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Abstract Working status of cutting tools (CTs) is crucial to
the products’ precision. If broken down, it may lead to waste
product. Condition monitoring and life prediction are bene-
ficial to the manufacturing process. In this research, Logistic
regression models (LRMs) and acoustic emission (AE) signal
are used to evaluate reliability. Based on different conditions
estimation, CTs are investigated to determine the best main-
tenance time. Based on experimental data analysis, AE and
cutting force signals have better linear relationship with CT
wearing process. They can be used to demonstrate CT degra-
dation process. Frequency band energy is determined as char-
acteristic vector for AE signal using wavelet packet decom-
position. Two reliability estimation models are constructed
based on cutting force and AE signals. One uses both signals,
while the other uses only AE signal. The reliability degree
can be estimated using the two models, independently. AE
feature extraction and LRM can effectively estimate CT con-
ditions. As it is difficult to monitor cutting force in a practical
working condition, it is an effective method for CT reliabil-
ity analysis by the combination of AE and LRM method.
Experimental investigation is used to verify the effectiveness
of this method.
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Introduction

Equipment performance degradation assessment and remain-
ing useful life (RUL) prediction are of importance in
condition-based maintenance to lower cost, improve reliabil-
ity, and reduce maintenance cost. Thus, it becomes an impor-
tant research area for machine fault diagnosis and prognostic
analysis (Heng et al. 2009; Jardine et al. 2006). Cutting tools
(CTs) are an important equipment during machining (Kious
et al. 2010), which has close relationship with precision of
products. Its reliability influences the total manufacturing
effectiveness and stability of machine tools. CTs have been
broadly applied on manufacturing area, such as impeller pro-
duction shown as Fig. 1, diesel engine cylinder head produc-
tion, and so on. In the most circumstance, degradation is the
main failure for CT. It will lead to the waste product if CT is
failure for blade production. As well, CT condition is closely
related to machine’s efficiency and productivity. Therefore,
CT condition reliability analysis is important. As well, how
to predict a CT’s RUL is also beneficial as it is helpful for
predictive maintenance.

As an important concern during production, reliability
analysis has been investigated by many researchers (Ding
et al. 2009). Traditional reliability estimation method is
based on the statistic analysis from huge amount of experi-
ments (Zio 2009). Among them, statistic distribution mod-
els have been used in this area, such as normal distribu-
tion and Weibull distribution. This kind of method depends
on plentiful historical data from related equipments. It has
good performance if the monitored data are sufficient in their
amount for analysis. Small samples are not suitable to relia-
bility analysis for now. As well, the defect of above models
are also typical as they are less of monitored data and not
suitable to single CT reliability estimation. Therefore, fur-
ther investigation should be carried on for small samples
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Fig. 1 Milling impeller in five-axis machining center

analysis. The key information of CT prediction can be
determined from monitored data. Logistic regression model
(LRM) is a nonlinear statistic method. It was initially applied
on population estimation and prediction. It also applied on
risk analysis for medicine (Bender and Kuss 2010), bank
(Martin 1977), and so on. In recent years, researchers apply
LRM on machine reliability estimation and life prediction
(Yan et al. 2004; Yan and Lee 2005; Caesarendra et al. 2010).
Yan Yan et al. (2004); Yan and Lee (2005) constructed degra-
dation model based on characteristic vector. As well, the
probability distribution is constructed by using LRM. Yan et
al. Yan et al. (2004) combined the LRM and ARMA models
for machine performance assessment and estimate RUL esti-
mation. Yan et al. Yan and Lee (2005) also presented a prog-
nostic method for on-line performance degradation assess-
ment and root cause classification using multiple logistic
regressions. Caesarendra et al. Caesarendra et al. (2010) com-
bined the LRM and relevance vector machine for machine
performance degradation assessment and failure time predic-
tion based on simulation and experimental data. Chen et al.
Chen et al. (2011b) constructed CT LRM by vibration charac-
teristic vector. This method can also be used on machine tools
failure estimation and reliability analysis. CT history data are
used to constructed LRM in this paper. It is also suitable to
CT reliability analysis. In this research, a new method for CT
operational condition classification estimation is developed
by combining LRM and acoustic emission (AE) signal analy-
sis. Wavelet packet feature extraction for AE signal is used
to determine the related parameter for reliability analysis as
well as LRM is used for estimation model construction. A
CT’s working or operational condition estimation is carried
out to verify the effectiveness of this method. The results
show that this method can benefit to the CT operational
condition estimation. This paper is structured as follows.
“Theory and method” section introduces theory of this
method. “Experiment” section presents CT failure exper-
iment. “Reliability evaluation” section provides the data

analysis by using this method. Concluding remarks are given
in “Conclusion” section.

