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Abstract Carbon fiber reinforced polymer (CFRP) is an
important composite material. It has many applications in
aerospace and automotive fields. The little information avail-
able about themachining process of thismaterial, specifically
when routing process is considered, makes the process con-
trol quite difficult. In this paper, we propose a new process
control technique and we apply it to the routing process for
that important material. The measured machining conditions
are used to evaluate the quality and the geometric profile of
the machined part. The machining conditions, whether con-
trollable or uncontrollable are used to control part accuracy
and its quality. We present a pattern-based machine learning
approach in order to detect the characteristic patterns, and
use them to control the quality of a machined part at specific
range. The approach is called logical analysis of data (LAD).
LAD finds the characteristic patterns which lead to conform-
ing products and those that lead to nonconforming products.
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As an example, LAD is used for online control of a simulated
routing process of CFRP. We introduce the LAD technique,
we apply it to the high speed routing of woven carbon fiber
reinforced epoxy, and we compare the accuracy of LAD to
that of an artificial neural network, since the latter is the most
known machine learning technique. By using experimental
results, we show how LAD is used to control the routing
process by tuning autonomously the routing conditions. We
conclude with a discussion of the potential use of LAD in
manufacturing.
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Introduction

The composite materials have special properties which make
them the backbone of some industries such as aerospace,
sporting, automotive and aircraft structure (Rahman et al.
1999). CFRP has very high modulus of elasticity, high ten-
sile strength, low density, and high chemical stability. Most
studies of CFRP are restricted to material properties and
theoretical mechanics. Nowadays, the economic impact has
an important consideration in manufacturing; therefore, it’s
important to study the machining process control for CFRP
because it affects the production process (Ferreira et al.
1999). The machining of composite materials is more dif-
ficult than the machining of metals because they have non-
homogeneous composition, and abrasive properties of rein-
forcing fibers. The cutting tool confronts fibers and matrix
whose response to machining process could be completely
different (Teti 2002). The complicated reaction of CFRP to
machining, and consequently the defects which are intro-
duced into the workpiece, in addition to the special required
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Fig. 1 Trends for the feed force (Fx), transverse force (Fy), and axial force (Fz) for different speeds, feeds and tool overhang length (TL1=38mm)
(Meshreki et al. 2012)

specifications of the machined part are the main reasons for
the search of new techniques for process control.

Milling is used frequently in manufacturing in order to
produce, with composite materials, parts which have high
accuracy and high surface quality (Teti 2002), such as delam-
ination, surface roughness and machined part dimensions
(Davim and Reis 2005). Researches have been conducted
on milling process control. They used artificial intelligence
learning techniques in order to control machining process.
For example, (Zuperl et al. 2012) used ANN and fuzzy
logic to control the cutting force in the process of ball-
end milling, and in order to maintain constant roughness. In
(Huang 2014), The author developed an intelligent neural-
fuzzy model for surface roughness monitoring system in
milling operations. He developed a decision-making system
which analyzed the cutting forces and then responded with
an accurate output. He concluded that his developed sys-
tem can be used, in future, as an adaptive control system
of the machining parameters in smart Computer Numerical
Control (CNC) machine. In (Zhang et al. 2007), the authors
used ANN to develop surface roughness adaptive control in
turning process. They used data from controllable cutting
parameters such as feed rate, cutting speed, and depth of
cut, and also uncontrollable monitored parameters such as
vibration signals in order to develop neural-networks-based
surface roughness adaptive control system.Other researchers
used other techniques, for example, (Coker and Shin 1996)
used ultrasonic sensing to control surface roughness during
machining processes. (Wang and Huang 2006) used the con-
cept of anEquivalent FixtureError (EFE) to improvemachin-
ing process control. Based on simulated data, they illustrated
their concept. In (Du et al. 2012), the authors developed a
robust approach for root causes identification in machining
process using hybrid learning algorithm and engineering-
driven rules. In order to judge whether the process is in
normal or abnormal condition, off-line pattern match rela-
tionships and on-line time series measurements were used.
They validated the developed approach by using data from
the real-world cylinder head of engine machining processes.
Due to the nonlinearity and complexity of milling process,

traditional approaches fail to develop appropriate model to
control the process (Haber et al. 2002). In (Landers et al.
2002), the authors concluded that the future of the milling
process monitoring and control needs techniques that can
determine threshold values and characteristic patterns which
can be used to control and tune autonomously the control-
lable machine conditions (feed, cutting speed, etc.), on-line
and off-line, in order to improve part accuracy.

In this paper, we present a pattern-based machine learn-
ing technique called logical analysis of data (LAD). We use
this technique in order to discover and to understand the hid-
den correlation between the machining variables of CFRP.
Information is extracted from experimental results, and is
presented in the form of characteristic patterns. These are
hidden rules that characterize the temporal evolution of the
machining process. Subsequently, these rules are used in
machining process control. In section “Experiment descrip-
tion”, the experimental procedure and results are presented.
LAD approach is presented in section “Logical analysis of
data (LAD)” and a numerical example is introduced. In sec-
tion “Performance comparison”, the learning process, from
the obtained experimental data, is introduced and compar-
ison between LAD and the ANN is presented. In section
“Process control system”, a simulated machining process
control is used for building online-decision making proce-
dure using LAD. Concluding remarks are given in section
“Conclusions”.

