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Abstract In this study, the design of a two-echelon distri-
bution supply chain network for the seasonal products with
multiple vendors (manufacturers) and buyers (retailers), and
a set of warehouses for each vendor are considered. The loca-
tions of the buyers are known and the capacity of the ware-
houses is restricted while the buyers purchase different prod-
ucts from the vendors under all unit discount policy. Themain
objective of this research is to find out the optimal locations of
the potential vendors in addition to the quantity ordered (allo-
cation) by the buyers so that the total inventory cost including
ordering (transportation), holding and the purchasing costs is
minimized. Besides, the distance from the buyers to the ven-
dors is considered as the Euclidean distance. The total budget
to buy the products is limited and the production capacity
of each vendor is also restricted. To solve the problem, a
modified particle swarm optimization (MPSO) algorithm is
applied where the results are validated using a genetic algo-
rithm (GA). Finally, some computational examples are gen-
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erated to assess the algorithms’ performance where MPSO
shows a better efficiency in comparison with the GA.
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Introduction

Advances in supply chain management software and data
warehousing practices, which enable data sharing through
ElectronicData Interchanges (EDI), have helped in the devel-
opment of coordinated supply chains (Tan 2001). Supply
chain optimization involves both strategic decisions of facil-
ity location, and tactical decisions of inventory. Traditional
supply chain optimization models in the literature treat loca-
tion and inventory decisions separately (Wang andYin 2013).
An integrated supply chain management (SCM) strategy
allows companies to increase efficiency and decrease waste.
More specifically, successful implementationof an integrated
SCMmodel results in savings in energy and fuel, in addition
to the elimination of redundant activities; all of these benefits
translate into money savings within the companies (Mentzer
et al. 2001; Spekman et al. 1998). However, ignoring interac-
tion between long-term decisions of location and short term
decisions of inventory can lead to sub-optimality. Further-
more, companies are under intense pressure to cut product
and material costs while maintaining a high level of quality
and after-sale services. Achieving this starts with supplier
selection. Therefore, an efficient supplier selection process
needs to be in place and of paramount importance for suc-
cessful supply chain management (Chan et al. 2008). Inven-
tory management is one of the important scopes in SCM and
many academic communities presented various strategies. In
this work, the design of a two-echelon vendor–buyer supply
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chain network for a seasonal multi-product inventory prob-
lem is investigated. In recent years, numerous studies have
being carried out on supply chain and inventory problems
considering the two-echelon design. In Sadeghi et al. (2013),
a constrained the two-echelon multi-vendor multi-retailer
single-warehouse supply chain was developed, in which both
the space and the annual number of orders of the central
warehouse were limited. A two-echelon integrated procure-
ment production model for the manufacturer and the buyer
integrated inventory system was considered by Kumar et al.
(2014) at which in which a centralized decision maker was
used to optimize the joint total relevant cost. A coordination
model of the joint determination of order quantity and reorder
point variables was proposed in Chaharsooghi and Heydari
(2010). The research decentralized supply chain consisting
of one buyer and one supplier in a multi-period setting. In
Cardona-Valdés et al. (2014) the design of a two-echelon
production distribution network with multiple manufactur-
ing plants, distribution centers and a set of candidate ware-
houses was considered. The study took into account a multi-
objective version of supply chain in stochastic environment
and a Tabu search algorithm was used to solve the problem.
In Bandyopadhyay and Bhattacharya (2013) a NSGA II was
proposed to solve a tri-objective problem for a two echelon
serial supply chain. The objectives were: (1) minimization
of the total cost of a two-echelon serial supply chain and
(2) minimization of the variance of order quantity and (3)
minimization of the total inventory. In Ghiami et al. (2013)
a two-echelon supply chain model for deteriorating inven-
tory was investigated, in which the retailer’s warehouse had
a limited capacity. The proposed system included one whole-
saler and one retailer which aimed to minimize the total cost.
Sadeghi et al. (2014) developed a bi-objective vendor man-
aged inventory model in a supply chain with one vendor and
several retailers, in which the determination of the optimal
numbers of different machines, working in series to produce
a single item, was considered. The location allocation model
was proposed by Cooper (1963) and extended by numerous
researchers such as (Arnaout 2013; Harris et al. 2014; Hos-
seininezhad et al. 2013; Liu andXu 2011;Mousavi andNiaki
2012; Mousavi et al. 2013c; Willoughby and Uyeno 2001).

