, equipment, personnel, energy, and environment) and their
statuses in this intelligent system can be collected, analyzed,
and extracted on the basis of resource identification technol-
ogy, multi-source multi-sensor information fusion technol-
ogy, man–machine interaction technology, intelligent assem-
bly agent technology, and self-adaptive optimization tech-
nology to achieve the decision optimization of the assembly
processes and the intelligent operation of the assembly sys-
tem. The IIASMP characteristics in an IoT-enabled intelli-
gent assembly environment are as follows:

1. Multi-source multi-sensor information fusion. This char-
acteristic denotes that assembly resources (e.g., mater-
ial, equipment, personnel, energy, and environment) and
their statuses can be sensed, extracted, and integrated.
Advanced technologies have increased the transparency
of manufacturing processes. Multi-resources are usually
equipped with multi-sensor components, which have per-
ceived capabilities. For example, measuringmachines are
always attached to functional sensors (e.g., torque sen-
sor, angle sensor, temperature sensor, pressure sensor,
and vision sensor) to perceive the quality parameters of
products. Materials, products, and workers are usually
equipped with RFID tags, barcodes, and IC cards, which
can be sensed by data terminals (RFID readers, scanning
guns, and ICmachines). All collected data are transmitted
and fused at the end of the process.

2. Self-regulation and self-organization. This characteris-
tic means that this system can collect and understand
its own status information and analyze and regulate its
own behavior. For instance, a material-handling robot is
composed of a machine vision, a smart controller (e.g.,
PLCandgraphicworkstation), an actuator (e.g., robot arm
and servomotors), and a knowledge base (e.g., standard
image database, image processing algorithm, and encod-
ing rules).Machine vision is applied to capture the images
of materials, which are processed by graphics worksta-
tion to achieve materials recognition (materials type) and
location (3D coordinates of materials) on the basis of a
standard image database and algorithm. Therefore, the
PLC can control the robot arm and servo motors on the
basis of 3D coordinates to complete the active handling of
materials and other related tasks without external human
interference.
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3. Self-adaptation. The system can tolerate and handle dis-
turbances during the assembly process. For example, if
the RFID tag can store the quality information of each
workstation, the system can modify the tolerances of the
current workstation on the basis of pre-workstation tol-
erance deviation because of the quality defect accumula-
tion from each workstation. Thus, the system can adapt
tolerance deviation, reject non-conforming products, and
improve product quality. RFID tags usually are attached
to pallets with products.

4. Self-learning. The system is capable of being trained to
conduct certain tasks. Learning involves memorizing and
correcting the interpretation of context-dependent mean-
ings. For example, if the sample sizes of memorized toler-
ances deviation (pre-agent) and modified tolerances (cur-
rent agent) are large, the sample data will be directly ana-
lyzed and can be used to change some related tolerance
ranges stored in the system knowledge base.

5. Self-maintenance. The system is capable of maintain-
ing its own state of operational readiness through self-
diagnosis, preventive self-maintenance and, self-repairs
via reconfiguration. For example, a machine can iden-
tify a faulty component and undergo reconfiguration to
replace the faulty part with a stand-by component capa-
ble of self-maintenance.

6. Man–machine integration. The system can integrate
machine and human intelligences and can cooperate with
the other. For example, machine vision provides a pow-
erful tool for the interaction between man and machine.
Machine vision can recognize human gestures, and each
gesture presents an actual command that will force a
machine to perform specific actions, such as device reset-
ting, device boot, and device shutdown.

Overall framework of IIASMP

The purpose of this research is to apply IoT technology and
develop an IIASMP. Figure 1 shows the overall IIASMP
framework.This infrastructuremainly involvesfivemain lay-
ers and one system service part. The bottom layer is a sensing
assembly and net layer. The other layers include the informa-
tion integration layer, decision making and application layer,
and interface layer. The last layer is the knowledge represen-
tation (high-level systems) layer, which has been researched
and used for a long time. Each layer will be described in the
following:

1. Sensing assembly layer. In the sensing assembly layer,
assembly resource identification technology and multi-
source and multi-sensor data acquisition technology are
adopted to sense and collect the status data of assembly
resources. Thereafter, these resources adjust their status

or perform some action according to the feedback instruc-
tions from the decision making and application layer to
complete the assembly processes.

2. Net layer. The net layer consists of a field bus, a sensor
network, the Internet, an industrial Ethernet, a network
management system, and a data management system. In
this layer, the sensing data can be protocol converted,
stored, routed, and transferred.

3. Sensor data fusion layer. In the sensor data-fusion layer,
the sensing data from the middleware can map all the
statuses and behavior of assembly resources. Thus, data
becomes information, which can be extracted and inte-
grated.

4. Decision making and application layer. In the decision
making and application layer, the integrated informa-
tion from the last layer can be monitored, analyzed, and
extracted. Thereafter, the integrated information can sup-
port the intelligent management control of the system by
using man–machine interaction technology.

5. System service part. The system service part is involves
all four layers. This part provides resource configuration,
data security, protocol conversion, and other related ser-
vices.

6. Interface layer. Interfaces are the communication devices
that different systems use for exchanging data. In this
study, interface technologies, such as web services, files,
sockets,messages, relational databases, or other technolo-
gies, support the duplex transmission of data. The inter-
face of other systems will be introduced in a later section.

On the basis of discussing the functions of the layers, this
study will discuss how the proposed system “pairs” or works
with existing technologies. Manufacturing systems consist
of many heterogeneous resources (e.g., sensors, PLC, data
collection, and communication terminal) by using different
communication protocols and standards to achieve compre-
hensive sense, sharing, and cooperation. Therefore, IoTmid-
dleware becomes important. IoT middleware can integrate
heterogeneous resources and achieve bidirectional data com-
munication and transmission between the sensing layer and
decision making and application layer.

However, achieving the integration of management and
control based on IoT middleware has become increasingly
significant. Each command, resource property, and produc-
tion event can be paired with a series of physical con-
trol addresses that are supervised and moderated by intelli-
gent controllers (e.g., industry control computer, PLC). IoT
middleware is a flexible and scalable solution for connect-
ing, managing, monitoring, and controlling heterogeneous
devices, and software applications. IoT middleware can also
provide interoperability, thus allowing automation control
information to be leveraged throughout an organization.
For example, “Kepware Technologies” develops Kepserver,
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which offers a rich platform that holds an array of open stan-
dards, such asOLE for process control (OPC), propriety com-
munication protocols, API, and various interfaces of automa-
tion systems (e.g., Siemens, Honeywell, Omron, Aromat,
Mitsubishi, Toshiba, DNP, Yokogawa, and GE). Kepserver
enables improved operations and decision making through-
out all layers of an establishment. IoT middleware items can
establish the mapping relationship between physical control
addresses and assembly resources, i.e., IoT middleware sim-
ply specifies the data address and not as the actual physical
data source that the address references.

The sensing assembly layer consists of a distributed con-
trol system (DCS), which can perform various tasks (e.g.,
resources sensing, recognition, and device control) inde-

pendently. The IoT middleware provides interoperability
between the sensing assembly layer and the decision mak-
ing and application layer. Moreover, the IoT middleware can
integrate DCS and achieve comprehensive sense, sharing,
and cooperation.