Experiment description

The composition of the tested CFRP composite is quasi-
isotropic laminate comprising 35 plies of 8-harness satin
woven graphite epoxy prepreg with a final cured thickness
of 6.35 ± 0.02mm. The tool materials is 6.35mm, four-
flute, solid carbide end mill. The equipment is a Makino
A88ε machining center. In order to reach a spindle speed
up to 40,000 rpm, an IBAG spindle speed attachment, which
has a 1kW power, is used. The routing tests is performed
using four values of Spindle speed (rpm): 10,000, 20,000,
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Fig. 2 Schematic of the experimental setup

30,000, and 40,000, three values of feed (mm/min): 250, 500,
and 1,000, and three values of tool overhang lengths (TL):
TL1 = 38mm, TL2 = 31mm, and TL3 = 24mm. The
experiments are repeated each 32mm of cutting distance for
three times. As such, we have three values of cutting distance
(C): 32, 64, and 96mm. In total, we have three feed rates ( f ),
four cutting speed (v), three overhang length (TL), and three
cutting distances (C); therefore, the total number of observa-
tions (experiments) is 108. This is a full factorial design of
experiments. During slotting, the cutting forces aremeasured
using a Kistler dynamometer 9255B, and the temperatures
are measured using a FLIR ThermoVision A20M infra-red
camera. For example, Trends for the feed force (Fx), trans-
verse force (Fy), and axial force(Fz) for different speeds,
feeds and tool overhang length (TL1 = 38 mm) are shown
in Fig. 1. The machined slots were characterized in terms of
surface roughness, and delamination. The conforming spec-
ifications of these qualities are as follows:

• Exit and entry delamination ≤ 1%.
• Slot surface roughness right and left ≤ 1.2μm.

Schematic of the experimental setup is shown in Fig. 2. A
sample of the collected data are presented in Table 1. The
observations that satisfy (don’t satisfy) any of these specifi-
cations are identified by 1(0) in Table 1.

Logical analysis of data (LAD)

The methodology

LAD is a knowledge discovery approach that allows the clas-
sification of phenomena based on knowledge extraction and
pattern recognition. It is applied in two consecutive phases,
training or learning phase, where part of the database is used
to extract special features or patterns of some phenomenon,

and the testing or the theory formation phase, where the rest
of the database is used to test the accuracy of previously
learned knowledge. LAD uses a supervised learning tech-
nique; this means that the historical data or the database
contains the variables and their corresponding outcomes or
classes. For example, in Table 1, columns 2–9 are the vari-
ables, and columns 12 and 15 are the classes. In this paper,
we use a two-class LAD technique. A multi-class LAD tech-
nique can be found in (Mortada et al. 2011, 2013). After
the two previously mentioned phases, new observations are
introduced to LAD in order to be classified. This classifi-
cation allows us to predict the quality outcome. The main
advantages of LAD are: (1) LAD has explanatory power and
causality identification which can be very useful in address-
ing machining process problems. This means that the user
can track back any results, caused by a phenomenon or its
effects, to its possible causes. This property appears partic-
ularly special, when LAD is compared to ANN which is
characterized by the difficulty in determining the network
structure and the number of nodes, and also the difficulty of
interpreting the classification process. The ANN is a “black
box” type of technique, which classifies new points without
any explanations. (2) Unlike the statistical techniques which
depend on distributions, and independence among variables,
LAD is a non-statistical, non-approximate technique. LAD
does not assume that the data belongs to any specific statis-
tical distribution. (3) Unlike rules based on expert systems
and expert knowledge, LAD extracts the knowledge hidden
in the data. It then accumulates and preserves this knowl-
edge which can be used at any time by the user, even if the
human expertise is not available anymore. (4) No restriction
concerning the type of data that LAD can deal with. LAD is
capable of handling different types of data, whether nominal
or numerical, discrete or continuous, simultaneously.

LAD was proposed for the first time at the Rutgers Uni-
versity Center for Operations Research (RUTCOR) (Ham-
mer 1986). The main steps of the LAD are the binarization
of data, the pattern generation, and the theory formation. The
objective of data binarization is the transformation of a data-
base of any type into a Boolean database by using cut points
technique.Many researchers presented different binarization
techniques (Mayoraz and Moreira 1999). In this paper, we
use the binarization technique that is presented in (Bores
et al. 2000). The technique starts by ranking, in ascending
order, all the distinct values, u, of a variable, then cut-points
ε is inserted between each two values that belong to different
classes. The cut-point is calculated as the average of the two
values. A binary attribute is then formed from each cut-point
such that:

b =
{
1 i f u ≥ ε

0 i f u < ε
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The number of transitions between distinct values from two
different classes, and vice versa, is equal to the number of
cut-points which leads to the total number of binary attributes
replacing a numerical variable.