Theory and method

Characteristic parameters

Condition monitoring is of vital importance in order to esti-
mate the tool wear.Cutting force is used on condition estima-
tion (Huang et al. 2007; Sharma and Sharma 2007; Jemiel-
niak and Kwiatkowski 1998) as it is directly related to wear-
ing process. Some researchers pay more attention on vibra-
tion signal to estimate CT conditions (D. E. Dimla S, 2002;
Alonso and Salgado 2008). Our research aims to retrieve suf-
ficient monitoring information of CT wear condition. It bene-
fits cost reduction, implementation feasibility, and so on. The
precision of wearing capacity obtained through directly mea-
suring CT is high but affects the production. It is also not easy
to implement the on-the-fly measurement of wearing capac-
ity of CT in the actual production. Therefore, the research
on indirect measuring method is necessary, and the perfor-
mance degradation of CT wear is analyzed by measuring its
relationship for milling force, vibration signal, AE signal, etc.
To determine the best information for CT condition analysis,
investigation is conducted to obtain the related parameters
for condition analysis. Milling experimental data (Mill Data
Set 2007) come from BEST laboratory at the University of
California, Berkeley. In the cutting process, we record data
like CT wearing capacity VB , motor current, AE signal, and
vibration signal. The motor speed is: 826r/min. The milling
experiment refers to three variables, i.e. cutting depth, feed
rate, and cutting materials in eight different working condi-
tions. Correlation analysis is investigated to observe whether
there is some kind of interdependence relationship between
any two phenomena so as to explore the direction and degree
of correlation with the phenomenon of dependency relation-
ship, if any. Statistical method is used to study the correlation
between random variables. The calculation formula for cor-
relation coefficient of two variables, i.e., x and y, is shown
as Eq. (1).

ρ(x, y) = �(x − x)(y − y)
√

�(x − x)2
√

�(y − y)2
(1)

Larger ρ(x, y) implies closer correlation between x and y.
Table 1 provides cutting parameters under four working con-
ditions. Through separately calculating the correlation coef-
ficient for effective values of AE signal, effective value of
vibration signal and wearing capacity under different work-
ing conditions, the results are shown in Tables 2 and 3. It can
be concluded that the characteristics of AE signal have bet-
ter relationship with the average wearing capacity no matter
the testing position is on the workbench or principle axis. It
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Table 1 Cutting parameters under different working conditions

Conditions Cutting depth Feed speed Material
(mm) (mm/r)

1 1.5 0.25 Cast iron

2 1.5 0.5 J45 stainless steel

3 0.75 0.5 Cast iron

4 0.75 0.25 J45 stainless steel

Table 2 Correlation coefficients for AE with tool wear

Conditions RMS of workbench RMS of principal axis

1 0.9385 0.9030

2 0.8739 0.8919

3 0.7105 0.7688

4 0.8591 0.9393

Table 3 Correlation coefficients for vibration with tool wear

Conditions RMS of workbench RMS of principal axis

1 −0.5685 −0.7779

2 −0.8815 −0.0923

3 −0.8210 −0.7759

4 −0.8370 0.8363

is also in a positive correlation with the average correlation
coefficient of 0.8606 according to Table 2. It is much better
compared with vibration signal as there is any clear rela-
tionship to CT wearing. Vibration signal has low frequency
compared with AE signal. Because the wearing condition for
the cutting tool is with high frequency, AE can effectively
show the wearing characteristics and is more convenient for
condition monitoring. The positive and negative correlations
between vibration characteristics and wearing capacity are
different as the developing trend is on the contrary. How-
ever, the numerical difference is larger. Based on the results,
it can be proposed that, as for the method to monitor the per-
formance degradation of CT in the milling process, the effect
of AE signal is better than that of vibration signal. Moreover,
the consistent and high correlation shows the stability of AE
signal monitoring method. Thus, AE signal is used as an
indicator to evaluate the reliability of CT.

