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Abstract Decision makers today are faced with a wide
range of alternative options and a large set of conflicting
criteria. How to make trade-off between these conflicting
attributes and make a scientific decision is always a diffi-
cult task. Although a lot of multiple criteria decision making
(MCDM) methods are available to deal with selection appli-
cations, it’s observed that in most of these methods the rank-
ing results are very sensitive to the changes in the attribute
weights. The calculation process is also ineffective when a
new alternative is added or removed from the MCDM prob-
lem. This paper presents an improved TOPSIS method based
on experimental design and Chebyshev orthogonal polyno-
mial regression.A feature of thismethod is that it employs the
experimental design technique to assign the attribute weights
and uses Chebyshev regression to build a regression model.
This model can help and guide a decision maker to make
a reasonable judgment easily. The proposed methodology
is particularized through an equipment selection problem in
manufacturing environment. Two more illustrative examples
are conducted to demonstrate the applicability of the pro-
posed method. In all the cases, the results obtained using the
proposed method almost corroborate with those derived by
the earlier researchers which proves the validity, capability
and potentiality of this method in solving real-life MCDM
problems.
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Abbreviations

AHP Analytic hierarchy process
DM Decision maker
DoE Design of experiment
ELECTRE Elimination et choice translating reality
IC Integrated circuit
MCDM Multiple criteria decision making
MM Milling machine
MOORA Multi-objective optimization on the basis

of ratio analysis
PROMETHEE Preference ranking organization method

for enrichment evaluation
SAW Simple additive weighting
TOPSIS Technique for order preference by simi-

larity to ideal solution
VIKOR VlseKriterijumska Optimizacija I Kom-

promisno Resenje in Serbian

List of symbols

ai Coefficient of the Chebyshev term Ti
A+ The positive ideal solution
A− The negative ideal solution
Ai The i th alternative
C j The j th criterion
D+
i The distance between the i th alternative

and the positive ideal solution
D−
i The distance between the i th alternative

and the negative ideal solution
m The number of alternatives for a certain

MCDM problem
n The number of criteria for a certain

MCDM problem
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ri j The normalized value of j th criterion for
the i th alternative

Ti Chebyshev orthogonal polynomial term
vi j Theweighted normalized value of j th cri-

terion for the i th alternative
w j The weight value assigned to the j th cri-

terion
W The weight set
xi j The value of the j th criterion for the alter-

native Ai

X The decision matrix
y Response or TOPSIS score

Introduction

Multiple criteria decision making (MCDM) is all about mak-
ing choices in the presence of multiple conflicting criteria
(Köksalan et al. 2011). InMCDMproblems, a decisionmaker
(DM) has to choose the most appropriate alternative that sat-
isfies the evaluation criteria among a set of candidate options.
Typically, there does not exist a unique optimal solution for
such problems, so it is necessary to use DM’s preferences
to differentiate between solutions. Good decision making
requires a mixture of skills, like clarity of judgment, firm-
ness of decision, and identification of options (Chakraborty
2011). However, it is not easy for a beginner to gain such
skills in a short time. Thus, the problem of making a scien-
tific decision becomes difficult.

MCDM occurs in a variety of actual situations, espe-
cially in manufacturing environment. Some of the impor-
tant decision making situations in the manufacturing envi-
ronment include: equipment selection (Dağdeviren 2008),
facility location selection (Pasandideh et al. 2013), manufac-
turing process selection (Yu et al. 1993), machine tool selec-
tion (Önüt and Soner Kara 2008), rapid prototyping process
selection (Frank and Fadel 1995), robot selection (Rao et
al. 2011), vendor selection (Sharma and Balan 2013), etc.
The selection decisions become more complex as the DMs
in manufacturing organizations have to assess a wide range
of alternative options based on a set of conflicting attributes.
To solve these MCDM problems, several common method-
ologies have been developed. In 1968, MacCrimmon (1968)
utilized the simple additiveweighting (SAW)method to solve
a simplified weapon system selection problem. In the same
year, Roy (1968) and his colleagues carried out the ELEC-
TRE (elimination et choice translating reality)method to deal
with the problem of choosing, ranking and sorting alterna-
tives. Based on mathematics and psychology, Saaty (1980)
developed analytic hierarchy process (AHP) as a decision
making method in the 1970s. Hwang and Yoon (1981) intro-
duced the technique for order preference by similarity to ideal
solution (TOPSIS) method in 1981. Brans et al. (1986) first

presented PROMETHEE (preference ranking organization
method for enrichment evaluation) method and later devel-
oped it into several versions. Opricovic (1998) originally pro-
posed the compromise ranking method, also known as the
VIKOR (VlseKriterijumska Optimizacija I Kompromisno
Resenje in Serbian) method, to solve decision problems with
conflicting and noncommensurable criteria. In 2006, Brauers
and Zavadskas (2006) proposed the multi-objective opti-
mization on the basis of ratio analysis (MOORA)method and
successfully applied it to solve various types of complex deci-
sion making problems. Although the earlier researchers have
applied various MCDMmethods to solve different selection
problems, it is observed that in all these methods, the rank-
ings of the alternatives are very sensitive to the changes in
the attribute weights. Different attribute weights will pro-
duce different ranking results (Yurdakul and Tansel İÇ 2009).
When weight changes, the whole mathematical calculation
process has to do all over again, which may be impracticable
and ineffective for DMs. Thus, there is a need for a simple,
logical and systematic approach to solve the multiple criteria
selection problems.