The objective of pattern generation is to find the character-
istic patterns that differentiate between classes that are com-
monly called positive and negative. The positive (negative)
class is a set, π+(π−), of observations that belong to this
class. Many techniques were proposed for pattern genera-
tion such as heuristics (Hammer 1986; Hammer and Bonates
2006), enumeration (Bores et al. 2000),column generation
(Hansen and Meyer 2011),and linear programming(Ryoo
and Jang 2009). In this paper, we follow the pattern genera-
tion technique which is proposed in (Ryoo and Jang 2009).
The authors converted the pattern generation problem to a
set covering problem, and solved it by a mixed integer linear
programming (MILP) without any assumptions. Each posi-
tive observation i ∈ π+ is represented as a Boolean obser-
vation vector ai = (ai,1, . . . ai,q, ai,q+1 . . . ai,2q). Each gen-
erated pattern p is associated with a Boolean pattern vec-
tor W = (w1,w2, . . .wq,wq+1,wq+2, . . .w2q) with size
n, where n = 2q, q is the size of a binary observation
vector.

A literal is a Boolean variable x or its negation x̄ (Bores
et al. 2000). A pattern p cannot include both the literal xj
and its negation x̄j at the same time, thus the constraint
wj + wj+q ≤ 1 ∀j = 1, 2, . . . q must be respected. The
number of literals used to define the pattern is called the
degree of a pattern d. Pattern p of degree d is a conjunc-
tion of d literals; therefore, the pattern p is found after get-
ting the Boolean pattern vector W which is the solution of
the set-covering problem. For the generation of a positive
pattern p+, that is a pattern that covers observations which
belong to the positive class, Y = (y1, y2, . . . yD+)) is the
Boolean coverage vector whose number of elements equal
to the number of positive observation D+, and where yi is
equal to 0 if a pattern p+ covers a positive observation i,
and 1 otherwise. Minimizing Y means finding a positive pat-
tern that covers the maximum number of observations of this
class. Our objective is to find a pattern that covers amaximum
number of positive observations. This pattern is subsequently
used to characterize the positive class. It is an indication of
the unknown outcome or class. In this optimization problem,
the decision variables are the pattern vector W, the degree d,
and the coverage vector Y. By definition, a positive pattern
cannot cover any negative observations, so the dot product
of the pattern vector W and the observation i ∈ �− must
be less than the degree d of the pattern p, and for that rea-
son the constraint

∑2q
j=1 ai,jwj ≤ d − 1∀i ∈ �− must be

satisfied. Since the generated pattern doesn’t have to cover
all the observations in π+, the following constraint must be
satisfied,

∑2q
j=1 ai,jwj + qyi ≥ d∀i ∈ �+. The set covering

problem is repeated until all observations in one class are

covered by a set of generated patterns such that each obser-
vation is covered by at least one pattern. In order to speed-up
the pattern generation procedure, the newly-generated pat-
tern must not be a subset of the set of patterns that have
already been generated. Every generated pattern vector W is
stored as vector v in the set V containing all pattern vectors
of the patterns generated previously. This condition can be
formulated as:

2q∑
j=1

vk,jwj ≤ dk − 1∀vk ∈ V.

In addition to the previouslymentioned constraints, the prob-
lem can be summarized as follows:

min
W,Y,d

∑
i∈�+

yi

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑2q
j=1 wj = d

1 ≤ d ≤ q
W ∈ {0, 1}2q
Y ∈ {0, 1}D+.

(1)

After generation of the strongest pattern, which is the pattern
that covers a maximum number of observations in the posi-
tive class, looping mechanism is used in order to generate an
entire set of patterns that cover all the positive observations
at least once. The same process is then repeated to obtain
the negative patterns by using the set π− of negative obser-
vations. A theory is then formed and a decision model is
obtained.

The theory formation is the final step in LAD. A discrimi-
nant function, such as the one given in Eq. (2), is formulated
in order to calculate a score ranging between -1 and 1. When
the output of a discriminant function has a positive (negative)
value, this means that the tested observation belongs to the
positive (negative) class. Zero value means the evidences are
not enough in order to decide to which class an observation
belongs (Mortada et al. 2011).

�(O) =
N+∑
i=1

α+
i P+

i (O) −
N−∑
i=1

α−
i P−

i (O) (2)

Where N+(N−) is the number of positive (negative) gener-
ated patterns, P+

i (O)
(
P−
i (O)

)
is equal to 1 if pattern (i) cov-

ers observationO, and is equal to zero otherwise,α+
i

(
α−
i

)
are

the weights of the positive (negative) pattern p+
i

(
p−
i

)
. These

weights are the proportion of observations covered by each
pattern. They represent the power of each pattern. A strong
pattern is the most powerful and cover the highest number of
observations.
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Table 2 Collected Boolean observation vectors and their classes

No. b1 b2 b3 b4 b5 ai ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 Class