This paper considers a supply chain network in which sev-
eral vendors (manufacturers) are considered to be located in
a certain area between numerous buyers who own the ware-
houses and have limited capacity. Furthermore, the objective
is to find the optimal quantity (allocation) that each buyer
orders from the vendors. In a location allocation problem,
several new facilities are located in between a number of
pre-specific customers in a determined area such that the total
transportation cost from facilities to customers is minimized.
In supply chain management, a number of studies have being
probing the location allocation problem. Abolhasani et al.
(2013) optimized a class of supply chain problems, known as

multi-commodities consumer supply chain problem, where
the problem considered to be a production–distribution plan-
ning category. It aimed to determine the facilities location,
consumers’ allocation and facilities configuration to mini-
mize the total cost of the entire network. Shahabi et al. (2013)
developed mathematical models to coordinate facility loca-
tion and inventory control for a four-echelon supply chain
network consisting of multiple suppliers, warehouses, hubs
and retailers.Wang andYin (2013) investigated an integrated
supply chain optimization problem in which the optimized
facility locations, customer allocations, and inventory man-
agement decisions were considered when the facilities were
subject to disruption risks. Diabat et al. (2013) considered a
closed-loop location-inventory problem with Forward sup-
ply chain consisting of a single echelon where the distrib-
ution centers had to distribute a single product to different
retailers with random demands. Furthermore, Ahmadi-Javid
and Seddighi (2013) developed a location-routing problem in
a supply-chain network considering a producer–distributors
set which produced a single commodity and distributed it to
a set of customers.

In the inventory control problems, the vendors sell their
products under some discount policies in order to attract
and encourage the customers to purchase more items. All
unit discount (AUD) is one of the most common policies
that have been taken into account in the literature, recently.
Mousavi et al. (2013a) modeled a seasonal multi-product,
multi-period inventory control problem in which the inven-
tory costs were obtained under inflation and all-unit discount
policy. A multi-item multiperiod inventory control problem
with all-unit and/or incremental quantity discount policies
under limited storage capacity was developed by Mousavi
et al. (2013b). Recently, a deteriorating multi-item inventory
model with price discount and variable demands via fuzzy
logic under all unit discount policy has been investigated by
Chakraborty et al. (2013). Jain et al. (2013)modeled amixed-
integer nonlinear programming for a system of one buyer–
multiple suppliers system where the items were purchased
under all unit discount policy. The objective was selecting
a supplier from a pool of suppliers and allocating optimal
order quantities for the acquisition of a firm’s total require-
ments for a particular product. Chen and Ho (2013) analyzed
the optimal inventory policy for the single-order newsboy
problem with fuzzy demand and quantity discounts. Further-
more, an integer linear programming approach was used in
Choudhary and Shankar (2011) to solve a multi-period pro-
curement, lot-sizing problem for a single product that was
procured from a single supplier, considering rejections and
late deliveries under all-unit quantity discount environment.

In the recent decades, meta-heuristics algorithms have
attracted the attention of many researchers in order to opti-
mize different and complex problems in various engineer-
ing and science domains. The Particle Swarm Optimization
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(PSO) algorithm is a popular and perhaps the most widely
used meta-heuristic algorithms that was first introduced by
Eberhart and Kennedy (1995). PSO is a population-based
stochastic meta-heuristic algorithm that is inspired by the
social behavior of bird flocking or fish schooling. PSO is
a meta-heuristic that requires few or no assumptions on the
problem being optimized and can search very large and com-
plex spaces of candidate solutions. PSO can therefore be uti-
lized on optimization problems that are partially irregular and
noisy over time (Gigras and Gupta 2012). This algorithm has
been used for solving the inventory and supply chain prob-
lems in recent years. Mousavi et al. (2013a) applied a PSO
algorithm to solve a multi-product multi-period inventory
control problem where the shortages (Backorder and Lost
sale) were allowed. In the multi-objective version, Latha
Shankar et al. (2012) modeled a single-product for four-
echelon supply chain architecture consisting of suppliers,
production plants, distribution centers and customer zones.
Shankar used a PSO algorithm to solve the problem. Bach-
laus et al. (2008) used PSO algorithm to optimize a multi-
objective multi-echelon agile supply chain network in which
a Taguchi method was applied to obtain the optimal levels
of the PSO’s parameters. Bozorgi-Amiri et al. (2012) inves-
tigated a relief chain design problem for which, not only
demands but also supplies and the cost of procurement in
addition to transportation were considered as the uncertain
parameters. Furthermore, the model considered uncertainty
for the locations solving using the PSO algorithm. Park and
Kyung (2013) proposed a method to optimize both the total
cost and order fill rates in a supply chain using the PSO
method. They automatically adjusted the initial inventory
levels of all tiers involved in a supply chain by consider-
ing information quality level, which was determined by the
degree of availability of lead time history data.