Wavelet packet energy

Nowadays, wavelet transformation has been intensively
investigated and applied on signal processing, especially on
vibration signal feature extraction (Peng and Chu 2004; Liu
2005; Zhu et al. 2009). It can effectively filter noise and pre-
serve signal feature. Different frequency bands can be deter-
mined for low frequency by different scales. Further analy-

sis can be used for the decomposed signals. But it doesn’t
preserve high resolution for high frequency signal analysis.
Wavelet packet is developed from wavelet, which has good
performance on both high and low frequency analysis. By
setting finite signal scale-space U 0

0 , it can be decomposed
into multi-space through wavelet transformation by binary
system. Its iterative process can be expressed by Eq. (2),

Uk
j+1 = U 2k

j ⊕U 2k+1
k , j ∈ Z , k ∈ Z+ (2)

where, j ( j ≥ 0) is the level for decomposition, ⊕ is the
orthogonal decomposition, Z denotes the domain of integers,
and Z+ denotes the domain of positive integers. Uk

j+1 ,U 2k
j ,

and U 2k+1
k are three parameters corresponding to ψn(t),

ψ2n(t), and ψ2n+1(t). ψn(t) is expressed by Eqs. (3) and
(4).

ψ2n(t) = √
2
∑

k∈Z
h(k)ψn(2t − k) (3)

ψ2n+1(t) = √
2
∑

k∈Z
g(k)ψn(2t − k) (4)

When n = 0, ψ0(t) and ψ1(t) correspond to mother
wavelet functions. In the meanwhile, h(k) and g(k) corre-
spond to quadrature mirror filters associated with the scaling
function and the mother wavelet function φ(t), respectively.
With sub-signal at Un−1

j , the nth subspace of j th level can
be reconstructed by a linear combination of wavelet packet
function ψ

j,n
k (t) reconstructed shown as Eq. (5),

snj (t) =
∑

k∈Z
D j,n
k ψ

j,n
k (t)k ∈ Z (5)

where, D j,n
k is wavelet packet coefficient and can be deter-

mined by Eq. (6).

D j,n
k =

+∞∫

−∞
f (t)ψ j,n

k (t)dt (6)

The frequency band of energy sub-signal snj (t) can be
calculated.

En =
∑

k

|D j,n
k |2 (7)

The normalization energy is shown as Eq. (8).

E = En
/∑

n

En (8)

Logistic regressive model (LRM)

Neural networks have been used on reliability analysis for
CT (Xiaoyu and Wen 2008; Venkatesh and Mengchu 1997;
Sukhomay and Heyns 2009). Fuzzy clustering is also further
investigated on condition estimation (Wang and Wlofhard
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1996). Compared with neural networks, LRM is more con-
venient for analysis. It is a nonlinear regressive mode and usu-
ally used on two-variables condition and to find the best suit-
able fitting model to describe two-characteristic relationships
(Peng et al. 2002). Chen provides more introduction about
this method (Chen et al. 2011a). It is useful for this method
to be applied on practical CT analysis. Given that the feature
vector of tool degradation is X (t) = [x1(t), x2(t), . . . xn(t)]
as an independent variable, each element of X (t) represents
a characteristic index of tool degradation. It corresponds to
a covariance for input vector and can be the characteristic
vectors determined by feature extraction. In an LRM, the
output dependence variable is the probability of event. Tool
conditions y1, y2, . . . yn are valued at binary classified vari-
ables i.e.,0 or 1, the subscript represents testing time, and
y represents a dependence variable of the LRM. Therefore,
the output is a discrete time series. The reliability estimation
model can be written as Eq. (9).

R(t) = P(yt = 1|X (t))

= exp(β0 + β1x1 + · · · + βnxn)

1 + exp(β0 + β1x1 + · · · + βnxn)
(9)

where, β = (β0, β1, . . . βn) is the model parameter vector
and β0 > 0 The output R(t) is the degree of reliability for
machine reliability with time variable t . When a machine
works in a normal condition, the result will be 1 for Eq. (9).
The occurrence ratio can be defined as Eq. (10).