1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1

2 1 1 0 1 0 2 1 1 0 1 0 0 0 1 0 1 1

3 1 1 1 0 0 3 1 1 1 0 0 0 0 0 1 1 1

4 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0

5 0 0 0 1 1 2 0 0 0 1 1 1 1 1 0 0 0

6 1 1 0 1 1 3 1 1 0 1 1 0 0 1 0 0 0

7 0 0 1 0 0 4 0 0 1 0 0 1 1 0 1 1 0

Numerical example

In order to explain the LAD methodology, we introduce the
following numerical example. We assume that we have the
following seven observations, and the corresponding mea-
sured qualities such as the surface roughness or the delami-
nation.Thequality takes a label or class 1 (0) to represent con-
forming (non-conforming) specification. We assume that the
machining conditions measurements’ are already changed to
binary attributes b1 to b5, by using the procedure presented
in section “The methodology”. We search for the combina-
tion of machining conditions, that are the characteristic pat-
terns, which differentiate between parts which are conform-
ing or non-conforming to specifications. The seven observa-
tions are shown in Table 2 in columns 2–6. Each observation
i = 1 to 7 is associated with a Boolean observation vector
ai = (ai,1, ai,2, . . . ai,q, ai,q+1, ai,q+2, . . . ai,2q), where q =
10. These are the literals of the observations, as in columns
2–6, and their negations. The Boolean observation vectors
are shown in Table 2.

Y = (y1, y2, y3) is the Boolean vector whose number
of elements equal to the number of positive observations,
and where yi is equal to 0 if a pattern p covers the positive
observation i, and 1 otherwise.MinimizingYmeans finding a
positive pattern that covers the maximum number of positive
observations, that is the strongest pattern.

Accordingly, theMILP for the pattern generation problem
is formulated as follows:

Minimumy1 + y2 + y3
S.t.

w1 + w6 ≤ 1,w2 + w7 ≤ 1,w3 + w8 ≤ 1,w4 + w9 ≤ 1,

w5 + w10 ≤ 1

w2 + w4 + w5 + w6 + w8 + 5y1 ≥ d,w1 + w2 + w4

+w8 + w10 + 5y2 ≥ d

w1 + w2 + w3 + w9 + w10 + 5y3 ≥ d,w1 + w3 + w7

+w9 + w10 ≤ d − 1

w4 + w5 + w6 + w7 + w8 ≤ d − 1,w1 + w2 + w4

+w5 + w8 ≤ d − 1

w5 + w6 + w7 + w9 + w10 ≤ d − 1,w1 + w2 + w3

+w4 + w5 + w6 + w7 + w8 + w9 + w10 = d

1 ≤ d ≤ 5,wj ∈ {0, 1} ∀j = 1, . . . , 10, y1, y2, y3 ∈ {0, 1} ,

This MILP problem has three decision set of variables
(y, d,w) and it can be solved by anyMILP-solver (Linderoth
and Lodi 2011). The strongest pattern was obtained as W
= (0, 1, 0, 0, 0, 0, 0, 0, 0, 1) which means that p+

1 = x2x̄5,
and therefore the attributes’ values must be equal to (1, 0) at
attributes (b2, b5) in order to be covered by this pattern. The
pattern is of degree d = 2,Y = (1, 0, 0) which means that
there is one positive observation (y1 = 1) that is not covered
yet. In this small example, it is easy to see that from the three
positive observations 1, 2, and 3, observations 2 and 3 are
covered by the pattern that is found, while observation 1 is
not. The process of pattern generation is repeated in order to
find a pattern that covers observation 1.

In order to generate the p+
2 pattern, the observations which

have been covered by p+
1 are removed. The remaining data

set is given in Table 3.
Let Y = (y1), where Y is the Boolean vector whose num-

ber of elements equal to the number of positive observation.
The MILP is as follows:

Minimumy1
S.t.

w1 + w6 ≤ 1,w2 + w7 ≤ 1,w3 + w8 ≤ 1,w4 + w9 ≤ 1,

w5 + w10 ≤ 1

w2 + w4 + w5 + w6 + w8 + 5y1 ≥ d,w1 + w3 + w7

+w9 + w10 ≤ d − 1

w4 + w5 + w6 + w7 + w8 ≤ d − 1,w1 + w2 + w4

+w5 + w8 ≤ d − 1

w5 + w6 + w7 + w9 + w10 ≤ d − 1,w1 + w2 + w3

+w4 + w5 + w6 + w7 + w8 + w9 + w10 = d

1 ≤ d ≤ 5,wj ∈ {0, 1} ∀j = 1, . . . , 10, y1 ∈ {0, 1} ,

By solving the MILP for the second iteration, the strongest
pattern is W = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0) which means that
p+
2 = x̄5 and therefore the attributes’ values are (0, 1) at
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Table 3 The remaining dataset after founding the first positive pattern

No. b1 b2 b3 b4 b5 ai ai,1 ai,2 ai,3 ai,4 ai,5 ai,6 ai,7 ai,8 ai,9 ai,10 Class

1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0 1

4 1 0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 0

5 0 0 0 1 1 2 0 0 0 1 1 1 1 1 0 0 0

6 1 1 0 1 1 3 1 1 0 1 1 0 0 1 0 0 0

7 0 0 1 0 0 4 0 0 1 0 0 1 1 0 1 1 0

attributes (b1, b2).The pattern is of degree d = 2, Y = [0]
which means that all the positive observations are covered.
Since all the positive observations are covered by at least
one pattern, the pattern generation procedure is stopped. The
same procedure is repeated in order to generate the negative
patterns. Finally the generated patterns are:

Positive patterns : p+
1 = x2x̄5 with weight α

+
1 = 2/3 and p+

2

= x̄5 with weight α
+
2 = 1/3

Negative patterns : p−
1 = x̄5 with weight α

−
1 = 3/4 and p−

2

= x1 x5 with weight α
−
2 = 1/4

The interpretability power of LAD is obvious from the fact
that any user can now go back to the collected observations
and check the existence of these patterns and their coverage,
as well as their signs and their meanings. The hidden knowl-
edge discovery property is also obvious, since even in this
small example, a human mind will not discover these pat-
terns easily. This pattern discovery process is done by using
the software cbmLAD (Software 2012; Bennane and Yacout
2012). It took less than 1 second. Finally we note that the
MILP is a procedure for pattern generation and discovery
only. This means that LAD does not suppose any mathemat-
ical modeling of any relation between the variables.

The discriminant function that generates a score ranging
between -1 and 1 is as follow.

�(O) =
N+∑
i=1

α+
i P

+
i (O) −

N−∑
i=1

α−
i P

−
i (O)

=
(
2

3
p+
1 + 1

3
p+
2

)
−

(
3

4
p−
1 + 1

4
p−
2

)

For example, for a new observation (1,0,0,1,0), the discrimi-
nant function is�(O) = ( 2

3 (0) + 1
3 (0)

)−( 3
4 (1) + 1

4 (0)
) =

−0.75
The classification decision for this new observation is pre-

dicted to be the negative class.

Performance comparison

The ANN technique

ANN is the most famous and well known machine learning
technique. It has high efficiency on adaptation and learn-
ing. For these reasons, it’s used widely as modeling tool in
machining process (Benardos and Vosniakos 2002; Çaydaş
and Ekici 2012). An ANN is generally composed of three
types of layers: an input layer which accepts the input
attributes and has the number of neurons equal to the number
of attributes, hidden layers which have some number of neu-
rons, and an output layer that has one neuron. The number of
hidden layers and its neurons depend on the nonlinearity of
the model. All neurons in any layer are interconnected to the
neurons of the pre and after layers through weighted links
(Sharma et al. 2008).

The input variables which are controllable and monitored
uncontrollable, as well as the quality outcomes, that are
the delamination and the surface roughness are shown in
Fig. 3(A, B). We use four models. Model (A-1) has con-
trollable variables as inputs, namely cutting speed, feed,
tool overhang length, and cutting distance. The output is the
delamination which can be conforming or non-conforming
to specifications. Model (A-2) has controllable variables as
inputs, namely the cutting speed, feed, tool overhang length,
and cutting distance. The output is the surface roughness
which can be conforming or non-conforming. Model (B-1)
has themonitored uncontrollable variables, namely the forces
in three coordinates and themean temperature, as inputs. The
output is the delamination which can be conforming or non-
conforming. Model (B-2) has the monitored uncontrollable
variables, namely the forces in three coordinates and mean
temperature, as inputs. The output is the surface roughness
which can be conforming or non-conforming.

Unlike the LAD approach, the ANN is subjected to the
overfitting phenomenon. In order to find a good model, we
tried several ones and we retained the best (Russell et al.
1995). By the best, we mean that we choose the network
architecture that gives the highest prediction accuracy in the
validation test. This will be discussed in details in section
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Fig. 3 ANN models: a controllable variables model, b monitored uncontrollable variables model

“Process control system”. In this paper, we use the Weka
data mining software (Hall et al. 2009). For the delamina-
tion analysis, the proportion of conforming observation to
non-conforming is 12–96 which is, obviously, an unbalance
betweenminority andmajority classes. The SyntheticMinor-
ityOver-samplingTechnique (SMOT) is applied to rebalance
and alter the class distribution (Witten et al. 2011). SMOT
adjusted the relative frequency between two classes in the
data to 48 to 96. The same technique is applied for surface
roughness analysis to adjust the relative frequency from 6
to102 to 24 to102. For further reading about SMOT, we refer
the reader to (Chawla et al. 2011). Table 4 shows the best
obtained networks architecture.

The learning rate parameter takes a value between [0,1]
in order to determine the step size, and hence how quickly
the search converges. If it is either too large or too small,
the search may overshoot and miss the minimum entirely,
or slow the progress toward convergence. A momentum
parameter term takes a value between [0,1]. It’s used to
update the value of a new weight by small proportion which
leads to smooth searching process. The confusion matrix is(
G D+ − G
D− − H H

)
, where G is the total number of cor-

rectly classified positive observations, H is the total number
of correctly classified negative observations, and D+(D−)is
the number of positive (negative) observations.

Validation and comparison

The validation and the comparison between different tech-
niques often represent a challenge for machine learning
researchers (Wolpert 1996). Usually, two different learning
techniques used for the same problem, and their results, are
compared in order to decide which technique is better to use.