Due to its simplicity and practicality, TOPSIS method has
gained popularity in the field of MCDM since it was intro-
duced. There exists a large amount of literature involving
TOPSIS theory and applications (Wang and Chang 2007;
Dağdeviren et al. 2009; Chu 2002; Behzadian and Khan-
mohammadi Otaghsara 2012). Furthermore, different meth-
ods have been developed to refine the original TOPSIS idea
such as those reported in Abo-Sinna and Amer (2005), Chen
et al. (2009) and Shih et al. (2007). In classical TOPSIS
method, the ratings and weights of criteria are known pre-
cisely. The weight coefficients are usually fixed using expert
investigation or the AHP method, which both have subjec-
tivity. Again, some of the improved TOPSIS methods are
quite difficult to comprehend and complex to implement
requiring extensive mathematical knowledge. In this paper
we focus on an extension of the TOPSIS method combined
with experimental design andChebyshev orthogonal polyno-
mial regression. Experimental design and Chebyshev regres-
sion have been well known in the literature. Experimental
design is a statistical method used to study the effect of sev-
eral factors simultaneously. This technique is used to deter-
mine independent and interaction effect of multiple factors
on performance. Chebyshev regression is a kind of approx-
imation techniques that uses orthogonal basis functions to
model a functional relationship between the multiple factors
and the response. These two methods are often combined to
explore an unknown design space and build a statistically
based mathematical model. Both experimental design and
Chebyshev regression is already an effective tool for most
intelligent manufacturing. For instance, in Dolgin (1996)
paper, the Chebyshev approximation method was used for
dynamic diagnostics of mechanical manufacturing systems.
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The convenience and effectiveness of using DoE and Cheby-
shev regression tools had been confirmed in his paper. Zhang
et al. (2013) implemented Chebyshev fitting tomeasure form
accuracies of precision components. They pointed out that
the Chebyshev fitting could obtain the correct parameter of
the form error. Emenonye and Chikwendu (2014) applied
Chebyshev polynomial approximation to solve stock allo-
cation problems for manufacturing and distribution organi-
zations. The use of Chebyshev polynomial approximation
ensured the minimization of cost and maximization of profit.
Wu et al. (2014) proposed a new design optimization frame-
work for vehicle suspension systems using DoE and Cheby-
shev regression techniques. They proved that the Chebyshev
meta-model was able to provide higher approximation accu-
racy.

Although the individual methods (experimental design
and Chebyshev regression) of this study are not unique, the
combination of these methods with TOPSIS technique has
not ever been presented within the context of MCDM. In
this paper, the experimental design of attribute weights over-
comes the weakness of human subjectivity and decreases
the sensitivity to the weight change. The experimental data
is approximated using Chebyshev orthogonal polynomial
regression model. This model can help and guide a DM to
make a reasonable judgment without requiring professional
skills or rich experience. Three decision making problems
are considered and the whole selection procedure is finished
using commercially available software Isight. This method
is observed to be quite robust, comprehendible, and compu-
tationally easy, which may be useful and helpful to the DMs
who may not have a strong background in mathematics.

The reminder of this paper is organized as follows. In
“Backgrounds” section, a brief review of related background
information involving TOPSIS method, experimental design
and Chebyshev orthogonal polynomial regression is pre-
sented. A case study of equipment selection problem is pro-
posed in “The proposed methodology” section to explain the
detail applying process of the improved TOPSIS method. In
“Applications and discussion” section, two more illustrative
examples are conducted to demonstrate the capabilities of
the proposed method. Conclusions and future research areas
are discussed in the last section.

Backgrounds

TOPSIS method

The TOPSIS method is based on the concept that the best
decision should be the closest to the ideal solution and far-
thest from the non-ideal solution (Karande and Chakraborty
2012). This method assumes that each attribute is monotoni-
cally increasing or decreasing. The ideal solution (also called

positive ideal solution) is one that maximizes the benefit cri-
teria and minimizes the cost criteria, whereas the non-ideal
solution (also called negative ideal solution) maximizes the
cost criteria and minimizes the benefit criteria. TOPSIS uti-
lized Euclidean distances to measure the alternatives with
their positive ideal solution and negative ideal solution. The
preference order of alternatives is yielded through comparing
the Euclidean distances.

Suppose a MCDM problem is based on m alternatives
(A1, A2, . . . , Am) and n criteria (C1,C2, . . . ,Cn). xi j (i =
1, 2, . . . ,m; j = 1, 2, . . . , n) denotes the value assigned
to the j th criterion of the i th alternative. X = [xi j ]mn is
the decision matrix. The related weight value of each cri-
terion has been denoted by W = [w1, w2, . . . , wn], where∑n

j=1w j = 1. The TOPSIS process (Mateo 2012) is carried
out as follows:

Step 1: Normalize the decision matrix:

ri j = xi j
√∑m

k=1 x
2
k j

, i = 1, . . . ,m; j = 1, . . . , n (1)

where ri j denotes the normalized value of j th criterion for
the i th alternative Ai .

Step 2: Calculate the weighted normalized decision
matrix:

vi j = w j ri j , i = 1, . . . ,m; j = 1, . . . , n (2)

where w j is the weight of the j th criterion or attribute.
Step 3: Determine the positive ideal and negative ideal

solutions:

A+ = {
v+
1 , . . . , v

+
n

}
(3)

A− = {
v−
1 , . . . , v

−
n

}
(4)

where A+ denotes the positive ideal solution and A− denotes
the negative ideal solution. If the j th criterion is benefi-
cial criterion, v+

j = max{vi j , i = 1, . . . ,m} and v−
j =

min{vi j , i = 1, . . . ,m}. On the contrary, if the j th criterion
is cost criterion, v+

j = min{vi j , i = 1, . . . ,m} and v−
j =

max{vi j , i = 1, . . . ,m}.
Step 4: Calculate the distances from each alternative to

positive ideal solution and negative ideal solution:

D+
i =

√
∑n

j=1

(
vi j − v+

j

)2
, i = 1, . . . ,m (5)

D−
i =

√
∑n

j=1

(
vi j − v−

j

)2
, i = 1, . . . ,m (6)

where D+
i denotes the distance between the i th alternative

and the positive ideal solution, and D−
i denotes the distance

between the i th alternative and the negative ideal solution.
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Step 5: Calculate the relative closeness to the ideal solu-
tion:

yi = D−
i

D+
i + D−

i

(7)

Step 6: Rank the alternatives sorting by the value yi in
decreasing order.

Experimental design

Experimental design (also called design of experiment, DoE
for short) is a statistical method used to determine simultane-
ously the individual and interactive effects of many factors
on the system response (Kirk 1982). The main advantage
of experimental design is that multiple variables, or multi-
ple levels of a variable, can be tested simultaneously, which
saves a great deal of time considering some pressing and
time-sensitive issue. In DoE, factors are the input parameters
or the variables need to be studied. Levels are the discrete
possible values or different states of each factor. Response
is the system output or result obtained by evaluating a cer-
tain experimental sample set. The combinations of all fac-
tors at different levels construct the design matrix. Table 1
presents a list of some common DoE techniques and their
brief descriptions involving parameter study, full factorial
design, fractional factorial technique, orthogonal array tech-
nique, central composite design, Latin hypercube design and
optimal Latin hypercube design. For a detailed explanation
of these DoE methods, the reader is referred to Dean and
Voss (1999).