In order to optimize the proposed multi-product multi-
period supply chain problem and determine the location of
the vendors in a specific area among the buyers, a modified
particle swarm optimization (MPSO) is utilized in this paper.

The rest of the paper is organized as follows. In the second
section, a description of the provided problem is explained
where the supply chain model is formulated. In the third sec-
tion contains the solution methodologies of the problem in
which MPSO and GA are explained. In the fourth section,
some numerical examples are generated to compare the algo-
rithms where Taguchi approach is presented for setting the
algorithms’ parameters. Finally, a conclusion of the problem
and some recommendations for the future works are repre-
sented in last section.

Problem description and formulation

This paper aims to optimize a supply chain network for a
seasonal multi-product inventory system with multiple buy-

ers, multiple vendors and warehouses with limited capacity
owned by the vendors. The inventory replenishment starts at
a certain time-period and finish at another time-period where
the buyers purchase the products from the vendors during
these interval periods. The vendors provide (produce) the var-
ious products to the buyers with variable demand rates under
all-unit discount policy since the production capacity of each
vendor is restricted. The vendors satisfy the buyers’ demands
immediately in all the periods so that no shortages occur dur-
ing the replenishment. When the demands of the buyers are
satisfied in a period, the products remained from the period in
addition to the ordering quantities of the next period enter into
the warehouses. The novelty of the problem is that the inte-
grated supply chain expressed in this paper simultaneously
determines two types of decision variables: (i) the locations
of the vendors in a certain area among the buyers with fixed
locations and (ii) the allocation: the order quantities of the
seasonal/fashion products at each period made by the buyers
from the vendors. The total available budget for purchasing
the products and also the total vendors’ warehouse space are
constrained. Moreover, the distance between the buyers and
the vendors is assumed as Euclidean distance. Figure 1 shows
a graphical illustration of the proposed model where the ven-
dors store the products into their warehouses and then the
products are transported from thesewarehouses to the buyers.

Notations and assumptions

The indexes, notations and assumptions involved in the sup-
ply chain model come as follows:

Indexes

i = 1, 2, . . . , I is the index of the buyers
j = 1, 2, . . . , J is the index of the products
k = 1, 2, . . . , K is the index of the vendors
t, t = 0, 1, . . . , T is the index of the time periods
p, p = 1, 2, . . . , P is the index of the price break points

Notations

ui jktp : A binary variable that is set to 1 if
buyer i purchases product j from ven-
dor k at price break point j in period t ,
and set to 0 otherwise

di jkt : Demand of buyer i for product j pro-
duced by vendor kin period t

Ti jkt : Total time elapsed up to and includ-
ing the t th replenishment cycle of the
j th product ordered by buyer i from
vendor k

fk : The production capacity of vendor k
hi jkt : Inventory holding cost per unit of j th

product in the warehouse owned by
vendor k sold to buyer i in period t

123



194 J Intell Manuf (2017) 28:191–206

Vendor 2

Vendor 3

Vendor K

⁞

Vendor 1

Transportation

⁞

Buyer 2

Buyer I

Buyer 1

Buyer 3

Warehouse 2

Warehouse I

Warehouse 1

Warehouse 3

⁞

Fig. 1 The illustration of the supply chain model

Ai jkt : Ordering cost (transportation cost) per
unit of j th product from vendor k to
buyer i in period t

ci jktp : Purchasing cost per unit of j th product
paid by buyer i to vendor k at pth price
break point in period t

ei jktp : pth price break-point proposed by
vendor k to buyer i for purchasing j th
product in period t (eijkt1 = 0)

si jkt : The requiredwarehouse space for ven-
dor k to store per unit of j th product
sold to buyer i in period t

B : The total available budget
C : An upper bound for the available order

quantity
wi jkt : A binary variable that is set to 1 if

buyer i orders product j from vendor
k in period t , and set to 0 otherwise

TC : The total inventory costs
ai = (ai1, ai2) : The coordinates of the location of

buyer i
yk = (y1k, y2k) : The coordinates of the location of ven-

dor k (decision variable)
Qi jkt : Ordering quantity of j th product pur-

chased by buyer i from vendor k in
period t (decision variable)

xi jkt : The initial (remained) positive inven-
tory of j th product purchased by buyer
i from vendor kin period t (xi jk1 = 0)
(decision variable)

I (t) : Inventory position in period t

g(y1k, y2k) : The region to locate the vendor k (here
is trapezoidal)

Assumptions

• The shortages are not allowed that is a common assump-
tion in the literature (Mousavi et al. 2013b).