By calculating the accuracy, which is obtained from cross-
validation with several repetitions, the technique that has the
higher accuracy is retained. This procedure is quite suffi-
cient for comparison in many practical applications (Witten
et al. 2011). In (Hammer and Bonates 2006; Yacout 2010),
LADmethodology was compared to the best reported results
obtained by machine learning technique. The comparison
was performed on a number of well-known problems which
are conceived and kept in repositories in order to be used by
researchers. The comparison was favorable to LAD tech-
nique (Mortada et al. 2009). In this paper, two qualities,
namely the delamination and the surface roughness, are con-
sidered. For each one of the two qualities, the given specifi-
cations divide the outcomes space into two distinct spaces,
the space of conforming products (positive) and the space
of nonconforming products (negative). We also divide the
set O of the n observations into two sets of training, L, and
testing, T. In this paper we present the results obtained when
the training set is composed of (n−1) observations and the
testing is formed of the remaining observation. To calculate
the classification accuracy we repeated the training-testing
process n times, where each observation was chosen exactly
once to constitute the testing set. This training and testingpro-
cedure is known as leave-one-out (LOOC) cross validation
procedure, which is considered by many machine learning
references as the best validation procedure when the amount
of data for training and testing is limited (Witten and Frank
2011). LOOC is a special case of K-fold cross validation,
where (K=n), n is the total number of observations. This pro-
cedure is attractive for two reasons. First, the greatest pos-
sible amount of data is used for training, which presumably
increases the chance that the classifier is an accurate one. Sec-
ond, the procedure is deterministic, which means no random
sampling is performed. For example, if we divide the training
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Table 4 ANN architectures for the four models

The output Controllable variables modelling Monitoring variables modelling

Delamination Model (A-1) Model B-1)

(Hidden layers no, its neurons)=(1,7) (Hidden layers no, its neurons)=(1,5)

(Learning rate, momentum)=(0.3,0.2) (Learning rate, momentum)=(0.3,0.2)

Confusion matrix =
(
44 4
7 89

)
Confusion matrix =

(
38 10
20 76

)

Surface roughness Model (A-2) Model (B-2)

(Hidden layers no, its neurons)=(1,7) (Hidden layers no, its neurons) = (1,3)

(Learning rate, momentum)=(0.3,0.2) (Learning rate, momentum)=(0.4,0.1)

Confusion matrix =
(
21 3
3 99

)
Confusion matrix =

(
12 12
10 92

)

set to equal parts, 50% for learning and 50% for testing, we
omit 50% of limited number of observations from the learn-
ing process, which affects negatively this process. Moreover,
we will need a sampling strategy in order to choose 50% of
the observations. In this paper,we present the results obtained
when the training set is composed of (n−1) observations, and
the testing is formed on the remaining observation. The pro-
cedure is then repeated n times. Two measures of accuracy,
ACCURACY and the quality of classification, (ν) are used,
where

ν = a + b

2
+ e + g

4

The values (a) and (b) represent the proportion of observa-
tions, positive and negative, which are correctly classified.
The values (e) and (g) represent the proportion of observa-
tions, positive and negative, which are not classified. Another
measure is the ACCURACY = G+H

Nt , where G is the total
number of correctly classified positive observations, H is the
total number of correctly classified negative observations,
and Nt is the total number of observations in the testing set.
Table 5 shows the accuracy of the four models and the com-
parison between the accuracy of the ANN and the LAD tech-
niques.

In general, all statistical models are biased in one way or
another; therefore, the comparisons between learning algo-
rithms that are using different priors is meaningless (Wolpert
1996). Here, we compare between two different techniques,
the ANN and the LAD. LAD methodology was compared
to the most popular techniques of machine learning, such as
Support Vector Machine (SVM), and ANN (Hammer and
Bonates 2006; Yacout 2010). In general, if the comparison
shows that one of the algorithms has substantially high accu-
racy in comparison to the other, that algorithm should be used
(Wolpert 1996). Obviously, it can be seen that the accuracy
of LAD compares favorably with that of ANN.

Process control system

Our objective is to use the data presented in Table 1 in order to
train LAD to detect automatically and without human inter-
ference, the threshold values and characteristic patterns for
zones of machining conditions, that lead to acceptable qual-
ity, and those that lead to unacceptable quality. Although
LAD generates positive and negative patterns for each of the
four problems, in the following machining process control
we use only the positive patterns of Models (A-1) or (A-2),
and only the negative patterns generated for Models (B-1) or
(B-2). In order to reach this objective, the software cbmLAD
(Software 2012) is trained by using the data obtained from
the experimental results that are shown in Table 1. Table 6
shows the positive characteristic patterns for Models (A-1)
and (A-2), and the negative characteristic patterns forModels
(B-1) and (B-2), which are found by the software.

These generated patterns are used in the machining
process control. The generated positive patterns illustrate the
threshold boundaries for the controllable conditions that will
always lead to conforming (positive) parts. In our machining
process control, the negative patterns that are formed with
the uncontrollable variables are used to give an alarm indi-
cating that the machining process is beginning to produce
unacceptable products. For example, the generated negative
patterns (1) forModel (B-2) is Fx > 24.745. This means that
as long as Fx is higher than 24.745 the machined part will
be non-conforming to the required specification of surface
roughness. The same can be said for the negative pattern
(5), which is Fx < 14.91. These two constraints together
illustrate the boundaries for the zone of Fx which should be
avoided during themachining process.Aswehave explained,
cbmLAD identifies and characterizes these regions perfectly
and by using the lowest possible number of variables. To
avoid the zones which are defined by the negative patterns,
a simulated adaptive control loop is developed as shown in
Fig. 4. The generated patterns are incorporated in themachin-
ing process control which is shown in Fig. 4.
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Table 5 Accuracy of the ANN and the LAD techniques