In the experimental design application, full factorial
design, orthogonal array technique, Latin hypercube design
and optimal Latin hypercube design are four commonly used
DoE methods. Full factorial design provides extensive infor-
mation for accurate estimation of factors and interaction
effects. However, this method is costly to execute due to the
need of large quantity of experiment analysis. The orthogo-
nal array technique utilizes properties of fractional factorial
experiment to efficiently determine the best combination of
factor levels (Ross 1995), which is very cost effective. Opti-

mal Latin hypercube design generates more evenly distrib-
uted samples compared with normal Latin hypercube design
(Jin et al. 2005). In our paper, the DoE method is combined
with TOPSIS method to create a data set that can be used
to generate approximation models of the multiple criteria.
To reduce the number of experiments, optimal Latin hyper-
cube design and orthogonal array technique are carried out
for the weight experiment and criterion experiment, respec-
tively. The double DoE tries to decrease the effects of crite-
rion weights and helps the DM to identify critical attributes.

Chebyshev orthogonal polynomial

Orthogonal polynomial approximation is a regression tech-
nique that uses orthogonal basis functions to model a func-
tional relationship between the multiple factors and the
response. An advantage of using orthogonal functions as
a basis for fitting is that the autocorrelation between the
response values can be greatly reduced (Gautschi et al. 2004).
In the classical orthogonal polynomials, notably Chebyshev
polynomials of the first two kinds are of considerable impor-
tance for purposes of approximation (Mason andHandscomb
2010).

Chebyshev polynomials are a sequence of orthogonal
polynomials that are solutions of a special kind of differen-
tial equation called a Chebyshev differential equation. The
Chebyshev differential equation is written as:

(
1 − x2

) d2y

dx2
− x

dy

dx
+ n2y = 0 (8)

Chebyshev polynomials can be of two kinds. The Cheby-
shev polynomials of the first kind in one dimension are
defined by the recurrence relation:

T0 (x) = 1

T1 (x) = x

Tn+1 (x) = 2xTn (x) − Tn−1 (x) (9)

Table 1 Brief description of some common DoE techniques

DoE method Descriptions

Parameter study One factor at a time

Full factorial design All combinations of all factors at all levels are evaluated

Fractional factorial technique A certain fractional subset (1/2, 1/4, etc. for two-level factors) of the full factorial experiment is selected

Orthogonal arrays Maintain orthogonality among the various factors and certain interactions

Central composite design 2-Level full factorial experiment enhanced with a center point and two additional points for each factor

Latin hypercube design Design space for each factor is divided uniformly and factor levels are randomly combined

Optimal latin hypercube design The combination of factor levels is optimized, rather than randomly combined
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The Chebyshev polynomials of the second kind can be
defined as:

T0 (x) = 1

T1 (x) = 2x

Tn+1 (x) = 2xTn (x) − Tn−1 (x) (10)

The roots of these polynomials are not equally spaced.
Taguchi (1987) describes a set of one-dimensional polyno-
mials that have equally spaced roots. When these equally
spaced roots are assumed to be the factor levels in an orthog-
onal array, a quadrature procedure is available for approx-
imating a response using Chebyshev polynomials as indi-
vidual terms. Isight implements Taguchi’s method of fitting
Chebyshev polynomials from an orthogonal array.

The following equations show the Chebyshev polynomi-
als with equally spaced roots in one dimension:

T1 (x) = (x − x̄)

T2 (x) = (x − x̄)2 − b2

T3 (x) = (x − x̄)3 − b3 (x − x̄) (11)

where x̄ is the average value of the levels. Taguchi generates
multivariate polynomials by taking products of Chebyshev
polynomials in each variable as listed above. Taguchi also
provides tables for computing the coefficients of these terms
for an orthogonal array.

Suppose we have three variables x1, x2, and x3 to which
we want to fit a response f using quadratic Chebyshev poly-
nomials with cross terms. We can generate the following
multivariate polynomial basis:

linear term: {T1 (x1) , T1 (x2) , T1 (x3)}
quadratic term: {T2 (x1) , T2 (x2) , T2 (x3)}
cross term: {T1 (x1) T1 (x2) , T1 (x1) T1 (x3) , T1 (x2) T1 (x3)}

(12)

Therefore, the function f is approximated as:

f (x1, x2, x3) = a11T1 (x1) + a12T1 (x2) + a13T1 (x3)

+ a21T2 (x1) + a22T2 (x2)

+ a23T2 (x3) + a24T1 (x1) T1 (x2)

+ a25T1 (x1) T1 (x3) + a26T1 (x2) T1 (x3)

(13)

The coefficients ai j are calculated using least squares regres-
sion method.

Identification of alternatives and 
criteria level

Experimental design of attribute 
weights

Experimental design of criterion
factors

Calculating TOPSIS scores

Determination of the Chebyshev
regression model

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Ranking the alternativesStep 6:

Stage 1

Stage 2

Stage 3

Stage 4

Fig. 1 Steps of the improved TOPSIS method

The proposed methodology

Framework of the improved TOPSIS method

The integrated TOPSIS approach, composed of DoE and
Chebyshev orthogonal polynomial regression technique, for
MCDM problems consists of 4 basic stages: (1) DoE, (2)
TOPSIS evaluation, (3) approximation, (4) decision mak-
ing. In the first stage, input attributes and their levels are
determined and the DoE procedure is conducted. After that,
a data set of the entire selected criterion factors at all levels
under different attributeweights is created. These determined
attributes are used as input values to the TOPSIS model. The
second stage of the proposed methodology is computing the
ranking scores using aforementioned TOPSISmethod. In the
third stage, Chebyshev regression model is constructed to
determine how the selected criteria affect ranking scores of
a MCDM problem. In the last stage, a DM is able to use the
regression model for evaluating alternatives and determin-
ing the final rank. Flow diagram of the proposed approach is
illustrated in Fig. 1.

In the following section, a detailed applying process of
the improved TOPSIS method is demonstrated. The whole
selection process is finished using commercially available
software Isight. Isight provides a suite of tools to execute
simulation-based design processes in a visual and flexible
way. We mainly use the DoE and approximation compo-
nents to construct our model. The DoE component provides
an easy access to intelligently sampling the design space.
The approximation component is used to generate a regres-
sion model, which we can use for quick and efficient design
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Fig. 2 Workflow in Isight

studies. The workflow of the improved TOPSISmethod built
in Isight is shown in Fig. 2.

Illustrative case study

Problem description

In this section, an equipment selection problem adapted from
Dağdeviren (2008) is conducted to particularize the applica-
tion process and demonstrate the capabilities of the proposed
MCDMmethod. This application is realized in amanufactur-
ing company which is located in Ankara, Turkey. The com-
pany wants to purchase a few milling machines (MM) to
reduce the work-in-process inventory and to replace its old
equipment. The high technology equipments make signif-
icant improvements in the manufacturing processes of the
firms and the correct decision made at this stage brings the
companies competitive advantage. Therefore, selecting the
most proper milling machines is of great importance for the
company.But it is hard to choose themost suitable one among
the milling machines which dominate each other in different
characteristics (Dağdeviren 2008).