Key enabling technologies

Manufacturing resource classification, resource modeling,
and information encoding technology

Resource classification and encoding technology is used to
ensure information semantic consistency in the product life
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cycle, which is the foundation and prerequisite of prod-
uct information sharing. Therefore, the quality of resource
classification and encoding directly affects product informa-
tion sharing and exchange. Advanced technologies, such as
computer and information technologies, sensors, and RFID,
have been rapidly developed and widely deployed to assem-
ble resources (e.g., material, equipment, personnel, energy).
These technologies offer automatic and accurate resource
data capture and enable real-time traceability and visibil-
ity. These key technologies simplify data parsing, exchange,
processing, and sharing. Hence, normative resource classi-
fication and encoding have a positive effect on information
processing and sharing. This section will be discussed from
the following two aspects.

Feature mapping of the resource object set

In this section, feature mapping is divided into three types:
basic, combined, and operating feature mapping. Figure 2
shows the feature mapping of resource objects.

Basic feature: Fig. 3 shows the basic feature mapping.
Three levels are involved in the static feature of resources,
namely, the resource category, sub-category, and basic infor-
mation or content of the specific object. The first level defines
four categories of resources: human, material, equipment,
and other resources. The second level describes the resource

object in the resource category. The last level presents the
resource object information. For example, material resources
contain the self-made material, outsourcing material, pur-
chased material, standard material, and assembly objects.
Each specific object has basic information, such as mater-
ial number, name, classification, and shape.

Combined feature: This feature is the configuration rela-
tionship between one resource object and the other resource
objects or operating rules of the resource. Three types of
configuration modules are shown in Fig. 4: plant, product,
and processes configurations. The plant configuration mod-
ule aims to establish the relevance among the factory, assem-
bly line, station, device, warehouse, and personnel. The prod-
uct configuration module configures the relationship among
the product bill of material, assembly routing, material, man-
ufacturers, warehouse, and device at the processes configu-
ration modules and the relationship among processes and
other resource objects, such as process routing, process step,
process station, process material, and process-quality stan-
dard.

Operation feature: The basic and combined features are
the relatively static features of resource objects. The oper-
ation feature, which shows the dynamic operation status of
resource objects, is proposed on the basis of the first two
features (Fig. 5). Thus, this feature is an essential part of the
resource object.With the constant input of resources and out-
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Fig. 2 Feature mapping of resource objects
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Fig. 6 Encoding structures of resource information

put of products, a management information system records
the real-time information of the assembly processes on the
basis of operation feature structure.

Resource encoding

The resource encoding technology links a resource object
to the assembly processes and marks the resource features.
Therefore, a unified and normative encoding system is the
basis of accurate expression, transmission, and integration
of information.

This paper uses five classes of codes to mark the resource
information in Fig. 6. The first class is used for resource
category. The second class represents the sub-category. The

third class represents the identification code of a resource
object; this identification code is unique and can be indexed.
The fourth class represents the static and combined features
of the object. The last class is used for some remarks.

Resource modeling

The manufacturing resource model is the premise and foun-
dation to realize the goal of digital manufacturing. The
expression form of the resource is data. Ontology is a compu-
tationalmodel of some portions of themanufacturing system.
This model is used to facilitate data interaction, sharing, and
reuse, is often captured in a semantic network and represented
by a graph, where nodes are concepts or individual objects
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and arcs represent the relationships or associations among
the concepts (Lee et al. 2006). Ontologies are introduced as
an “explicit specification of conceptualization.” Conceptu-
alization describes concepts inside their contexts unambigu-
ously in a systematic manner. The specification of ontology
is linked to the concrete ability to write and store knowledge
in an optimal manner. This section takes assembly resources
as the research object and proposes an assembly resource
model on the basis of ontologies after analyzing the function
of ontologies. The ontology-based assembly resource model
will be introduced in the following sections.

Assembly resources can be divided into a meta-resource
and combined resource. The meta-resource DeSui is the
basic resource unit of assembly and could be represented
by its attributes DeSui ::= {ob-type, obj-name, obj-id, obj-
address, obj-pa, obj-pro, obj-provaule, obj-sta, obj-rela,
obj-res, obj-other}, where “ob-type, obj-name, obj-id, and
obj-address” represent the type, name, identification, and
physical control address of the meta-resource, respectively.
“obj-pa” represents the meta-resource parent resource (com-
bined resource) and its properties. “obj-pro, obj-provaule,
obj-sta, obj-rela, obj-res, and obj-other” represent the meta-
resource property collection, property values collection,
meta-resource state, relations collection, constraint set, and
other features, respectively. The combined resourceCom-Sui
consists of a meta-resource and combined resource under
certain constraints and requirements that can be subdivided
and combined. Com-Sui = {DeSu1, DeSu2, . . ., DeSun,
Com-Su1, Com-Su2, . . ., Com-Su j }(i = 1, . . ., n), ( j =
1, . . .,m). Com-Sui ::={com-name, com-id, com-address,
com-type, com-pa, com-sta,

∑
DeSui , com-re}, where

“com-name, com-id, com-address, and com-type” repre-
sent the name, identification, physical control address, and
type of combined resource, respectively. “com-pa” repre-
sents the parent resource of the combined resource, and
“com-sta and com-re” represent the state of the com-
bined resource and the relations collection for the meta-
resource, respectively. “

∑
DeSui” represents the meta-

resource collection, which also includes the combined
resource. The combined resource state is com-sta:
: ={com-failure, com-leisure, com-halfload, com-fullload,
com-overload}, where com-failure, com-leisure,
com-halfload, com-fullload, and com-overload represent the
combined-resource failure, leisure, half-load, full-load, and
over-load state, respectively.

Somemarkup languages (e.g.,XML,physicalmarkup lan-
guage (PML), and OWL) define a set of rules for encod-
ing information in a format that is both human readable and
machine readable and offer a complete framework for ontol-
ogy reading and writing. These languages are rapidly evolv-
ing toward the standard for data integration and exchange
over the Internet and within intranets, thus covering the
complete spectrum from largely unstructured ad hoc doc-

uments to highly structured schematic data. The markup lan-
guages will be introduced in “Information interaction tech-
nology” section. Several application programming interfaces
have been developed to aid software developers in process-
ing markup language data. Figure 7 shows an example of
ontology based on the proposed resource model.

Information interaction technology

Data interaction format

Data interaction is a prerequisite to achieve real-time, seam-
less dual-way connectivity and interoperability in an intelli-
gent assembly system. Various formats (standards) are used
for information interaction in an intelligent assembly system,
where packet,XML, record columnar file (RCFile), andPML
for IoT are classic format.