• The Replenishments are instantaneous. In other words,
the orders will be received by the buyers as far as they
make an order, without any delay.

• The buyers’ demand rates of all products are independent
from each other and variable in the different periods. It
means each buyer has his/her own demand rates.

• The initial inventory level of all products ordered by
the buyers from each vendor is assumed to be zero
(i.e.,xijk1 = 0) (Mousavi et al. 2013b).

• The order quantity of the products from the vendorsmade
by the buyers in each period is at least equal to the demand
rates in during the period (i.e. Qijkt ≥ dijktTijkt). This
assumption is to prevent the demands facing with short-
ages.

• Planning horizon is finite and known. In the planning
horizon, there are T periods of unequal length which is
the same for seasonal items in real world.

• The total available budget to purchase the products, the
total warehouse space of each vendor and the total pro-
duction capacity of the vendors are limited.

• The distance between the buyers and the vendors is
assumed to be Euclidean distance.

• The paths between the buyers and the vendors are con-
nected and the unit transportation cost is the proportion-
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…
2ijkx

1 0ijkx =

Fig. 2 Some possible scenarios for the available inventory system

ate of quantity supplied and distance traveled. This causes
the buyers and the vendors are accessible to each other.

• No order is made at the last period (season).

Problem formulation

In order to formulate the supply chain problem in hand, Fig. 2
provides some possible scenarios for the inventory system of
the problem. The objective function of the problem is to min-
imize the total costs comprising Transportation cost (TrC),
Holding cost (HC) and Purchasing cost (PC). To formulate
the objective function, first the transportation cost is calcu-
lated. The transportation cost is obtained by considering the
Euclidean distance between the buyers and the vendors using
the following equation:

TrC =
I∑

i=1

J∑

j=1

K∑

k=1

T∑

t=1

Qi jktwi jkt Ai jkt

×
√

(yk1 − ai1)2 + (yk2 − ai2)2 (1)

where
√

(y1k − ai1)2 + (y2k − ai2)2 calculates the Euclid-
ean distance between buyer i with coordinate ai = (ai1, ai2)
and vendor k with coordinate yk = (y1k, y2k).

According to Fig. 2, the holding cost in interval [T, T −1]
is obtained using the following equation:

∫ T

T−1
I (t)dt (2)

and for the whole periods we have:

T∑

t=2

∫ t

t−1
I (t)dt (3)

Therefore, the total holding cost becomes:

HC =
I∑

i=1

J∑

j=1

K∑

k=1

T−1∑

t=1

(xi jkt + Qi jkt + xi jkt+1)

×Ti jkt hi jkt/2 (4)

In the proposed supply chain problem, the buyers pur-
chase the products in each period under the discount strategy

provided by the vendors. In thiswork, the products are bought
under AUD policy since the price-break point suggested by
the vendors is as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ci jkt1 ei jkt1 ≤ Qi jkt < ei jkt2
ci jkt2 ei jkt2 ≤ Qi jkt < ei jkt3

...

ci jkt P ei jkt P ≤ Qi jkt

(5)

Then, the total purchasing cost under AUD policy is obtained
as Eq. (6).

PC =
I∑

i

J∑

j

K∑

k

T−1∑

t

P∑

p

Qi jkt ci jktpui jktp (6)

Therefore, the objective function of the total cost comes as:

T c = TrC + HC + PC (7)

The supply chain model proposed in this paper is formulated
as follows:

MinT c =
I∑

i=1

J∑

j=1

K∑

k=1

T∑

t=1

Qi jkt Ai jktwi jkt

×
√

(y1k − ai1)2 + (y2k − ai2)2

+
I∑

i=1

J∑

j=1

K∑

k=1

T−1∑

t=1

(xi jkt + Qi jkt + xi jkt+1)Ti jkt hi jkt/2

+
I∑

i=1

J∑

j=1

K∑

k=1

T−1∑

t=1

P∑

p=1

Qi jkt ci jktpui jktp (8)

S.t.