In this implementation, emphasis is put on explaining the
detail process of the proposed methodology. Thus, the step
by step problem solving process is explained and discussed
for this decision making problem.

Detailed steps

The steps for building a regression model using the proposed
hybrid TOPSIS technique and making a scientific decision
for the equipment selection problem are summarized below.

Step 1: Identification of alternatives and criterion level
According to Rao (2007), five possible milling machines

suitable for the needs of the company are determined. The
six attributes, namely price, weight, power, spindle, diame-
ter and stroke will be taken into consideration in the selec-
tion process. The available values of different attributes are
presented in Table 2. Out of the six attributes, the price
and weights are considered as non-beneficial attributes as
their lower values are desired and the other four attributes
are considered as beneficial attributes where higher values
are preferable. Decision hierarchy structured with the deter-
mined alternative equipments and criteria is provided in
Fig. 3.

As shown in Table 2, price with minimum level 580 and
maximum level 1,265, weight with minimum level 3.5 and
maximum level 6, power with minimum level 900 and max-
imum level 2,000, spindle with minimum level 21,000 and
maximum level 25,000, diameter with minimum level 8 and
maximum level 12.7, and stroke with minimum level 50 and
maximum level 65 are determined to be the criterion levels
affecting the equipment selection decision.
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Table 2 Attributes for
equipment selection problem

Alternatives Price (x1) Weight (x2) Power (x3) Spindle (x4) Diameter (x5) Stroke (x6)

MM-1 936 4.8 1,300 24,000 12.7 58

MM-2 1,265 6 2,000 21,000 12.7 65

MM-3 680 3.5 900 24,000 8 50

MM-4 650 5.2 1,600 22,000 12 62

MM-5 580 3.5 1,050 25,000 12 62

Min/max Min Min Max Max Max Max

Low level 580 3.5 900 21,000 8 50

High level 1,265 6 2,000 25,000 12.7 65

Selection of the best 
equipment

Price Weight Power Spindle Diameter Stroke

MM-1 MM-2 MM-3 MM-4 MM-5

Fig. 3 The decision hierarchy of equipment selection problem

Table 3 Nine-point intensity of importance scale

Definition Intensity of importance

Equally important 1

Moderately more important 3

Strongly more important 5

Very strongly more important 7

Extremely more important 9

Intermediate values 2, 4, 6 and 8

Step 2: Experimental design of attribute weights
The value of attribute weight indicates how many times

more important one factor is over another in terms of a given
criterion. In theMCDMapplications, there exist twodifferent
weight assignment techniques namely the expert assignment
and the eigenvector method (AHP method). Since human
judgments including preference are often vague and can-
not estimate his preference with an exact numerical value.
A more realistic way may be to use linguistic terms to
describe the desired value or the intensity of importance. The
9point scale (Saaty1994), a simple, logical anduseful assign-
ment criterion, has established the relationship between the
linguistic terms and the intensity of criterion importance.
Table 3 shows a typical nine-point scale proposed by Saaty.

Since we are not the member of the equipment decision
making team and we have little knowledge about the milling
machines, we cannot directly evaluate the relative impor-
tance of one attribute over others. Therefore, the experimen-

Table 4 Attribute weights for equipment selection problem

Weight no. Price Weight Power Spindle Diameter Stroke

W1 1 4 4 2 1 4

W2 8 8 2 8 2 2

W3 2 9 9 6 6 5

W4 6 1 6 9 5 8

W5 4 6 1 5 8 9

W6 9 5 8 1 4 6

W7 5 2 5 4 9 1

tal design method is used to determine the attribute weights
in the equipment selection problem. To reduce the number of
experiments, optimal Latin hypercube design is selected as
the DoE technique. This design method allows a total free-
dom in selecting the number of designs to run as long as it
is greater than the number of factors. Thus, we set the exper-
iment number to n + 1, where n is the number of criterion
factors. For this selection problem, n = 6. The design matrix
of attribute weights is shown in Table 4.

Step 3: Experimental design of criterion factors
The experimental design of criterion factors is utilized to

assess the impact of criterion factors on ranking results. In
this case study, the two-level (low-high) orthogonal array
technique is used to create a data set for approximation. The
selected DoEmethod can efficiently determine the best com-
bination of factor levels. The orthogonal arrays with two-
level are expressed by:

L A

(
2B

)
(14)

where A = 2N is the number of experimental designs to run.
N is a positive integer which is greater than 1. 2 is the num-
ber of levels for each factor, and B denotes the number of
columns in the orthogonal array. The letter ‘L’ comes from
‘Latin’, the idea of using orthogonal arrays for experimen-
tal design having been associated with Latin square designs
from the outset. The two-level standard orthogonal arrays
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Table 5 Experimental design results of criterion factors

Alternative no. Factor levels

Price Weight Power Spindle Diameter Stroke

A1 580 3.5 900 21,000 8 50

A2 580 3.5 900 25,000 12.7 65

A3 580 3.5 2,000 21,000 12.7 65

A4 580 3.5 2,000 25,000 8 50

A5 580 6 900 21,000 12.7 65

A6 580 6 900 25,000 8 50

A7 580 6 2,000 21,000 8 50

A8 580 6 2,000 25,000 12.7 65

A9 1,265 3.5 900 21,000 12.7 50

A10 1,265 3.5 900 25,000 8 65

A11 1,265 3.5 2,000 21,000 8 65

A12 1,265 3.5 2,000 25,000 12.7 50

A13 1,265 6 900 21,000 8 65

A14 1,265 6 900 25,000 12.7 50

A15 1,265 6 2,000 21,000 12.7 50

A16 1,265 6 2,000 25,000 8 65

most often used in practice are L4(23), L8(27), L16(215),
and L32(231) (Tsai et al. 2004). In this paper, two-level stan-
dard orthogonal arrays L16(26) is used. The orthogonal table
based on two levels, six factors is given in Table 5.