Model Quality outcome ID ANN LAD

Accuracy ν Accuracy ν

Controllable variables Delamination A-1 0.92 0.92 0.95 0.96

Surface roughness A-2 0.95 0.92 0.96 0.94

Monitoring variables Delamination B-1 0.79 0.79 0.81 0.80

Surface roughness B-2 0.70 0.83 0.86 0.88

Table 6 The positive patterns obtained by LAD for Models (A-1) and (A-2), and the negative patterns obtained for Models (B-1) and (B-2)

Positive patterns
with controllable
models

Negative patterns
with uncontrollable
models

Pattern no. v rpm104 f (mm/min) Overhang
lengthmm

Cutting
distance
mm

Pattern no. Fx (N) Fy (N) Fz (N) Tmean(
◦C)

Model (A-1) Model (B-1)

1 <1.5 <375 <34.5 <48 1 >5.735 >11.465 >210.5

2 >3.5 <27.5 <48 2 <24.2 >5.735 <8.9

3 <2.5 >375,<750 <27.5 <48 3 >28.95 <10.845

4 >1.5, <2.5 <375 <27.5 >48 4 <28.24 >5.735 >6.16, <9.755 >268.5

5 >1.5, <3.5 >375, <750 <27.5 >80 5 <41.62 >19.185 >10.935

6 <2.5 <375 <27.5 >80

Model (A-2) Model (B-2)

1 >1.5 <375 <27.5 <48 1 >24.745

2 >2.5, <3.5 <375 <27.5 >80 2 <23.2 >5.735 >210.5

3 >1.5, <2.5 <375 <27.5 <80 3 >23.385, <24.505 >225.5

4 >1.5, <2.5 <750 <27.5 <48 4 <23.2 >3.43 >194.5

5 5 <14.91

The machining process control is an adaptive control loop
with an automatic adjustment of machining parameters, in
our case the feed and speed, in order to improve operation
productivity and part quality (Liang et al. 2004). Due to
machine design constraints and complexity of finding moni-
toring parameters constraints and thresholds, process control
loop is not commonly available in CNCs. Nevertheless, it
attracts many researchers due to its potential to significantly
improve operation productivity and part quality (Liang et al.
2004). In this paper, we assume that the machining process is
monitored through sensors. Sensor’s measurements are ana-
lyzed by the software cbmLAD in order to detect and iden-
tify the characteristic patterns; the patterns are obtained from
the experimental data. They are then used in order to build
the adaptive control loop. In Fig. 4, a schematic diagram
shows the machining process control. It starts by an off-line
pattern generation by using cbmLAD. The generated pat-
terns are transmitted to a “LAD On-line Decision Making”
unit. The on-line loop starts bymonitoring the uncontrollable

variables. At each second, and by comparing the uncontrol-
lable variables’ values to the negative characteristic patterns,
which are stored in “LAD On-line Decision Making” unit,
a decision is made to whether change the values of the con-
trollable values or to keep the current values. In the former
case, the information is sent to the “Process Controller “unit
in order to adjust the controllable variables to the nearest pos-
itive patterns’ zones. The adjusted variables are the inputs to
the actuator and the spindle drive.

In order to give a simulated example of the machining
process control for the delamination quality, a simulated
machining process control system is developed using lab-
VIEW 8.5 software (Elliott et al. 2007). For example, we
show in Fig. 5 the front panels of Models (B-1) and (A-1).
We use the negative patterns for the uncontrollable variables
of Model (B-1), and the positive patterns for the control-
lable variables of Model (A-1), as shown in Table 6. The
uncontrollable variables, which are the forces in three coor-
dinates (Fx,Fy,Fz) and the mean temperature Tmean, are
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monitored and their values are sent to “LAD On-line Deci-
sion Making” unit every second in order to compare them to
the stored negative patterns. A decision is then taken to either
change the values of the controllable operating conditions in
order to avoid the negative patterns’ zones, or to keep them
as they presently are. “LADOn-line DecisionMaking” gives
an alarm if the uncontrollable variables comply with one of
the negative patterns inModel (B-1). If the alarm is given, the
“Process Controller” selects one of the positive patterns in
Model (A-1). The selection of a positive pattern is guided by
the dynamics of themachining process. The newvalues of the
controllable variables are found in the selected positive pat-
terns, and are the inputs to the actuator and the spindle drive.
Adaptive control loop is looping at every second until “LAD
On-line Decision Making” alarm is off. Figure 6 shows the
flowchart for the process control.