A packet is the elementary unit of data interaction and
transmission. The data are encapsulated once as a data block
according to the protocol and is then transmitted as a block.
XML is a markup language that defines a set of rules for
encoding documents in human- and machine-readable for-
mats. RCFile is a hybrid data-placement structure that com-
bines the row-storey structure and column-storey structure. In
a relational database, data are organized as 2D tables. To seri-
alize the table, RCFile first partitions the table horizontally
and then vertically. Horizontal partitioning first partitions the
table intomultiple row groups on the basis of row-group size,
which is a user-specified value that determines the size of
each row group. Horizontal partitioning has fast data loading
and strong adaptive ability to dynamic workloads. There-
after, in every row group, RCFile partitions the data verti-
cally similar to a column-store for fast query processing and
efficient storage space utilization. PML is amarkup language
based onXMLand is used for communicating the description
of physical environments, the objects in the environments,
and their relationships between each other. PML provides a
standard vocabulary to represent and distribute information
about Auto-ID-enabled objects. AutomationML is a neutral
data format based on XML for the storage and exchange of
plant engineering information. AutomationML facilitates the
data exchange between manufacturing engineering tools and
supports the interoperability between them. AutomationML
covers information about plant structure (topology andgeom-
etry) and behavior (logic and kinematics). The first version
of AutomationML has been presented at the 2008 Hannover
Fair (Drath et al. 2008).

Data interaction standard

The step application protocol alone does not solve current
enterprise interoperability problems. To achieve data inter-
action, each stakeholder has its own nomenclature and asso-
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Fig. 7 Example of ontology-enabled resource data model

ciated meaning of its business products. Therefore, the data
exchanged may still be misunderstood by all business part-
ners despite sharing the same structure (Jardim-Goncalves
et al. 2011). Cutting-Decelle et al. (2007) present the ISO
15531 MANDATE standard for the exchanges of industrial
manufacturing management data. A data interaction frame-
work in smart assembly system is proposed on the basis of the
data interaction standard provided by the Rockwell Factory
Talk Production Center (FTPC) platform (Fig. 8). Four core
modules are involved in this framework to implement data
interaction: basic specification, generation and compression
of data block, storage and interaction of data block, parsing,
and application of data block.

The basic specification module provides information
encoding and the interaction standard. This module mainly
contains two components, namely, the resource information-
encoded library and the data interaction protocol and stan-
dards. The generation and compression of data block are
based on the basic specification and interaction request. In
this module, the perception data are packaged and com-
pressed by the data block generator and then sent to the block
storage and interaction area.

In the storage and interaction of the data block module,
synchronous data interaction is combinedwith asynchronous
data interaction to achieve client–client online and offline

data block transmission. In the analysis and application of
the data block module, the client uncompresses and parses
the data block on the basis of basic specifications. The data
are then converted to information through the man–machine
interaction system. The information is further used in system
application and decision making.

Multi-source data perception, and fusion technology

This key technology uses advanced technologies (e.g., RFID,
barcodes, and sensors) to sense the assembly resources and
their condition. Feature extraction and information integra-
tion are then used to achieve sensor data fusion via the sensing
middleware. Finally, the integrated information can directly
support the applications and decisionmaking. Figure 9 shows
the framework of such technology. The three layers involved
in this framework are the intelligent assembly resource layer,
physical sensing layer, and fusion layer.

Multi-source data perception technology

Advanced technologies have been widely used in the pro-
duction system. Capturing the real-time information of the
assembly resources is necessary for the transparency of
assembly processes. Personnel, machines, materials, and
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Fig. 8 Data interaction framework

other assembly resources are usually equipped with RFID
tags, barcodes, sensors, global positioning systems (GPSs),
and visual devices to identify shop-floor objects and their
conditions via RFID readers, scanning gun, PLC, computers,
and servers and achieve data physical sensing. The advanced
technologies are used in several ways.

1. Materials, pallets for holding WIP, and products are
attached with RFID tags and barcodes. These intelligent
assembly resources can be identified by RFID readers,
scan guns, and personal digital assistant devices. Oper-
ators are usually equipped with identity cards that can
be used to boot machines and operate system modules
by using their authorized card. For example, a pallet
equipped with an RFID tag offers information storage
and communication functionality to automatically cap-
ture the unique serialized shipping container code of the
pallet at relevant reading points.

2. Physical sensors, optical sensors, vision sensors, and
other sensors are usually deployed at assembly stations
to complete different functions. For example, the prox-
imity switch is used to sense a pallet at assembly stations.
A photoelectric switch is used to sense whether a pallet
holds materials. A vision sensor is applied with operation

research to capture the real-time motions of operators;
the collected motions are then sent to the processor for
image matching with the defined and standard motions.
Finally, the processor decides whether the operator is in
the danger zone and the motions of the operators are
standard.

3. Product quality is essential for enterprises. Therefore,
measuring machines must be used for quality control.
The most common resolution to date is to equip measur-
ing machines with special sensors. For example, torque,
pressure, and temperature sensors are used tomonitor the
tightening force, pressing force, and temperature values
of bolts.

4. Material-handling devices can also be equipped with ori-
entation sensors and GPS to achieve material delivery
and device localization.

Sensor data fusion technology

The principal objective of multi-sensor data fusion is to
improve the quality of information output in a process known
as synergy, which is widely used for combining sensor data
or data derived from sensory data into a common representa-
tional format to improve systemperformance in four different
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Fig. 9 Multi-source data perception and fusion framework

methods: representation, certainty, accuracy, and complete-
ness (Mitchell 2007). Different types of equipment have dif-
ferent data capturing standardization, thus directly resulting
in heterogeneous and uncertain data. IoT middleware, fea-
ture extraction, and information integration methods have
been proposed in this section to convert data to certain and
unified information. Figure 9 shows the sensor data-fusion
process.

IoTmiddleware: The IoTmiddleware has beenmentioned
in “Overall framework of IIASMP” section (interoperabil-
ity between variety layers) and aims to link the resource
objects to their sensed data and helps convert data. Relevant
technologies and standards (e.g., opening and interoperable
interface standards, object linking, and embedding technol-
ogy) are widely used to resolve heterogeneous data adapta-
tion and interaction problems. OPC is the first automation-
domain-specific component standard that consists of a set
of standard COM objects, properties, and methods for dif-
ferent device communications in manufacturing processes
control. OPC offers a uniform access to data in the indus-
trial field. The following key portions are involved in sensing
middleware:

1. Data Address Mapping. This paper first focuses on data
address mapping among devices connected to the mid-
dleware software (e.g., NI Measurement Studio, Sysmac
OPC Server, Simatic OPC Server, and Kepserver).

2. Address-Object Mapping. In the shop floor, the directly
sensed data are heterogeneous and uncertain. The data
address should be linked to the assembly resource objects
and production events for the data to becomemeaningful.

3. ResourceEncoding. The systemcannot easily understand
complicated production data; thus, the encoding system
is essential for data parsing. The encoding systemmainly
contains code overall length, class, length, start bit, and
stop bit for each class.

4. Data exchange. IoT-middleware-enabled engineering
software runs on the operating system and can cap-
ture real-time manufacturing data from heterogeneous
devices indirectly.

5. Data Parsing and Conversion. On the basis of address-
object mapping, the system can understand manufactur-
ing data immediately. Thus, the sensing data become
meaningful and can be related to specific events and
objects.
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Fig. 10 Intelligent assembly agent

Feature extraction: This method transforms large amounts of
sensed data into feature sets to filter redundant information
without losing sufficient accuracy, thereby reducing infor-
mation conflict and information integration difficulty.