Step 4: Calculating TOPSIS scores
Before calculating TOPSIS scores, the experimental data

of criterion factors shown in Table 5 should be normalized.
The normalization strategy is expressed in Eq. (1). After that,

the DoE results of attribute weights and the normalized cri-
terion factors have to be combined. Concretely speaking, for
W1 = (1, 4, 4, 2, 1, 4) in Table 4, each rowof the normalized
criterion factors shall be multiplied by W1. This procedure
is repeated until each subset of the attribute weights is incor-
porated into the decision matrix. In the application process
of equipment selection problem, the experimental combina-
tion runs 7 times as there exit 7 different weight sets (Table
4). After the combination, a 112 × 6 decision matrix is gen-
erated. The decision matrix is used as input values to the
TOPSIS model. Then we can calculate the evaluation scores
using TOPSIS analysis method described in section “TOP-
SIS method”. Table 6 shows the calculation results (TOP-
SIS scores) under 7 different attribute weights. The decision
matrix with its TOPSIS scores forms a data set that can be
used to generate approximation models of the multiple cri-
teria.

Step 5: Determination of the Chebyshev regression model
Chebyshev regression method is widely used for its con-

venience and a nice property regarding its error. We use this
method to model a functional relationship between the mul-
tiple criteria and the evaluation scores. The orthogonality
means the inner product of any two Chebyshev polynomial
terms is zero. In this case study, we use the approximation
component in Isight to generate a regression model of our
data.Detailed calculation process is described in “Chebyshev
orthogonal polynomial” section. The Chebyshev orthogonal
polynomial terms are determined and the coefficients of the
terms are estimated. The results calculated by Isight are tab-
ulated in Table 7. There are six input variables and the degree

Table 6 TOPSIS scores under
different attribute weights Alternative no. TOPSIS scores under different attribute weights

W1 W2 W3 W4 W5 W6 W7

A1 0.4119 0.7555 0.4024 0.4356 0.4852 0.5239 0.4024

A2 0.4637 0.8337 0.4726 0.5599 0.8940 0.5580 0.6053

A3 0.9151 0.8370 0.8911 0.8114 0.8731 0.9814 0.9031

A4 0.7607 0.8750 0.7314 0.6711 0.5025 0.7894 0.5618

A5 0.2738 0.5556 0.2919 0.5308 0.6093 0.5183 0.5853

A6 0.1749 0.5642 0.1715 0.4593 0.3561 0.4852 0.3949

A7 0.5540 0.5651 0.5407 0.6337 0.3517 0.7089 0.5432

A8 0.6074 0.5957 0.6127 0.9310 0.6297 0.7752 0.8630

A9 0.4005 0.4125 0.4400 0.2590 0.5519 0.2651 0.4502

A10 0.4388 0.4270 0.4085 0.2934 0.4632 0.2569 0.1650

A11 0.8028 0.4279 0.7150 0.4888 0.4598 0.4960 0.4094

A12 0.7393 0.4521 0.8148 0.5210 0.5699 0.5006 0.6107

A13 0.2230 0.0668 0.1324 0.2396 0.2952 0.1470 0.0383

A14 0.1317 0.1889 0.2609 0.2996 0.4320 0.1657 0.4434

A15 0.5434 0.1916 0.5771 0.4926 0.4283 0.4614 0.5904

A16 0.5805 0.2276 0.5464 0.5117 0.3218 0.4571 0.4020
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Table 7 Chebyshev regression results for equipment selection problem

Coefficients Chebyshev orthogonal terms Coefficients Chebyshev orthogonal terms

a0 = 0.5693 T0 = 1 a14 = −0.0305 T14 = (x1 − 1.1718)(x3 − 1.1687)

a1 = −0.1968 T1 = (x1 − 1.1718) a15 = −0.0611 T15 = (x1 − 1.1718)(x4 − 1.2453)

a2 = −0.1540 T2 = (x2 − 1.2088) a16 = −0.0146 T16 = (x1 − 1.1718)(x5 − 1.2190)

a3 = 0.1935 T3 = (x3 − 1.1687) a17 = 0.0075 T17 = (x1 − 1.1718)(x6 − 1.2395)

a4 = 0.0106 T4 = (x4 − 1.2453) a18 = −0.0010 T18 = (x2 − 1.2088)(x3 − 1.1687)

a5 = 0.0910 T5 = (x5 − 1.2190) a19 = 0.0604 T19 = (x2 − 1.2088)(x4 − 1.2453)

a6 = 0.0824 T6 = (x6 − 1.2395) a20 = 0.0197 T20 = (x2 − 1.2088)(x5 − 1.2190)

a7 = −0.0602 T7 = ((x1 − 1.1718)∧2 − 1.2559) a21 = −0.0387 T21 = (x2 − 1.2088)(x6 − 1.2395)

a8 = −0.0726 T8 = ((x2 − 1.2088)∧2 − 1.1011) a22 = −0.0668 T22 = (x3 − 1.1687)(x4 − 1.2453)

a9 = −0.0144 T9 = ((x3 − 1.1687)∧2 − 1.2665) a23 = 0.0166 T23 = (x3 − 1.1687)(x5 − 1.2190)

a10 = 0.0888 T10 = ((x4 − 1.2453)∧2 − 0.8133) a24 = 0.0244 T24 = (x3 − 1.1687)(x6 − 1.2395)

a11 = 0.1589 T11 = ((x5 − 1.2190)∧2 − 1.0449) a25 = −0.0663 T25 = (x4 − 1.2453)(x5 − 1.2190)

a12 = 0.0967 T12 = ((x6 − 1.2395)∧2 − 0.8867) a26 = −0.2067 T26 = (x4 − 1.2453)(x6 − 1.2395)

a13 = 0.0209 T13 = (x1 − 1.1718)(x2 − 1.2088) a27 = 0.1203 T27 = (x5 − 1.2190)(x6 − 1.2395)

of fit-polynomial is 2. In addition to the main effects of the
six factors, interactions among the factors are also included.
The polynomial regression model is expressed as follows:

y = a0T0 + a1T1 + · · · + anTn (15)

where y is the TOPSIS score, Tn is the Chebyshev orthogonal
polynomial term and an is the coefficient.

Step 6: Ranking the alternatives
With the above regressionmodel [Eq. (15)], theDM is able

to evaluate the performance of different equipment alterna-
tives and make the final decision. As this regression model
is based on the normalized data set, the original attribute
values shown in Table 2 should be normalized before sub-
stituting. The normalization procedure is the same as that in
TOPSIS method. After that, the normalized attribute values
shall be multiplied by attribute weights. In step 2, the exper-
imental design of attribute weights has been conducted and
the obtained regression model is based on different attribute
weights. So in the last step, the importance of all the per-
formance attributes is assumed to be equal. That is to say,
the weights of the six attributes are all the same. To better
fit the regression model and generate more reliable ranking
scores, the attribute weight is not simply set as 1. It is the
mean value of the whole DoE weight matrix (Table 4). The
mean attribute weight is calculated as Eq. (16).

w̄ = 1

s × n

s∑

i=1

n∑

j=1

wi j (16)

where s is the number of weight experiments being con-
ducted, n is the number of criterion factors. In this case,
the mean attribute weight is 5. By substituting the weighted

Table 8 Ranking results of equipment selection problem

Equipment
alternatives

Ranking
scores

Ranking results

Improved
TOPSIS

Original
TOPSIS

AHP ELECTRE

MM-1 0.4181 3 3 2 2

MM-2 0.1321 5 5 5 5

MM-3 0.3821 4 2 4 4

MM-4 0.6622 2 4 3 3

MM-5 0.7231 1 1 1 1

normalized attribute values, the DM can obtain the rank-
ing scores of alternative equipment. Results are shown in
Table 8. The calculated ranking scores represent the equip-
ment’s performance. A higher score corresponds to a better
performance. In this way, MM-5 is selected as the best alter-
native for this manufacturing company.