In order to test the procedure that is described in the pre-
vious paragraph, a simulation model of the process control is
developed. We assume that the correlation between control-
lable variable (speed (v), feed ( f ), tool overhang length (TL),
and cut distance (C)) and the monitoring variables (forces in
three coordinates (Fx, Fy, Fz), mean temperature Tmean)
for milling the CFRP composite material is represented by
a simple multiple linear regression with a sample size (n) of
108. This assumption is only used in order to generate the
values of the uncontrollable forces; in real life these values
will be generated by the milling process itself, and they are

captured by the sensors. The equations obtained using Weka
data mining software were as follow:

Fx = −0.0012 v + 0.0402 f + 0.4033TL + 0.1913C

+ 20.1253

Fy = −0.0014 v + 0.0493 f + 0.5711TL + 0.0719C

+ 14.373

Fz = −0.0006 v + 0.0235 f + 14.9966

Tmean = 0.1952 f + 7.4782 TL + 1.0048C − 45.2817

Since tool overhang length cannot be changed on-line, it
was predefined and fixed before the simulation. According to
the positive patterns 2–6 inModel (A-1), tool overhang length
was restricted to less than 27.5.We chose an overhang length
of TL = 24, 25, 26, and 27mm, for our simulated example.
This means that only these five positive patterns of Model
(A-1) are available to the “Process Controller” in order to
control the machining process, since the first pattern can be
satisfied with TL higher than 27 as long as it is less than 34.5.
The cutting distance is also a predefined input which is set by
the user before starting the simulation, and has a predefined
value in the range of C ≤ 96mm during the simulation runs.
For testing the simulated process control, we run the sim-
ulation model at C = 24, 27, 30, . . . , 87, 90, 93 and 96mm
were performed. The total number of simulated runs are thus
are equal to 100. As an example, Table 7 shows the results of
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Fig. 5 On-line machining process control for delamination quality using LabVIEW
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how the iterations terminate by selecting one of the four pos-
itive patterns of Model (A-1). The elapsed time to find the
positive pattern depends on the initial conditions, the iner-
tia of CNC machine, and the number of positive patterns
that were generated off-line, in this example we have four
positive patterns. Run No 1 terminates after 13 seconds, by
finding the positive pattern number (5) in Model (A-1), and
run No 2 terminates in 4 seconds and found pattern num-
ber (4). In this work, we considered the iteration step as one
second.

Conclusions

In this paper, LAD is applied to high speed routing of CFRP,
and found the characteristic patterns that lead to conforming
products and those which lead to nonconforming products,
by exploiting the results obtained experimentally of a routing
process of CFRP. LAD accuracy is compared to that of ANN.
An on-line machining process control is developed by using
the patterns that were found off-line. A simulated machining
process control is implemented by using the experimental
results, andLabVIEWsoftware.The simulationmodel shows
how LAD is used to control the routing process by tuning
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Table 7 Two runs of the simulated process control using LabVIEW

Run no Time (s) Controllable machining conditions Uncontrollable (monitored) Pattern

Overhang length mm Cutting distance mm v rpm104 f (mm/min) Fx (N) Fy (N) Fz (N) Tmean (◦C)

Run no 1 1 24 96 1.5000 450.00 48.25 36.16 16.57 318.40 Negative patterns

2 24 96 2.6365 569.68 39.43 26.15 12.56 341.74

3 24 96 1.5916 641.84 54.87 44.34 20.53 355.81

4 24 96 2.3785 413.33 36.24 22.06 10.43 311.25

5 24 96 3.0121 731.22 41.41 28.86 14.10 373.24

6 24 96 2.7314 603.44 39.64 26.49 12.78 348.32

7 24 96 2.1548 401.43 38.44 24.60 11.50 308.93

8 24 96 3.0710 517.75 32.13 17.51 8.73 331.61

9 24 96 1.9894 405.74 40.60 27.13 12.59 309.77

10 24 96 2.8787 554.72 35.92 22.02 10.76 338.82

11 24 96 3.3952 580.74 30.77 16.079 8.27 343.90

12 24 96 2.3776 482.74 39.04 25.49 12.07 324.79

13 24 96 3.2530 443.47 26.96 11.30 5.89 317.13 Pattern 5 (positive)

14 24 96 3.2530 443.47 26.96 11.30 5.89 317.13

Run no 2 1 24 75 1.5000 450.00 44.22 34.65 16.57 297.18 Negative patterns

2 24 75 2.1888 327.78 31.04 18.98 9.57 273.35

3 24 75 1.9682 335.56 34.00 22.45 11.07 274.87

4 24 75 2.4661 259.35 24.96 11.72 6.29 260.01 Pattern 4 (positive)

5 24 75 2.4661 259.35 24.96 11.72 6.29 260.01

autonomously the routing conditions in order to always return
to the machining zones defined by the positive patterns.

For the areas of further research, we are presently working
on incorporating themachining process control in a real com-
puter numerical control (CNC) machine. The learning phase
will be done off-line by cbmLAD based on data obtained
from sensors which are mounted to the CNC machine. At
each unit of time, a new sensors’ reading is transmitted to
the unit “LAD On-line Decision Making”. This latter works
on-line in order to give and alarm each time a negative pattern
of the uncontrollable variables is detected. The unit “Process
Controller” searches on-line for a positive pattern of the con-
trollable variables, then a decision to change the values of
the controllable values or to keep the current values is taken.
In the latter case, the actuator and the spindle execute the
“Process Controller’s” command. We are also working on
studying the effects of initiating the alarm based on the dis-
criminant function of the new observation instead of on only
the appearance of a negative pattern.
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