Information integration: Open-object-oriented technol-
ogy is adopted and unified. A normative encoding system
is then used to cluster and regroup information, thus forming
a uniform information representation and realizing informa-
tion integration and sharing in the system.

Intelligent assembly agent

The increasing market competition intensifies the transfor-
mation of the production mode. Therefore, to succeed in this
environment, many enterprises are in urgent need of highly
flexible, distributed, and smart production systems to cope
with such problem.An agent is an active object that possesses
certain capabilities to perform tasks and communicates with
other agents on the basis of the organizational structure to
accomplish tasks (Chen and Tu 2009). Chen (2012) adopted
the Petri net method to construct a cell controller model and
then employs a modular design to develop an FMS cell con-
troller on the basis of RFID. Various agent-based method-

ologies on production management and control are now used
in enterprises, such as intelligent agent-enabled manufactur-
ing system and multi-agent-based system for manufacturing
control.

This study proposes an intelligent assembly agent for
the self-organization, self-adaptation, self-studying, and self-
maintenance of dynamical manufacturing processes. This
study considers an intelligent assembly agent as a manufac-
turing unit that can sense the assembly environment, perform
various assembly actions, monitor its own status, and com-
municatewith other assemblyunits. The agent is an important
part of the production system. Figure 10 shows the frame-
work of an intelligent assembly agent that consists of a sensor
unit, execution unit, management and control processor, and
knowledge library. Figure 10 also shows the related parts of
the smart assembly agent.

The assembly object contains two objects: physical and
information assembly objects. The physical object is visible
and is used to perform tasks under production commands,
such as bolt tightening, parts assembly, and product capabil-
ity test. By contrast, the information assembly object is invis-
ible and instructs the equipment to accomplish tasks, such as
production planning, process routing, and acceptable range
of quality value.
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Five key components with different individual functions
are involved in the intelligent assembly agent: identifying
unit (Idu), information unit (Iu), control and management
processor (Cmp), execution unit (Eu), and knowledge library.
The Idu can make some assembly resources be perceived to
achieve resource identification. Iu can perceive an identifying
unit and themselves.On the basis of the comprehensive sense,
transmission, and sharing,Cmp can conduct data analysis and
controlEu to achieve both physical and information assembly
objectives. The basic interactive process of each intelligent
assembly agent is as follows:

1. Identifying Unit. This part mainly addresses the sensing
of normal assembly resources (e.g., materials,WIP, prod-
uct, and material-handling devices) by the information
unit. The general approach is to attach some identifying
units (e.g., RFID tags, barcodes, GPS, and IC cards) to
the assembly resources. These identified resources can be
sensed and recognized by some information units (e.g.,
RFID, scanning guns, and IC machines). Therefore, on
the basis of the identified resources, some information
units can collect resource data and capture abnormal pro-
duction data automatically.

2. Information Unit. Humans have five senses, namely,
sight, hearing, smell, taste, and touch, to capture envi-
ronment information and support decision making. The
information unit (e.g., RFID readers, scanning guns, card
machines, and sensors) has perceived capacity. The infor-
mation unit is similar to the human senses used to sense
heterogeneous data from the identifying unit and assem-
bly environment, which triggers the corresponding man-
agement and control events according to the sensing data.
The sensed data are mainly workstation, material, prod-
uct, equipment, and workers. For example, proximity
switch is used to judge the pallet state (arriving or leav-
ing). A photoelectric sensor is applied to sense whether
the pallet is empty. An RFID is used to obtain the prod-
uct data chain stored in the RFID tag. Scanning guns
are used to collect material data, which contain the sup-
plier’s name, code, and batch number. Machine vision
is mainly applied for defect inspection. Other sensors
(e.g., torque sensor, angle sensor, and pressure sensor)
are usually used for quality testing and fault detection.
All heterogeneous data are directly used to support deci-
sion making and other uses.

3. Control and Management Processor. The management
and control processor is like the brain of the agent.
This process is the key component of an intelligent
assembly agent and guarantees the agent performance,
such as PLC, server, and industrial control computer.
This process mainly includes three functional modules,
namely, control, planning, and decision modules. Under
the interactions of the modules, the sensed data are

processed from the information unit to output some
instructions, and then send the instructions to the execu-
tion unit. An example of Cmp function is already shown
in “Definition and characteristics of IIASMP” section
(self-regulation and self-organization).

4. Execution Unit. The execution unit is like the limbs of
the agent. This process is used to respond to management
and control instructions or assembly (action) instructions,
such as the welding robot, fastening machine, press-
ing mechanism, measuring equipment, and material-
handling device.

5. Knowledge Library. The knowledge library is the foun-
dation of the intelligent assembly agent and provides
knowledge storage, knowledge retrieval, resource decod-
ing rules, agent control rules, strategy computing model
services, and an image library.

Each agent (workstation) includes an input buffer (I-buffer),
operation area, and output buffer (O-buffer). Appropriate
buffers can improve the production line balance rate. The
I- and O-buffers are used to store the agent input and
output pallets, respectively. The operation area is used to
complete the assembly objective. Therefore, a bolt tighten-
ing agent will be introduced in this study to further illus-
trate how the assembly intelligent agent works (Fig. 15).
All steps are completed by the intelligent assembly agent
automatically.

Value-added data

In modern manufacturing, the data volume increases at an
unprecedented rate in digital manufacturing environments by
using barcodes, sensors, vision systems, and so on. However,
the use of accumulated data are limited, which has led to the
“rich data but poor information” problem (Wang and McG-
reavy 1998). Hence, data mining technology has emerged
as an important tool for knowledge acquisition from manu-
facturing environments. The major data mining functions to
be performed include characterization and description, asso-
ciation, categorization, prediction, clustering, and evolution
analysis (Choudhary et al. 2009).

Given the wide use of comprehensive data sensing tech-
nology in the assembly system, the demand for a modern
technique to process the large influx of sensing data has
increased. In this particular case, value-added data are the
proper technique to take on the challenge. Value-added data
technology mainly includes two phases. The first phase is
based on real-time perceptual data. This phase aims to con-
vert sensing data to certain information and support manu-
facturing systems to complete basic functions. The second
phase is knowledge discovery from databases (KDD). Data-
bases contain large numbers of records with many attributes
that need to be simultaneously explored to discover use-
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Fig. 11 Value-added data framework

ful information and knowledge, thus making manual analy-
sis impractical. The KDD process is knowledge intensive,
and all steps require domain-specific knowledge (ontology).
As a kernel step of KDD, ontologies can help data mining
to be effective, innovative, and efficient (Choudhary et al.
2009). Ontology can drive knowledgemaintenance and assist
query formulation, active data mining, and online mining
(Tseng and Lin 2001). Ontology formally defines a com-
mon set of terms to describe and represent domain knowl-
edge. Ontology also provides a set of definitions of content-
specific knowledge representation primitives: classes, rela-
tions, functions, and object constants. Therefore, the charac-
teristics of ontology technology has been widely applied to
data mining.