Case analysis

As discussed in the introduction, currently there are vari-
ous MCDM methods that have been developed. To assure
the validity of the proposed methodology, we make some
comparisons between the improved TOPSIS method and
otherMCDMmethods in the literature. InDağdeviren (2008)
paper, the same problem has been analyzed with AHP, TOP-
SIS and ELECTRE method. The ranking results tabulated
in column 4 to 6 of Table 8 come from Dağdeviren (2008)
paper. We also made a line chart in Fig. 4 to display the com-
parison results in a visual way. According to Table 8, the
top-ranked alternatives are all the same. MM-5 is the most
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Fig. 4 Rankings of the alternatives for equipment selection problem

suitable equipment to choose. There are slight discrepancies
between the intermediate rankings of the alternatives. In our
paper, a ranking of the alternatives is obtained as 3-5-4-2-1.
Using original TOPSIS method, a ranking of the equipment
is obtained as 3-5-2-4-1. As for the AHP and ELECTRE
method, the ranking result is 2-5-4-3-1. The differences may
be caused by the DM’s subjective preferences. For MCDM
problems, a decision maker lays more emphasis on the top-
ranked alternatives. In this case, the first ranked equipment
alternatives of the four methods exactly match. This implies
the potential applicability of the proposed methodology.

Applications and discussion

It is not easy to say which MCDM approach is more rea-
sonable and reliable for a given decision making problem.
A more reasonable and reliable way to prioritize alternatives
is to apply several MCDM approaches to the same problem,
compare their results, and then make the final decision (Kuo
et al. 2008). In order to demonstrate the applicability and
validity of the improved TOPSIS method in solving real-life
MCDM problems, the following two illustrative examples
are considered in this section.

Layout selection

The layout design problem is a strategic issue and has a sig-
nificant impact on the efficiency of a manufacturing system.
In this case study, a practical layout design problem adapted
from Yang and Kuo (2003) is presented. It is an IC (inte-
grated circuit) packaging plant. There are 6 performance
attributes and 18 alternative layouts. The company has to
choose the most suitable layout alternative to assure the effi-
ciency of production activities. The 6 performance attributes
are flow distance, adjacency score, shape ratio, flexibility,
accessibility and maintenance. For a layout design problem,
we would like to minimize both the flow distance and shape
ratio, while maximizing adjacency score, flexibility, accessi-

Table 9 Attributes for layout
selection problem

Alternatives Flow distance Adjacency score Shape ratio Flexibility Accessibility Maintenance

1 185.95 8 8.28 0.0494 0.0294 0.0130

2 207.37 9 3.75 0.0494 0.0147 0.0519

3 206.38 8 7.85 0.0370 0.0147 0.0519

4 189.66 8 8.28 0.0370 0.0147 0.0519

5 211.46 8 7.71 0.0617 0.0147 0.0390

6 264.07 5 2.07 0.0494 0.0147 0.0519

7 228.00 8 14.00 0.0247 0.0735 0.0649

8 185.59 9 6.25 0.0370 0.0441 0.0390

9 185.85 9 7.85 0.0741 0.0441 0.0519

10 236.15 8 7.85 0.0741 0.0588 0.0649

11 183.18 8 2.00 0.0864 0.1029 0.0909

12 204.18 8 13.3 0.0370 0.0588 0.0260

13 225.26 8 8.14 0.0247 0.0735 0.0519

14 202.82 8 8.00 0.0247 0.0588 0.0519

15 170.14 9 8.28 0.0864 0.1176 0.1169

16 216.38 9 7.71 0.0741 0.0735 0.0519

17 179.80 8 10.30 0.0988 0.1324 0.0909

18 185.75 10 10.16 0.0741 0.0588 0.0390

Min/max Min Max Min Max Max Max

Low level 170.14 5 2 0.0247 0.0147 0.0130

High level 264.07 10 14 0.0988 0.1324 0.1169
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Table 10 Chebyshev regression results for layout selection problem

Coefficients Chebyshev orthogonal terms Coefficients Chebyshev orthogonal terms

a0 = 0.5655 T0 = 1 a14 = −0.0238 T14 = (x1 − 1.2217)(x3 − 1.0000)

a1 = −0.1350 T1 = (x1 − 1.2217) a15 = −0.0286 T15 = (x1 − 1.2217)(x4 − 1.0719)

a2 = −0.0227 T2 = (x2 − 1.1859) a16 = −0.0100 T16 = (x1 − 1.2217)(x5 − 0.9760)

a3 = −0.0903 T3 = (x3 − 1.0000) a17 = −0.0045 T17 = (x1 − 1.2217)(x6 − 0.9762)

a4 = 0.0625 T4 = (x4 − 1.0719) a18 = 0.0106 T18 = (x2 − 1.1859)(x3 − 1.0000)

a5 = 0.0532 T5 = (x5 − 0.9760) a19 = −0.0223 T19 = (x2 − 1.1859)(x4 − 1.0719)

a6 = 0.0836 T6 = (x6 − 0.9762) a20 = −0.0208 T20 = (x2 − 1.1859)(x5 − 0.9760)

a7 = −0.0551 T7 = ((x1 − 1.2217)∧2 − 1.0279) a21 = −0.0081 T21 = (x2 − 1.1859)(x6 − 0.9762)

a8 = 0.0513 T8 = ((x2 − 1.1859)∧2 − 1.2042) a22 = 0.0052 T22 = (x3 − 1.0000)(x4 − 1.0719)

a9 = −0.0085 T9 = ((x3 − 1.0000)∧2 − 1.6017) a23 = −0.0005 T23 = (x3 − 1.0000)(x5 − 0.9760)

a10 = 0.0010 T10 = ((x4 − 1.0719)∧2 − 1.5012) a24 = −0.0043 T24 = (x3 − 1.0000)(x6 − 0.9762)

a11 = −0.0203 T11 = ((x5 − 0.9760)∧2 − 1.6261) a25 = −0.0129 T25 = (x4 − 1.0719)(x5 − 0.9760)

a12 = 0.0280 T12 = ((x6 − 0.9762)∧2 − 1.6259) a26 = −0.0160 T26 = (x4 − 1.0719)(x6 − 0.9762)

a13 = −0.1181 T13 = (x1 − 1.2217)(x2 − 1.1859) a27 = −0.0124 T27 = (x5 − 0.9760)(x6 − 0.9762)