xi jkt+1 = xi jkt + Qi jkt − di jkt Ti jkt (8a)
J∑

j=1

K∑

k=1

T∑

t=1

(Qi jkt + xi jkt )si jkt ≤ S j (8b)

I∑

i=1

J∑

j=1

T∑

t=1

Qi jkt ≤ fk (8c)
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I∑

i=1

J∑

j=1

K∑

k=1

T−1∑

t=1

P∑

p=1

Qi jkt ci jktpui jktp ≤ B (8d)

Qi jkt ≤ C (8e)

wi jkt =
{
1 i f Qi jkt > 0
0 otherwise

(8f)

P∑

p=1

ui jktp =
{
1 i f Qi jkt > 0
0 otherwise

(8g)

Qi jkt ∈ Z, xi jkt ≥ 0;wi jkt , ui jktp

∈ binary; g(y1k, y2k) ≥ 0;
( f or i = 1, 2, . . . , I ; j = 1, 2, . . . , J ;
k = 1, 2, . . . , K ; t = 1, 2, . . . , T )

In Eq. (8), there are several constraints that can increase the
complexity of the model. The restriction (8a) obtains the ini-
tial inventory of each buyer in each period remained from
the previous period. Equation (8b) determines that each ven-
dor’swarehouse has a limited capacity. Also, each vendor has
a limited production capacity that is shown by Eq. (8c). The
total available budget to purchase the products is restricted
where the relevant limitation is proposedbyEq. (8d). Further-
more, Eq. (8e) shows an upper bound (due to the production
limitations) for the order quantities. Equation (8f) represents
a binary variable for making an order and Eq. (8g) says each
buyer must purchase each item maximum at a price break
point in each time.

Solution methodologies

In the current research, in order to solve the proposed two-
echelon supply chain model, a MPSO is applied where a GA

algorithm is used to validate the performance of the proposed
algorithm. The MPSO is explained as the following stages.

Initializing the parameters

Firstly, the parameters concerned with the MPSO including
the number of particles (NoP), the number of generations
(NoG) and two parameters λ1 and λ2, are defined. Addi-
tionally, the position and velocity, which are two variables
in PSO algorithm, are initialized using Eqs. (9) and (10),
respectively. In Eq. (9), zl0 is the initial position of article
l(l = 1, 2, . . . , NoP), zmin is the lower and upper bound
on the design variables (here, zmin = 0 and zmax = C for
Q) and rand is a random number in the interval (0, 1).
Also, in Eq. (10) vl0 is the initial velocity of the article
l(l = 1, 2, . . . , NoP) and η is the constant time increment
and assumed 1. These parameters are also adjusted using
the Taguchi method which is explained in the next section.
Figure 3 shows a representation of the particles, where the
values of the order quantity are generated randomly in the
interval of [0,C] and the number of particles in each genera-
tion is set to NoG. Moreover, the vendors and customers are
assumed to be located into a certain region with coordinates
y1 ∈ [0, 100] and y2 ∈ [0, 100].

zl0 = zmin + rand(zmax − zmin) (9)

vl0 = zl0
η

(10)

Evaluating the articles

In this stage, we evaluate each of the articles by using Eq. (8).
Figure 4 represents a population of the articles since the
objective value of the articles is depicted by TC .

Fig. 3 The presentation of a particle

Fig. 4 The representation of a population of the articles
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Updating the velocities and positions

In order to search the solutions in the feasible area of the
problem, the velocity and position of the articles in each
generation of PSO are updated as the following formulas.

vln+1 = w.vln + λ1.r1.(pBest
l
n − zln)

+ λ2.r2.(gBestn − zln) (11)

zln+1 = zln + η.vln+1 (12)

In Eq. (11), r1 and r2 are two numbers generated ran-
domly in the interval of (0, 1), the coefficients λ1 and λ2 are
the given acceleration constants towards pBest and gBest ,
respectively, and w is the inertia weight where is expressed
as Eq. (13) (Naka et al. 2001). Furthermore, pBestln and
gbestn are the best fitness value for particle l until time n,
(n = 1, 2, . . . , NoG) and the best particle among all until
time n, respectively.

w = wmax − (wmax − wmin)

NoG
.n (13)

In Eq. (13), NoG is the maximum number of iterations and
n is the current number of iteration. Shi and Eberhart (1999)
and Naka et al. (2001) have claimed the best result will be
obtained since [wmin, wmax] = [0.4, 0.9].