In this section, data mining, man–machine interaction,
intelligent algorithm, dynamic self-adaptation, and intelli-
gent agent technologies are adopted to achieve value-added
data. Digging into the nature of assembly performance and
understanding the reason of assembly information are the
goal of value-added data. The value-added data framework
is shown in Fig. 11. Three stages are involved in the frame-
work to complete the value-added data.

1. The first stage transforms data as information or mini-
mizes data uncertainty. Data features are extracted, the
matching model to process the data is identified, and the
data are transformed to useful resource status information
and assembly action information through semantic anno-
tation, description, and interaction protocol. This stage
mainly aims to complete the basic function of data min-
ing (e.g., characterization and description) and is divided
into three processes. First, the IoT middleware can inte-
grate heterogeneous resources and achieve bidirectional
data communication and transmission between the man-
ufacturing execution and decision layers (“Multi-source
data perception, and fusion technology” and “Overall
framework of IIASMP” section). Second, on the basis
of the ontology-enabled resource data model proposed
in “Resource modeling” section, some of the seman-
tic methods (e.g., XML, PML, and OWL) can be used
to write and store data in an optimal manner. Finally,
basedon the general data expression of themanufacturing
resource, perception data will be packaged, compressed,
and used for interaction according to the interaction stan-
dard discussed in the previous section.

123



J Intell Manuf (2017) 28:271–299 287

2. The second stage mainly performs some data mining
functions (e.g., association, categorization, prediction,
and clustering). This stage allows information to become
useful knowledge and supports the operation of the man-
ufacturing system. Some of the real-time information is
directly used to instruct online operations (online data
mining), whereas other information are stored and used
for KDD. The man–machine interaction technology and
optimization decision-making technology are used in this
stage.The systemwillmonitor, analyze, extract, andvisu-
alize themanufacturing on the basis of real-time informa-
tion (online data mining). According to the optimization
objective and constraints, the system can use expert sys-
tem and intelligent algorithms to obtain KDD, which is
further researched and widely used.

3. The last stage allows knowledge to become intelligence
(evolution), which is one of the primary goals of data
mining. Evolution is the highest level of data mining and
the hardest to achieve. On the basis of achieving evolu-
tion, the manufacturing system is self-adaptive and can
be improved by using the sensor unit, execution unit, con-
trol and management processor, and updated knowledge
library. Therefore, the intelligent system can be devel-
oped and evolved.

Dynamic self-adaptive optimization

Given the high complexity of the assembly process and
numerous influencing parameters, the assembly process
shows a nonlinear dynamic behavior. To cope with this
problem, research and development of optimal methods for
assembly systems are necessary. To date, modern process
optimal methods are driven by massive sensing data, urgent
demand for product quality, high manufacturing process
safety, minimal costs, and short production cycle. Some
research results indicated that dynamic optimization is the
core characteristic of IMS.

In summary, the implementation of optimization tech-
niques within production processes is necessary for enter-
prises to respond effectively to international competition and
changing demands. The dynamic self-adaptive optimization
model is proposed in this paper to represent optimization
processes in a model. The model for dynamic self-adaptive
optimization is shown in Fig. 12. The model has seven
parts: sensing network, bi-direction data transfer, informa-
tion processing, decision making and optimization part, self-
adaptive dynamic optimizationmodel library, visualmanage-
ment cockpit, and decision maker and optimization servers.
The self-adaptive dynamic optimization model library con-
tains related models for different assembly businesses: pro-
duction scheduling, personal scheduling, material distribu-
tion, assembling tolerances, and control policy. Six steps are

conducted to complete the self-adaptive dynamic optimiza-
tion.

1. Determine the optimization objective. The analyzer
obtains the dynamic optimization variables according to
the objective, and then sends these values to the con-
troller. These variables are parsed on the basis of pre-
defined(e.g., production scheduling, personal schedul-
ing, material distribution, assembling tolerances, and
control policy) and custom factors sets.

2. Send model and instruction. The controller first sends
the call instruction to the library for model matching.
Thereafter, the variable, constraints, andmatchingmodel
are sent to the model processor.

3. Integration, transfer, and execution. The model proces-
sor obtains the global optimal instruction on the basis of
incoming variables, constraints, and matching models.
Subsequently, the interface adapter transmits the instruc-
tion to the executive signal identified by the correspond-
ing intelligent agent (e.g., assembly agent, material deliv-
ery agent) to drive machines to work and achieve opti-
mization.

4. Sensing and transmission. The sending unit in the intel-
ligent agent collects the real-time assembly process data.
These data are translated into certain andmeaningful data
by a sensing middleware. Subsequently, data are trans-
ferred to the value-added data module. The value-added
data go to the analyzer for further processing as feedback
information after filtration and extraction.

5. Obtain optimal solution. Obtain the optimal solution to
meet the optimization objective. The analyzer under-
stands the relevance between the optimal instruction
and the feedback information. The optimal solution is
obtained from the relevance and intelligent algorithm
library. The solution is then sent to the visual manage-
ment and control cockpit (VMCC).

6. Decision making and iteration. The use of the configured
primitive enables the optimal solution from Stage 5 to
become a visual solution in VMCC. The cockpit helps
the decision maker and optimization servers understand
the difference between the actual status of the system
and the estimated status. The decision maker amends the
optimization objective according to the difference. The
amendment goes to Stage 1. Thewhole process is iterated
to improve the system continuously.

Material delivery is a dynamic process wherein the numbers
and types ofmaterial deliveries are directly affected by causes
(e.g., defect numbers of WIP and materials, emergency pro-
duction scheme, and production quantity). Consequently, the
pre-scheme of material delivery does not usually meet the
actual demand of themanufacturing system. A dynamic opti-
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Fig. 12 Dynamic self-adaptive optimization model
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mization case for material delivery is introduced on the basis
of real-time sensed information to resolve this problem.

The material delivery event can be triggered by two ways.
One is trigger byworkers who are tasked to press thematerial
button (e.g., software and physical buttons) and call mater-
ial delivery. The calling signals are mapped and converted
to a certain information immediately once the event occurs.
Subsequently, the material call will be transferred to the top
level for the analysis of material requirements (e.g., types,
number, and workstation). Finally, the material requirements
are displayed in the VMCC. Material handlers immediately
handle this request and deliver the required materials to the
corresponding workstations according to the visual decision-
making information. The inventory threshold can also trig-
ger the material delivery event. A model for determining the
precise inventory of each assembly agent is proposed on the
basis of the analysis of the causes. This type of material
delivery is different, complex, and contains the following
steps.