Table 11 Ranking results of
layout selection problem Alternatives Ranking scores Ranking results

Improved TOPSIS Original TOPSIS SAW GRA

1 0.4779 16 17 14 10

2 0.5524 9 8 8 8

3 0.4860 15 15 15 15

4 0.4907 14 16 12 11

5 0.4982 13 14 11 13

6 0.5658 7 9 18 16

7 0.4598 17 13 16 17

8 0.5386 10 12 9 7

9 0.5897 4 6 5 5

10 0.5848 6 5 7 9

11 0.7783 1 1 3 3

12 0.4312 18 18 17 18

13 0.5244 12 10 13 14

14 0.5277 11 11 10 12

15 0.7712 2 2 1 1

16 0.5874 5 4 6 6

17 0.6887 3 3 2 2

18 0.5581 8 7 4 4

bility and maintenance. Table 9 represents the performance
characteristics of the considered layout selectionwith respect
to all the criteria.

Using the proposed methodology in our paper, a six fac-
tor regression model is developed. The detailed calculation
process is omitted here. Table 10 shows the calculatedCheby-
shev polynomial terms and their coefficients. The regression

formula is expressed in Eq. (15). By substituting the attribute
values to the regression model, a ranking of the layout design
is obtained as 16-9-15-14-13-7-17-10-4-6-1-18-12-11-2-5-
3-8. In the literature, Yang and Kuo (2003) adopted TOPSIS
and SAW methods in solving the same case study problem.
The results showed that alternatives 11, 15, and 17 were the
performance frontiers. Kuo et al. (2008) usedGRAmethod to
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Fig. 5 Rankings of the alternatives for layout selection problem

solve the layout design problem and drew the conclusion that
alternative 15was the best decision. The detailed comparison
results are shown in Table 11 and Fig. 5. Considering that the

selection problem has 18 alternatives, the ranking results of
the 4 methods are roughly consistent. The top three ranked
alternatives 11, 15, and 17 may be considered by the DMs.
This case study shows that the improved TOPSIS method
provides comparable ranking results with other approach.

Pipe material selection

Thematerial plays an important role in an engineering design
process. The suitable material selection for a particular prod-
uct is one of the vital tasks for the designers. In this section,
we use the proposed methodology to solve a real problem
in the sugar industry located at southern part of the India
(Anojkumar et al. 2014). The DMs of the sugar industry are
concerned with the issue of choosing the optimum mater-
ial for the pipes to minimize the corrosive wear. Interested

Table 12 Attributes for pipe material selection problem

Alternatives Yield strength Tensile strength % of elongation Hardness Cost Corrosion rate Wear rate

J4 382 728 48 98 112 0.16 2.75

JSLAUS 420 790 58 97 210 0.31 2.63

204Cu 415 795 55 96 120 0.05 2.5

409M 270 455 32 78 184 0.4 4

304 256 610 60 86 89 0.01 2.59

Min/max Max Max Max Max Min Min Min

Low level 256 455 32 78 89 0.01 2.5

High level 420 795 60 98 210 0.4 4

Table 13 Chebyshev regression results for pipe material selection problem

Coefficients Chebyshev orthogonal terms Coefficients Chebyshev orthogonal terms

a0 = 0.4847 T0 = 1 a18 = 0.0139 T18 = (x1 − 1.2148)(x5 − 1.1587)

a1 = 0.0627 T1 = (x1 − 1.2148) a19 = 0.0030 T19 = (x1 − 1.2148)(x6 − 0.9057)

a2 = 0.0431 T2 = (x2 − 1.2062) a20 = 0.0194 T20 = (x1 − 1.2148)(x7 − 1.2180)

a3 = 0.0987 T3 = (x3 − 1.1958) a21 = −0.0564 T21 = (x2−1.2062)(x3 − 1.1958)

a4 = 0.0320 T4 = (x4 − 1.2420) a22 = −0.0249 T22 = (x2 − 1.2062)(x4 − 1.2420)

a5 = −0.0769 T5 = (x5 − 1.1587) a23 = 0.0344 T23 = (x2 − 1.2062)(x5 − 1.1587)

a6 = −0.1177 T6 = (x6 − 0.9057) a24 = 0.0110 T24 = (x2 − 1.2062)(x6 − 0.9057)

a7 = −0.0215 T7 = (x7 − 1.2180) a25 = −0.0152 T25 = (x2 − 1.2062)(x7 − 1.2180)

a8 = 0.0089 T8 = ((x1 − 1.2148)∧2 − 1.0694) a26 = 0.0191 T26 = (x3 − 1.1958)(x4 − 1.2420)

a9 = 0.0248 T9 = ((x2 − 1.2062)∧2 − 1.1146) a27 = 0.0125 T27 = (x3 − 1.1958)(x5 − 1.1587)

a10 = 0.0579 T10 = ((x3 − 1.1958)∧2 − 1.1627) a28 = 0.0284 T28 = (x3 − 1.1958)(x6 − 0.9057)

a11 = 0.0888 T11 = ((x4 − 1.2420)∧2 − 0.8584) a29 = 0.0197 T29 = (x3 − 1.1958)(x7 − 1.2180)

a12 = −0.0515 T12 = ((x5 − 1.1587)∧2 − 1.2990) a30 = −0.0209 T30 = (x4 − 1.2420)(x5 − 1.1587)

a13 = 0.0621 T13 = ((x6 − 0.9057)∧2 − 1.6771) a31 = −0.0095 T31 = (x4 − 1.2420)(x6 − 0.9057)

a14 = −0.0025 T14 = ((x7 − 1.2180)∧2 − 1.0508) a32 = −0.0997 T32 = (x4 − 1.2420)(x7 − 1.2180)

a15 = −0.0261 T15 = (x1 − 1.2148)(x2 − 1.2062) a33 = 0.0109 T33 = (x5 − 1.1587)(x6 − 0.9057)

a16 = −0.0529 T16 = (x1 − 1.2148)(x3 − 1.1958) a34 = 0.0445 T34 = (x5 − 1.1587)(x7 − 1.2180)

a17 = 0.0223 T17 = (x1 − 1.2148)(x4 − 1.2420) a35 = −0.0018 T35 = (x6 − 0.9057)(x7 − 1.2180)
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Table 14 Ranking results of
pipe material selection problem