An important aspect of generation and initializing the arti-
cles is that solutions must be feasible and satisfy the con-
straints. A penalty function approach is used for those parti-
cles that do not satisfy all the constraints given in Eq. (14).

R(x) ≤ L (14)

Therefore, the corresponding penalty function is defined as
follows:

F(x) =
{
0 i f inequality is satisfied
(R(x) − L)α otherwise

(15)

Where α is the coefficient of the penalty function (here, α =
10).

Stopping criterion

In a meta-heuristic algorithm, the stopping criterion can be
reached by specifying CPU time, a specific value of the
objective value, or a specified number of generation. In this
research, the number of generation (NoG) has been adopted
to stop the optimization process.

Furthermore, in order to validate the performance of
MPSO, a GA is applied based on the following steps.

– Initialize the chromosomes, the number of generation
(NoG), the number of population (NoP), the probability
of crossover (PC ) and the probability of mutation (Pm).

– Evaluate the chromosomes by using Eq. (8).
– Select the chromosomes based on the tournamentmethod
to enter the production pool (each time select two
chromosomes and one with the best objective value is
selected).

– Perform crossover operator on the chromosomes. First,
for each chromosome, generate a randomnumber between
0 and 1. Those are selected for the crossover operator that
their related random numbers are set to less or equal to
PC . Next, two chromosomes out of the selected chromo-
somes are chosen for the crossover operator randomly. If
chro1 and chro2 are the two chosen chromosomes (par-
ents), the offsprings are generated as:

of f1 = rand.chro1 + (1 − rand).chro2

of f2 = (1 − rand).chro1 + rand.chro2 (16)

where rand is a random number between 0 and 1 and
of f1 and of f2 are the offspring.

– Perform mutation operator. In this operator, a random
number is also generated between 0 and 1 for each chro-
mosome for which the 1s are selected for mutation opera-
tor that have values less or equal to Pm . Hence, the muta-
tion operator generates the new chromosomes from the
selected chromosomes as follows: in each chromosome a
variable is selected randomly and is changed in the range
randomly.

– Perform elitism operator. Those chromosomes that are
not selected for both crossover and mutation operators
enter directly to next generation in the order of their
objective values while the number of population reaches
NoP .

– Stop the algorithm based on is reaching a specific number
of generation.

Data generating, Parameter setting and computational
results

In this section, first a range of random numerical examples
are generated to evaluate the algorithms on the supply chain
model. Secondly, we design a Taguchi method to tune the
parameters of the algorithms where MINITAB software ver-
sion 15 is used to analyze the data. In order to solve themodel
proposed by Eq. (8), MATLAB (R2013a) software is used to
code the algorithms on a PC with RAM 4GH and CPU 2.5
dual cores.

Generating random data

The random examples are constructed by generating uni-
formly distributed randompoints for the parameters provided
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Table 1 The input data of the test problems

di jkt Ti jkt hi jkt Ai jkt C ai ci jktp

U [20, 50] U [1, 3] U [1, 20] U [1, 20] U [0, 150] U [0, 100] U [10, 20]

Table 2 Sizes of the proposed instances

Description Buyers
(I)

Products
(J)

Vendors
(K)

Periods
(T)

Price-
break
point

Small-scale [5–10] [1–5] [1–5] [1–3] 4

Medium-scale [11–20] [6–10] [1–10] [1–5] 4

Large-scale [20–30] [11–15] [11–15] [6–10] 4

in this study. Parameter generation is summarized in the list
shown in Table 1 where U [. . .] shows an uniform distribu-
tion.

In this study, three categories based on size each one
with 10 instances were generated randomly. The Small-scale
instances are generated with 5–10 buyers, 1–5 products and
vendors and 1 to 3 periods. The Medium-scale instances are
generated with 11–20 buyers, 6–10 products, 1–10 vendors,
and 1–5 periods since in Large-scale instances these values
are 20–30 for buyers, 11–15 for products and vendors and 6–
10 for periods. Additionally, the number of price-break point
for all the three categories is considered to be 4.