Step 1: The enterprise checks the inventory and conducts
financial accounting at the end of each production period
(e.g., month, quarter). Therefore, WIP is not allowed in
this step. Subsequently, material handlers will reset the
material delivery objects and invoke the function model
(e.g., calculation formula) at the beginning of each pro-
duction period to calculate and output a material delivery
plan (material types, number, and work stations).
Step 2: The delivery plan is converted into physical sig-
nals (e.g., coordinates of shelves, number of materials),
which can be received, recognized, and conducted by
the intelligent warehouse that consists of materials, high
storey shelves, stacker, multi-sensor, controller, etc. The
materials are picked up by a smart stacker after receiving
the signals, then the stacker places the materials on AGV
(material-handling agent) for delivery.
Step 3: Some causes affect the pre-scheme of mater-
ial delivery in the dynamic production process directly.
Hence, decision maker or optimization servers amends
the delivery plan to achieve just-in-time production. The
first step is to collect volatile data from each assembly
agent because delivery plans changewith the fluctuations
of affective factors. Each assembly agent is equippedwith
HMI, RFID, vision sensor, etc. AnRFID is used to record
and count the number of assembled and scrapped WIPs.
A vision sensor is applied to recognize materials, count
real-time inventory, and scrap agent material, which can
also be entered by workers through HMI.
Step 4: Some pre-defined mathematical formula are used
to calculate the actual demand of materials on the basis
of the data conversion and information transmission.
The actual material requirements are displayed in the

VMCC.Material handlers or optimization servers amend
the delivery plan according to the visual decision-making
information. The whole process is iterated from Stage 2
to improve the system continuously.

Although this optimization method is characterized by
dynamism and self-organization on the basis of real-time
perceptual information, this method also has limitations. The
performance of the method depends primarily on several key
factors. The most important factor is the comprehensiveness
of the optimizationmodel (algorithm). Building optimization
models that cover the entire production process is difficult.
At present, the decision maker plays an important role in
amending delivery plans. Optimization servers cannot make
decisions by itself completely.

Interfaces with different level systems

Three principle types of production exist in the manufac-
turing industry. Each of these types has a knowledge rep-
resentation level (e.g., PDM, PLM), horizontal integration
level (e.g., SCADA, MES,), and production facility level
(Saenz de Ugarte et al. 2009 and Kletti 2007). Each level
interacts with each other. Some ordinary interface technolo-
gies (e.g., files, web service, sockets, message and database)
have been proven possible in some research and applica-
tion. Therefore, an intelligent system should keep some of
the interfaces open. Interfaces function as connecting links
between different systems and monitor the exchange of data
when business and instruction data are received, when the
actual data changes, and when corrections are returned. The
proposed IIASMP mainly focuses on the assembly process
of mechanical products. IIASMP interacts with each of
the system levels via the existing interface technologies.
Figure 13 shows the interfaces of IIASMP with the differ-
ent system levels. Three types of interfaces are introduced as
follows:

Interfaces with high-level systems (e.g., PLM, PDM):
Business and instruction data (e.g., production planning,
material planning, bill ofmateriel, and process constraint and
rules) from high-level systems are received by IIASMPwhen
actual data changes, and corrections are returned. Some ordi-
nary interface technologies (e.g., files, web service, sockets,
message, database, etc.) are adopted in IIASMP to enable
this interface function.

Interfaces for horizontal integration (e.g., MES and
SCADA): A manufacturing execution system is defined as
an online integrated computerized system that contains the
methods and tools used to accomplish production (Huang
2002). The basic functions of MES, such as quality con-
trol, material delivery, and WIP tracking, are furnished with
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Fig. 13 Interface with different system levels

dedicated data collection systems (Kletti 2007). SCADA is
also a system that operates with real-time signals to provide
equipment control. The proposed IIASMP mainly focuses
on the framework and key enabling technologies rather than
the basic function of assembly system under the IoT environ-
ment. Some key enabling technologies (e.g., data collection)
are actually used in some integrated computerized systems
(e.g., MES, SCADA). Therefore, interfaces are necessary for
horizontal integration. Three types of interfaces are involved
in this part, namely, basic configuration data and knowledge,
real-time manufacturing data, and archive data interfaces.
Each interface is supported by some interface technology,
such as various files (e.g., XML, PML, OWL, and Automa-
tionML), web service, database, and middleware (e.g., OPC
and MTConnect).

Interfaces with production facilities: The most important
data that an integrated computerized system passes on to
the facilities are set-point inputs, process value inputs, for-
mulations and mixes, and programs (Kletti 2007). There-
fore, interfaces with facilities, such as machines, machine
groups, and production lines, are indispensable to the
IIASMP. An IIASMP not only receives data (e.g., the
counting signals, operating signals, resource status, mea-
sured values, and process data.) from the facilities but
also sends instruction data. This task is performed by an
intelligent assembly agent, which integrate some hetero-

geneous facilities, facilitate data exchange, and perform
tasks.

Limitations, realizability, and expected benefits

After presenting the framework and key techniques of
IIASMP, this section mainly discusses the limitations, real-
izability, and expected benefits of the proposed approaches :
what kind of limitations and problems will be encountered,
how to cope with these limitations and problems, how to
make the proposed approach achievable, what benefits will
be brought by this approach. All of the issues will be dis-
cussed as follows.

Limitations or problems

Manufacturing systems are complex and have various layers
and entities can be heterogeneous. This part analyzes con-
ceivable problems and limitations that should be expected,
as well as how to overcome them to ensure interoperability.
Several problems are discussed as follows.

1. Different assembly systems of mechanical products have
different types of manufacturing resources. Therefore,
the resource-encoding rules are not exactly the same as
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that of the proposed encoding rules. Some research on the
assembly system of typical mechanical products (e.g.,
car, engine, gearbox, axle, etc.) should be conducted.
A multi-encoding library should be constructed to cope
with this problem after conducting the research.

2. This paper constructs the resources data model on the
basis of ontology, where some common semantic lan-
guages (e.g., XML, PML, and OWL) are used. How-
ever, these semantic languages cannot exactly support
the semantic description of all the resource data. There-
fore, a custom semantic language should be developed
and applied.

3. The device driver is limitedly provided by IoT mid-
dleware. Although the IoT middleware (e.g. Kepserver)
provides interoperability that allows automation control
information to be leveraged throughout the organization,
the IoT middleware cannot cover most heterogeneous
devices. Therefore, HMI should be provided for data
input. Moreover, custom drivers should be researched
and used if possible.

4. The intelligent assembly agent is not completely smart.
For example, enterprises cannot equip a double PLC for
each assembly agent because the purchase cost of PLCs
is high. The smart assembly agent cannot perform self-
maintenance when the PLC fails. The intelligent assem-
bly agent can adapt the operation environment if the
knowledge library of the smart assembly agent is updated
regularly.

5. Evolution based on data mining is hard to achieve. How-
ever, this research can achievedatamining to someextent,
such as characterization, description, association, catego-
rization, prediction, and clustering. The research on data
mining for the assembly system of mechanical products
is inadequate and incomprehensive. Therefore, data min-
ing in assembly processes should be focused on.

6. The optimizationmodel (algorithm) does not have intelli-
gence features. The optimization model can only achieve
data operation based on sensing data. Therefore, the
determination of whether the optimization

model is reasonable is important. The algorithm should be
optimized regularly to cope with this issue.

Realizability

The overall infrastructure of the IoT-enabled intelligent
assembly system is mainly supported by six key parts,
include resource identification (manufacturing resource clas-
sification, encoding, and resource modeling), information
interaction, multi-source data perception and sensing data
fusion, value-added data, self-adaptive optimization, and
smart assembly agent. The assembly system can achieve
closed-loop control under the interactions of each part. The

realizability of each part is described in the corresponding
sections. The realizability of each part is generalized as fol-
lows.