Equipment alternatives Ranking scores Ranking results

Improved TOPSIS Original TOPSIS ELECTRE PROMETHEE

J4 0.4565 4 3 3 2

JSLAUS 0.5365 3 4 4 4

204Cu 0.5743 2 2 2 1

409M 0.3417 5 5 5 5

304 0.6406 1 1 1 3
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Fig. 6 Rankings of the alternatives for pipe material selection problem

readers are referred to Anojkumar et al. (2014) for a detailed
description of the selection problem. First of all, we should
identify the alternatives and criterion level. Through litera-
ture (Prado et al. 2010; Wesley et al. 2012) and experts in
the industry, five stainless steel grades such as J4, JSLAUS,
J204Cu, 409M, 304 and seven evaluation criteria such as
yield strength, ultimate tensile strength, percentage of elon-
gation, hardness, cost, corrosion rate and wear rate are con-
sidered to choose the suitable material. Table 12 shows the
attribute values for 5 alternative pipe materials, where yield
strength, ultimate tensile strength, percentage of elongation,
hardness are the beneficial criteria and cost, corrosion rate,
wear rate are the non-beneficial criteria.

After conducting steps 1 to 6 in “Detailed steps” section,
we are able to generate a regression model for evaluating
alternatives. The calculated Chebyshev polynomial terms
and their coefficients are tabulated in Table 13. Using the
regression model expressed in Eq. (15), we obtain the rank-
ing of the alternatives as 4-3-2-5-1. The detailed results are
shown in Table 14 and Fig. 6. For comparison, the ranking
results of TOPSIS, ELECTRE and PROMETHEE methods
are shown in column 4, 5, and 6 of Table 14, respectively.
These results come from Anojkumar et al. (2014) paper. A
close examination of Table 14 reveals that the four MCDM
techniques deliver the very similar results. Although there
does not exist an optimal solution for MCDM problems,
three of the four methods lead to the choice of material 304
as a possible final decision. Therefore, material 304 would

be the optimum material for the pipes in the sugar industry.
From above analysis, we can see that the improved TOPSIS
method can generate reliable solutions efficiently when they
are benchmarked with the results from the existing method-
ologies.

Conclusion

This paper presents an improved TOPSIS method based
on experimental design and Chebyshev orthogonal polyno-
mial regression in solving MCMD problems. Three exam-
ples are considered to illustrate the application capability of
this method. The ranking results are compared with some
commonly used MCDM methods involving original TOP-
SIS, AHP, GRA, SAW, ELECTRE and PROMETHEE. In
all the cases, it is observed that the top-ranked alternatives
exactly match with those derived by the past researchers.
This indicates that the proposedmethodology can be used for
solving real-life MCDM problems. It can provide an accu-
rate evaluation of the alternatives and offer amore reasonable
selection.

Building a regression model normally involves two steps:
(1) employing design of experiments to sample the com-
puter simulation, and (2) selecting an approximation model
to represent the data and fit the model with the sample data.
In this paper, optimal Latin hypercube design and orthogo-
nal array technique are carried out for the weight experiment
and criterion experiment, respectively. The experimental data
is approximated using Chebyshev orthogonal polynomial
regression method. The combination of these methods with
TOPSIS technique has not ever been presented within the
context of MCDM. Compared with other MCDM methods,
the improved TOPSIS method mainly has two advantages.
First, the weight assignment is conducted using DoE tech-
nique. This technique helps DM by quantifying the relative
importance of each criterion statistically. In classicalMCDM
methods, the weights of experts’ opinions play an important
role in the decision making. The DM’s evaluations on multi-
ple criteria are always subjective and thus imprecise. Rank-
ing results are very sensitive to the changes in the attribute
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weights. If the weighting procedure of a MCDM method
is not made correctly, then the weights will be generated
incorrectly, which directly affect the outcome of the MCDM
approach. In our method, there is no need for an expert to
assign exact numerical values to the comparison judgments.
This avoids the subjectivity of human preference in making
a decision and decreases the sensitivity to the weight change.
Thus, the ranking results become more reasonable and reli-
able. Second, a regressionmodel is generated to help theDMs
make the decision. For a proper and effective evaluation, the
DMs always need a large amount of data to be analyzed
and many factors to be considered. The DM should be an
expert or at least be very familiar with the selection prob-
lem. In our paper, a MCDM model is obtained by using the
integrated DoE and Chebyshev regression approach. When
the regression equation is obtained, the alternative evaluation
process can be easily facilitated. The MCDM model ranks
the alternatives and the highest ranked one is recommended
as the best alternative. The DMs do not need to have tech-
nical knowledge in MCDM fields or a strong background in
mathematics. They can use the obtained regression model to
choose and analyze factors and attributes easily. Moreover,
if a new alternative is added to or removed from the MCDM
problem, all theDMsneed to do is to use the regressionmodel
and the final results would be got. It is quite convenient and
practicable.

Although the proposed methodology is successfully
applied in solving some manufacturing MCDM problems,
it should be noted that this approach also has some limi-
tations. First, the generated regression model contains too
many Chebyshev terms when the interaction effects of dif-
ferent criteria are considered. In the layout selection prob-
lem, there are 6 performance attributes and 18 alternative
layouts. However, the obtained regression model contains
28 Chebyshev terms shown in Table 10. When the perfor-
mance attributes increased to 7 (the pipe material selection
problem), the number of Chebyshev terms shown in Table 13
increased to 36. In this paper we only use quadratic Cheby-
shev polynomials to do the approximation job. It’s known
that the approximation accuracy increases with the degree of
fit-polynomial. But using higher order of Chebyshev poly-
nomials means the regression equation will be more com-
plicated. The contradiction should be balanced. Second, the
calculation process becomes less efficient when the decision
matrix contains a large number of attributes. As the regres-
sion model is constructed under different weight sets, the
DoE results of attribute weights and the normalized crite-
rion factors have to be combined. In the application process
of equipment selection problem, the experimental combina-
tion runs 7 times and a 112 × 6 decision matrix is gener-
ated. A large number of attributes means a large number of
MCDM evaluations have to be performed. But as the com-
puter technology develops, the time consumed on the calcu-

lation process will be less and less. Future study will focus
on improving the proposedmethodology and overcoming the
limitations mentioned above.
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