Odds(P) = P(yt = 1|X (t))

1 − P(yt = 1|X (t))
= exp(β0 + β1x1 + · · · + βnxn) (10)

log i t (y) is the log transform for occur ratio Odds(P). It
can be determined by Eq. (11).

log i t (y) = ln
P(yt = 1|X (t))

1 − P(yt = 1|X (t))
= β0 + β1x1 + · · · + βnxn = βXt (11)

The estimated value of the parameters β =(β0, β1, . . . βn)

can be estimated by the maximum likelihood estimation
(MLE) function, and the numerical calculation is required
in its solving process. Therefore, LRM can be constructed
for reliability analysis.

ln[L(β)] =
∑

t

yt (βX (t)) − ln[1 + exp(βX (t))] (12)

The model coefficients β0, β1, . . . , andβm reflect the
changes of advantage ratio. βi > 0, the occurrence ratio
increases with the increase of independent variables i.e., char-
acteristic index, and vice versa. βi = 0 means that indepen-
dent variables have no effect in this model, same as 0. Based
on the parameter estimation, the reliability can be obtained
by Eq. (13). At the same time, the 0.95 confidence interval

Feature extraction 

AE, milling force, tool wear level 

Life cycle experiment for CT 

AE and milling force AE Vector 

Estimation model 1 

Model construction 

CT condition monitoring Estimation Model 1

Estimation Model 2

Estimation model 2 

Model 2 is determined for practical analysis 

Model verification 

Fig. 2 Flow chart of CT reliability evaluation

can also be calculated as Eq. (14). var(β̂X (t)) is the vari-
ance of model parameters. Therefore, it can be further used
for operational reliability analysis (Zhu et al. 2009).

R(t) = P(yt = 1|X (t)) = exp(β̂X (t))

1 + exp(β̂X (t))
(13)

[
exp(β̂X (t) − 1.96

√
var(β̂X (t)))

1 + exp(β̂X (t) − 1.96
√

var(β̂X (t)))
,

exp(β̂X (t) + 1.96
√

var(β̂X (t)))

1 + exp(β̂X (t) + 1.96
√

var(β̂X (t)))

]

(14)

Flow chart for implementation method

In this paper, the AE characteristics and the LRM are applied
to the reliability evaluation of CT, and its method process is
shown in Fig. 2. There are mainly two parts,i.e., modeling
and model verification. The first step is a CT experiment,
where the milling parameters are selected to make a tool life-
cycle test. AE and milling force signals are collected in the
milling process to evaluate the wearing capacity of CT. The
second step is feature extraction and modeling, i.e., AE and
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milling force signals are analyzed based on feature extrac-
tion. Wavelet packet energy of cutting force and AE signals
with different frequency bands are selected as the input vari-
ables for regression model. Combined with CT condition,
the model parameters can be estimated and Model 1 can be
constructed. After correlation analysis, it is concluded that
cutting force and AE characteristics have larger correlation,
and the wavelet packet energy of AE signals with different
frequency bands are selected as the input variables to estab-
lish Model 2. In the end, model test and contrast are executed.
An example for CT analysis is investigated in this research
to verify the effectiveness of the method.

Experiment

Milling test

The milling experiment has been made on Dongyu Machine
and Tool CMV-850A machining center. The materials are
FV520B. APOLL550 portable industrial personal computer
and PAC AEwin data acquisition software are used for the
data acquisition of AE signals. The dynamometer is YDX
97-type three-dimensional milling force test platform from
the School of Mechanical Engineering, Dalian University
of Technology. The acquisition and installation of cutting
forces are shown in Fig. 3. Schematic diagram for the exper-
iment is shown in Fig. 4. In the experiment, tool life-cycle
experiments are made for 4 milling cutters by inspecting the
wearing capacity of CT. When the wearing capacity of flank
surface VB > 0.6mm, it is deemed as tool failure. In order to
reduce the influence of other factors on the AE signals, the
same cutting parameters are selected in the experiments of
four CTs. Rotating speed is 1000r/min, cutting depth is 0.4
mm, and feed rate is 400 mm/min. Figure 5 provides differ-

Fig. 3 The installation of dynamometer

ent milling cutters among which one is in normal condition
while the other is in failure condition.