1. Manufacturing resource classification and encoding are
common issues that have been studied for a long time.
This paper usually needs to consider the IoT-enabled
resource features and perform relevant adjustments.

2. Ontology is used to facilitate data interaction, sharing,
and reuse, is often captured in a semantic network, and is
represented by a graph whose nodes are concepts or indi-
vidual objects and whose arcs represent relationships or
associations among the concepts (Lee et al. 2006). There-
fore, the ontology-enabled resource model provides a
systematic way to describe resource data and is linked
to the concrete ability to write and store knowledge in an
optimalmanner. Themost common systematic languages
are XML, OWL, and PML, which have been widely used
in the manufacturing field.

3. IoT middleware is a suitable technology for achieving
heterogeneous data collection, transformation, and inte-
gration. Some countries and organizations have been
focusing on the development of this technology. How-
ever, Kepserver is widely used in the industry. Drivers
for open standards and most industry leading automation
vendors are supported. More than 200 protocols can span
most industry.

4. The collected data are described by systematic languages
(e.g. XML, OWL, PML) and then compressed and trans-
ferred for data application on the basis of the data interac-
tion standards provided by the Rockwell FTPC platform.
Data compression, block storage, and block parsing are
common methodologies in data processing.

5. Integrated data are mined for different applications after
receiving and parsing the data block (e.g., equipment
monitoring, tracking of the product, statistics and qual-
ity control, real-time material delivery, etc.). Each appli-
cation applies different algorithms or models to achieve
the objective of value-added data, which has been proven
achievable. Subsequently, themined data are transformed
into visual information that can be directly understood by
decision makers. The graphics device interface (GDI+)
is used in this research to achieve this goal.

6. Multi-agent or agent issue, which has been explored and
used for a long time, is a hot issue in the industry. In
this context, the IoT-enabled assembly agent has the
ability of comprehensive-sensing. The assembly agent
becomes more and more intelligent, especially with the
rapid development and implementation of vision-sensing
technology. Vision sensor can complete many functions
(e.g., detection, recognition,monitoring, etc.). Therefore,
the control and management processor (e.g., PLC, indus-
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try computer) can better understand the assembly envi-
ronment and take corresponding action.

Expected benefits

The IoT aims to apply the Ethernet and Internet technolo-
gies in the industry to gather the manufacturing resources
together based on the traditional control network (e.g. sensor
networks, bus network, etc.). The IoT middleware is proven
the important technology to achieve this objective. Enter-
prises need to deploy IoT middleware on system servers, and
develop production management and control system based
on IoT middleware. Therefore, the installation cost is rel-
atively low. The assembly system of mechanical products
can mainly benefit from the following aspects based on the
comprehensive sensing data.

1. The system can further achieve data sharing between
heterogeneous equipment to reduce production time
and improve production efficiency. IoT middleware can
address the “information isolated island” better to some
degree.

2. The real-time consumption data of the assembly mate-
rials can improve the precision of material delivery to
reduce cost caused by backlog of materials.

3. The quality prediction system could give satisfactory pre-
diction accuracy based on the sensing data to improve the
quality of production.

4. The assembly systemcan adapt somefluctuations to some
extent based on the dynamic self-adaptive optimization
approach.

Case study

A case study is conducted to show the current research
achievement following the proposed concepts, framework,
and key technologies of IIASMP in the preceding sections.
This research is based on the IoT-enabled virtual simulation
lab of a production system, supported by some automobile
enterprises, national science foundations, and programs of
China. Some of the key technologies have been used in the
assembly shop floor for mechanical products (e.g. automo-
bile, engine, gearbox, axle, clutch, etc.), and achieved good
effects.

Figure 14 shows the IoT-enabled virtual simulation lab
of a production system. It is mainly concerned with the
scheduling, batching, data collection, process monitoring
and control, dynamic self-adaptive optimization, and deci-
sion making for mechanical production systems. The lab
is usually used for experimental teaching. The lab is also
used for some related project verification and enterprise

pre-acceptance tests. The lab could carry out the following
experiments and project verifications.

1. Visual modeling and simulation of production systems.
2. Manufacturing process planning and simulation.
3. Planning and design of intelligent assembly system of

mechanical products.
4. The human–computer interaction technology.
5. Production line balancing and optimization.
6. Logistical planning for production system.
7. Online optimization of manufacturing process.
8. Design, development, and validation of manufacturing

process monitoring and control platform.
9. Development and validation of key technologies of IoT.
10. Robot programming, application, and simulation.
11. Electrical programming, control, and application.
12. Mechanical and electrical integration.

Figures 15, 16 and 17 show the current achievements of
IIASMP.Figure 15mainly shows the encoding and identifica-
tion of resources and fusion. Figure 16 shows the IoT-enabled
assembly agent aswell as data sensing and processing. Figure
17 shows the applications and decision-making of IIASMP.
The following core steps can be seen in Fig. 15: hardware
configuration, data address mapping, address-object map-
ping, resource encoding, smart assembly resources, and data
exchange. These core steps verify some proposed key tech-
nologies in the previous section. The six core steps are as
follows.

Step 1:Hardware configuration. Some standard hardware
configuration software and communication technologies
are used to enable someheterogeneous devices to connect
with each other.
Step 2: Data address mapping. Middleware is employed
to configure the mapping relationship between device
addresses and middleware items for object-oriented pro-
gramming and other uses.
Step 3: Address-object mapping. Middleware items are
added to the repository for some related component
loading and initialization and to build the relationship
between middleware items and production events and
assembly resources.
Step 4: Resource encoding. Sensing data generally con-
tain five class codes. Classes 1 and 2 codes are used for
resource classification. These codes are related to the rest
of the class codes, but not involved in the sensing data.
By contrast, the other class codes are used for assem-
bly resource identification and other uses. They are usu-
ally printed and involved in sensing data. For example,
material barcode usually contains three parts, namely, the
material code, supplier code, and serial code. These parts
contain data length, start bit, and end bit properties.
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Fig. 14 IoT-enabled virtual simulation lab of production system

Step 5: Personnel, machine, material, and other assem-
bly resources are equipped with RFID tags, barcodes,
sensors, visual devices, and so on, to make them and
their condition identifiable and to achieve data physical
sensing via information unit.
Step 6: Data exchange and display. First, data callback
functions and services provided by middleware soft-
ware are registered. Subsequently, data from devices
via middleware server are collected, and uncertain sens-
ing data are converted to meaningful data based on the
mapping relationship among middleware items, produc-
tion events, and assembly resources. Finally, production
events are triggered, and corresponding functions are
executed.