Parameter setting

Oneof themajor problems in usingmeta-heuristic algorithms
is that the algorithm parameters can take different values for
different problems. A searchable space refers to the possibil-
ity of measuring the distance (similarity) between any two
candidates so that a sensible search space (landscape) could
be defined. In otherwords, for any candidate, it should be pos-
sible to find out which candidates are close to it and which
candidates are far from it (Yuan and Gallagher 2005). In
this work, in order reduce the computational time to obtain
the best solution, the proposed MPSO and GA algorithms
are tuned using the Taguchi method. The Taguchi method
is a fractional factorial experiment introduced by Taguchi
applied as an efficient alternative for full factorial experi-
ments (Shavandi et al. 2012). The Taguchi method is also
one of the most well-known approaches that is utilized for
tuning the meta-heuristic parameters used in the literature
recently (Mousavi et al. 2013a, b; Mousavi and Niaki 2012;
Mousavi et al. 2013c; Peace 1993; Sadeghi et al. 2013). As
aforementioned, MPSO and GA are applied to find the opti-
mal solutions of the two-echelon supply chain network in
Eq. (8) at which λ1, λ2, NoP and NoG are the input para-
meters of MPSO and PC , Pm, NoP and NoG are the input
parameters of GA. In this research, the “Smaller is Better”

Table 3 The MPSO and GA parameters’ levels

Algorithm Parameters 1 2 3

MPSO λ1 1.5 2 2.5

λ2 1.5 2 2.5

NoP 20 30 40

NoG 100 200 500

GA PC 0.5 0.6 0.7

Pm 0.08 0.1 0.2

NoP 30 40 50

NoG 200 300 500

Table 4 The experimental results on theMPSO and GA parameters for
Problem No. 1 of Small-scale

Exp. no. A B C D MPSO GA

1 1 1 1 1 30,456 31,416

2 1 2 2 2 28,953 29,356

3 1 3 3 3 28,091 32,431

4 2 1 2 3 31,371 33,253

5 2 2 3 1 32,646 31,098

6 2 3 1 2 31,467 31,829

7 3 1 3 2 30,633 29,809

8 3 2 1 3 34,968 30,963

9 3 3 2 1 34,894 32,646

type of response has been employed (since the goal is to
minimize S/N), where S/N is given as.

S/Nratio = −10 × log

(∑β
l=1 Yl
β

)
(17)

In Eq. (17), Y and β (here, β = 1) are the response and
the number of orthogonal arrays, respectively. To design the
Taguchi for both meta-heuristic algorithm parameters, we
used L9 design where the values and levels of the parame-
ters are given in Table 3. The values in Table 3 are obtained
after numerous tests and analyses on the current instances
of the categories using the frequent runs of the algorithms.
We represent the experimental design for Problem No. 1 of
Small-scale category in details in order to show how the para-
meters are tuned in each of instances. Table 4 represents the
orthogonal arrays along with their responses for both MPSO
and GA for Problem No. 1 of Small-scale. In Table 4, A and
B show the factors of λ1 and λ2 in MPSO and PC and Pm
in GA respectively since C and D are equivalent to NoP
and NoG in both MPSO and GA. Moreover, the sixth and
seventh columns of Table 4 represent the responses ofMPSO
and GA approaches for Problem No. 1 of Small-scale cate-
gory respectively. Figures 5 and 6 display the mean S/N ratio
plot of the MPSO and GA for Problem No. 1 of Small-scale
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Fig. 5 The mean S/N ratio plot of the MPSO on Problem No. 1 of Small-scale

Fig. 6 The mean S/N ratio plot of the GA on Problem No. 1 of Small-scale

respectively. According to Figs. 5 and 6, the optimal levels
of the MPSO’s factors are λ1 = 2.5, λ2 = 2, NoP = 20
and NoG = 100 where these levels for GA’s factors are
PC = 0.6, Pm = 0.2, NoP = 40 and NoG = 500
for GA.

The results and comparisons

In this section, we compare the results obtained from both
MPSO and GA with each other on the 10 instances gener-
ated of the three abovementioned categories to find the best
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Fig. 7 The graphical
representation of the objective
function resulted from MPSO
and GA on the generated
instances of a Small-scale, b
Medium-scale and c Large-scale
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Table 8 The ANOVA for the instances of Small-scale category

Methodology N Mean SD SE-Mean T value P value

PSO 10 741,442 605,015 191,322 −0.35 0.734

GA 10 839,579 662,608 209,535

Table 9 The ANOVA for the instances of Medium-scale category

Methodology N Mean SD SE-Mean T value P value

PSO 10 15,640,255 12,559,251 3,971,584 −0.14 0.891

GA 10 16,442,917 13,207,845 4,176,687

Table 10 The ANOVA for the instances of Large-scale category

Methodology N Mean SD SE-Mean T value P value

PSO 10 32,522,810 5,986,070 1,892,962 −1.05 0.309

GA 10 35,366,379 6,139,669 1,941,534

methodology for solving the proposed two-echelon supply
chain model. Tables 5, 6 and 7 demonstrate the input para-
meter and the objective values of both MPSO and GA for
each one of the instances of the three categories generated in
the range given in Table 2. In these tables, the optimal values
of the algorithm parameters are obtained using the Taguchi
method with L9 design. Furtheremore, the optimal values of
the objective function for MPSO and GA (i.e. TC) resulted
from each instance of the three categories are also shown in
the columns 14 and 19 of Tables 5, 6 and 7, respectively.