Bolt tightening workstation is a typical assembly agent. It
is composed of several components, such as sensors, visual

unit, robot, controller, and tightening machine. Figure 16
shows that the tightening process is divided into the following
14 steps based on the actual manufacturing activity:

Steps 1–3: The first three steps are about resource config-
uration, data addressmapping, and address-object, which
are introduced in the previous paragraph.
Step 4:Release of the pallets of the input buffer. The agent
controller (control and management processor) controls
the stopper (execution unit) to release a pallet into the
assembly area if the manufacturing agent is idle and if
the input buffer has pallets sensed by the photoelectric
sensor (information unit).
Step 5: Release empty pallet. The agent prompts the stop-
per to release the empty pallet into the out-buffers if
the photoelectric sensor sensed that the released pallet
is empty or without WIP.
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Step 6: Read RFID tag. Agent controller calls the RFID
reader (information unit) to sense the data chain of WIP
from the RFID tag (identifying unit).
Steps 7–8: Do watchdog check based on the data chain
and check rules (knowledge library). Agent controller
checks whether the WIP could meet the production
requirements in the previous process.
Step 8: Release unqualified WIP. The agent controller
releases the unqualified WIP into repair area if the WIP
did not pass the watchdog check.
Step 9: Scan material code. Agent controller calls the
scanning device to scan and parse material code (identi-
fyingunit) ifWIPpassed thewatchdog check, then judges
if theWIP type (knowledge library) matches the material
type (knowledge library).
Step 10: Visual inspection. The material images captured
by the vision device (information unit) are directly used
to inspect and determine whether the values of qual-
ity detection are within the specifications (knowledge
library).
Step 11: Material handling. The agent controller con-
trols robot (execution unit) to grasp and handle a material

based on machine vision if quality is within the specifi-
cations (knowledge library).
Step 12: Fix material. The agent controller calls the fix-
tures (execution unit) to fix the materials for assembly
when the robot completed the material handling.
Step 13: Bolt tightening. The agent controller boots the
tighteningmachine to achieve the process functions (e.g.,
bolt tightening and tightening results detection).
Step 14: Check quality values. The agent controller mon-
itors the quality values captured by the torque and angle
sensors (information unit) and determine whether the
values of quality detection is within the specifications
(knowledge library). The agent controller (control and
management processor) controls the stopper (execution
unit) to release a pallet into out-buffers if the values are
qualified and the out-buffers are empty.

Figure 17 shows the applications and decision-making of
IIASMP. The top of the figure illustrates the publishing of
visual monitoring and information, each of which is drawn
using defined graphic tools developed by the virtual simu-
lation lab. Parts of the graphic tools are the basic elements

Fig. 15 Resources encoding and data perception and fusion
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Fig. 16 Current research results for intelligent assembly agent

of visualization configuration, such as rectangle, ellipse, and
straight-line, which are not related to the assembly resources.
However, the other graphic tools (e.g., operator, material,
RFID, equipment, Andon, resource’s state, and other sig-
nals) are related to the assembly resources where every tool
includes some properties, such as OPC items, production

events, displayed colors, and alarm sound. The first three
pictures show the overall, zone, and resource monitoring of
IIASMP. The fourth picture displays the real-time production
information of the shop floor. The bottom of the figure illus-
trates the enterprise applications based on value-added data,
such as statistical process control (SPC), overall equipment
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Fig. 17 Application and decision making of IIASMP

effectiveness (OEE), mean time between failures (MTBF),
devices consumption energy, utilization rate, jobs per hour
(JPH), and first time through (FTT). All of them support
enterprise decision making and achieve stable production.

The “Internet of Things” is a generic term, but it has
the following specific contextual meaning in this research:
resources identification, sensing, communication, interac-
tion, semantic middleware, and IoT-based application. How-
ever, some of the enabling technologies (e.g., different types
of barcodes, active and passive RFID, sensing network, and
information integration) have already been used in construct-

ing the digitalmanufacturing system. In fact, the origin of this
research is from a joint-school project carried out by the vir-
tual simulation lab of production system based on previous
research achievements and advancedmanufacturing technol-
ogy. Currently, some enabling technologies are adopted and
used to increase the flexibility and automation of the assem-
bly system for mechanical products.

Figures 15, 16 and 17 show the current achievements of
IIASMP. The old production model with characteristics of
mass production and assembly line lost its flexibility and even
its scale advantage in the heterogeneous market. Currently,

Fig. 18 Current application areas for IIASMP
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automotive assembly systems are subject to many techno-
logical transformations because of their need to adjust to a
continuously changing market. Manufacturers, in their effort
to remain competitive, seek new technologies and equipment,
whichwill allow their companies to increase their responsive-
ness to demand fluctuations and variability. Agile, modular,
and autonomous assembly systems are considered as themost
suitable solutions. Every process in the assembly plant has to
become more flexible to increase the flexibility of the over-
all system (Michalos et al. 2010). Therefore, the proposed
IIASMPwill increase the flexibility of assembly for mechan-
ical products based on IoT, which is part of the flexible or
programmable automation. Currently, some of the proposed
approaches have been used in some assembly of mechani-
cal products, such as vehicle, engine assembly, axle assem-
bly, automotive welding, transmission assembly, and carrier
assembly lines. Figure 18 shows the current application areas
of IIASMP. However, new technologies will be introduced
into the manufacturing system to increase the flexibility of
assembly for mechanical products with the development of
IoT.

Conclusion

Recently, the rapid development of IoT technologies has cre-
ated opportunities for developing an intelligent assembly sys-
tem of mechanical products. An IIASMP and its key tech-
nologies are discussed and developed in this paper. The con-
tributions of this paper could be summarized as follows:

1. The concept of IIASMP is proposed, which aims at
improving the efficiency and intelligence of the assembly
system to some extent.

2. An overall framework of the IIASMP is presented and
discussed based on the advanced techniques (e.g. com-
puter and information technologies, sensor network and
RFID, etc.) and IIASMP concept, an overall framework
of the IIASMP is presented and discussed.

3. Under the infrastructure of IIASMP, the key technolo-
gies are described, which support the resources encod-
ing, data collection, analysis, and extraction, under the
infrastructure of IIASMP to achieve decision optimiza-
tion of the assembly process and the intelligent operation
of the assembly system to some extent.

It is known the manufacturing process is composed of sev-
eral stages, namely, resource identification, resource recogni-
tion and data collection, data transmission, data mining, and
feedback control. Each of the stage is supported by the rele-
vant key technologies proposed above. The proposed frame-
work and key technologies of IIASMP provide a referenced

framework and approaches to make the assembly system of
mechanical products become more efficient and intelligent.

Some of the key technologies have been used in the assem-
bly shop floor and achieved good effects, especially in the
manufacturing execution system.However, some challenges,
which will be focused on the future research works, still need
to be overcome. The existing challenges are as follows.

1. The principal challenge is the completeness and compre-
hensiveness of wisdom repository. In other words, to the
process of building a wisdom repository (e.g., optimiza-
tion models, and algorithm) for multi-product to support
the running of intelligent assembly system.

2. General interaction protocol. The process of standardiz-
ing the information interaction protocol for IoT-enabled
intelligent assembly system is another future research
direction.

3. New control strategies and management methods based
on IoT, such as motion sensing, defection detection and
judgment, online quality control, and online optimiza-
tion.

4. With the development of IoT, new technologies and
approaches will be introduced into the manufacturing
system to increase the flexibility of assembly formechan-
ical products.
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