In order to compare the performance of MPSO and GA
in term of the objective function, several approaches are
employed in this research. First, we have taken the average
and standard deviation (SD) of each 10 instances for all the
category problems showing in the last two rows of Tables 5,
6 and 7. The results of average and SD of the instances in the
three categories demonstrates that MPSO has outperformed
GA.

A graphical approach shown by Fig. 7 is also secondly
applied to compare the performance of the algorithms on the
10 generated instances of Small-scale, Medium-scale and
Large-scale categories. According to Fig. 7, in each three
(a) Small-scale, (b) Medium-scale and (c) Large-scale, the
proposed MPSO seems to have a better efficiency than GA.

Finally, to compare the performance of the algorithms,
we have performed an independent two-sample t-test with
a 95% confidence for the instances of the categories where
a hypothesis test for means of MPSO and GA when their
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Fig. 9 The convergency path ofMPSOfor ProblemNo. 10 ofMedium-
scale category

standard deviations are unknown is as:

H0 : μMPSO − μGA = δ0 versus H1 : μMPSO − μGA �= δ0

at which μMPSO and μGA are the means of the objective
values of the two algorithms and δ0 is the hypothesized dif-
ference between the means of the algorithms. Tables 8, 9
and 10 depict the results of t test for the instances of Small-
scale,Medium-scale and Large-scale categories respectively.
From Tables 8 and 9, it is clear that P values are greater
than commonly chosen 0.05-levels. Hence, there is no evi-
dence for a difference in the performance of the algorithms
on the instances of Small-scale andMedium-scale categories.
However, the P value in Table 10 shows that there is a signifi-
cant difference between the two algorithms for the instances
of Large-scale category. Therefore, MPSO has performed
efficiently for solving the integrated location allocation two-
echelon supply chain problem (Fig. 8).

Formore understanding of the solutions, the optimal order
quantity and location of the vendors obtained by MPSO for
Problem No. 1 of Small-scale category is shown in Fig. 9.
Furtheremore, in order to clarify the trend of the solutions
obtained from first generation to the last, Figs. 9 and 10
demonstrate the convergency path of the objective values
for the MPSO and GA for Problem No. 10 of Medium-scale
category respectively. Figure 11 also shows a representation
of the optimal locations of the vendors among the buyers
obtained by MPSO for Problem No. 7 of Medium-scale cat-
egory.

Fig. 8 A representation of the optimal solution obtained by MPSO for Problem No. 1 of Small-scale category
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Fig. 11 Theoptimal location of the vendors among the buyers obtained
by MPSO for problem No. 7 of Medium-scale category

Conclusion and future works

In this work, a two-echelon supply chain network for a sea-
sonal inventory control problem was investigated where the
vendors stored the produced products into their warehouses.
The retailers made the orders for these products under all unit
discount policy. The main goal of the problem was to find
the order quantity of the products purchased by the buyers in
addition to determining the optimal location of the vendors
among the known location of buyers so that the total supply
chain cost comprising transportation, holding and purchas-
ing costs is minimized. The distances between the buyers
and the vendors were supposed as the Euclidean distance. To
solve the proposed supply chain model, a MPSO algorithm
was employed where a GAwas utilized to validate the results
of the proposed algorithm. Taguchi method was also applied
to set the parameters of the two algorithms. The contribution

of the study was to determine the locations of the vendors
between the customers in a certain area, the order quantities
purchased by the buyers from the vendors and the optimal
levels of the algorithms’ parameters by Taguchi. The results
of the algorithms showed theMPSOhas a better performance
than theGA in term of the objective function on the generated
instances of the three categories.

Some recommendations for future works consist of
extending themodel in a stochastic or fuzzy environments. In
addition, shortages in combination of backorder and lost sale
can be considered. Furthermore, the problem can be investi-
gated in the context of inflation and the time value of money.
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