Figures 6 and 7 show time and frequency domain analysis
for cutting force under different working conditions. Fig-
ure 6 is the cutting force for normal condition and Fig. 7 is
cutting force in the failure condition. It is obvious that cutting
force increases with wearing stage as the CT is not sharp. It
will increase force for cutting process. At the same time, its
high frequency band energy also increases with wearing stage
because the wearing process will lead to disperse of energy
distribution. Energy will move to high frequency as for the
wearing condition. Therefore, it can be used as an effective
parameter for CT condition analysis. Figures 8 and 9 show
time and frequency domain analysis for the AE signals. Fig-
ure 8 shows time-domain signal and frequency spectrum of
AE signals at the initial stage of tool cutting, where a CT is
in a good condition. Figure 9 shows a CT is seriously worn.
During wearing condition, milling force increases if CT is
not sharp. It leads to much energy increment during milling
process. Therefore, AE energy will also increase with the
wearing condition. It can also be seen from the frequency
spectrum that the energy is widely distributed at the early
stage of tool cutting with less amplitude, while the energy
concentrates in low-frequency band at the late stage with
more amplitude.

Reliability evaluation

Feature extraction

Regardless of the emergency, tool wearing should be a
degradation process, similar to the wear process of most of
mechanical parts, and is an irreversible process. The actual
degradation process of CT should be a monotonous process,
difficult to be obtained in the actual production. The CT
degradation process can be observed only through indirect
methods. According to the method in “Characteristic para-
meters” section, AE signals are processed. Due to high fre-
quency of AE signal, the decomposition layer is selected as
6, so that the original signal is decomposed into 64 frequency
bands. The normalized wavelet energy spectrum of 64 fre-
quency bands is extracted. Figure 10 shows the contrast of
normalized wavelet energy spectrum of the first 20 frequency
bands in the severe wear at the initial stage and late stage of a
milling test. It can be seen that the numerical values are very
small and have obvious change after frequency band 13. Fre-
quency bands 1 and 2 have larger energy, no matter at the
initial stage of wear or at the stage of severe wear condition.
Frequency band 2 is always the one having the maximum
energy. In addition, it can be seen that frequency band 7 has
higher energy spectrum value than those of other frequency
bands with lower energy at the initial stage of wear and tear.
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Fig. 4 Schematic diagram for
the experiment

Computer 

DAQ Car Charge Amplifier 

Spindle 

Cutting tool 

Workpiece 

Dynamometer 

Table 

Fig. 5 CT in different
conditions a normal condition
and b failure condition

Fig. 6 Time and frequency spectrum of the milling force signal under
normal condition

Figure 10 is a trend chart for energy change of wavelet packet
of frequency bands 2 and 7 of AE signal in the cutting process.

A cutting force test is one of the frequently used meth-
ods to monitor tool condition in the milling process. With
the increase of tool wear, the cutting edge is passive and
inevitably leads to the change of cutting force. As there are
many reasons affecting the milling process, the milling force
is not stable especially with wearing condition increment.
But both of them have a larger correlation. In many compo-

Fig. 7 Time and frequency spectrum of the milling force signal under
failure condition

nents of cutting force, the influence of tool wear on the radial
force is obvious. Figure 11 is a time-dependent trend chart
for average value of radial cutting force of CT. Anyhow, the
cutting force increases with the CT wear despite some fluc-
tuation. It is mainly related to some factors such as material
properties, built-up edge and measurement error cumulated
in the cutting process. But the influence on the overall up
trend of cutting force is small shown in Fig. 12.
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Fig. 8 Time domain and frequency spectrum of the AE signal under
normal condition

Fig. 9 Time domain and frequency spectrum of the AE signal under
failure condition
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Fig. 10 Wavelet energy in different frequency band for preliminary
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Correlation coefficients of cutting force and normalized
wavelet packet energy of frequency bands 2 and 7 are cal-
culated independently. ρ(F, E2) = 0.900, ρ(F, E2) =
−0.895, and the energy and cutting force of frequency band
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Fig. 11 Trend of wavelet power spectrum in the 2nd and 7th frequency
bands
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Fig. 12 Trend of cutting force

Fig. 13 Cutting force relationship with different AE signal frequency
bands

2 are in the positive linear correlation, and frequency band
7 is in the negative linear correlation. Frequency band 7 has
higher correlation based on the comparison shown in Fig. 13.
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Table 4 Coefficient estimates of logistic regression model

Parameters Model 1 Model 2

β0 36.74 11.30

β1 −160.0 −18.17

β2 −4.49 76.70

β3 91.46 –

Reliability estimation

The characteristic indie sequence extracted from test data of
Nos. 1 to 3 CT are used for modeling. No. 4 CT is used for
testing the validity of the model. Three characteristic indexes,
i.e., cutting force, normalized wavelet packet energy of fre-
quency bands 2 and 7 constitute input variables of the LRM,
namely, A1 = x1, x2, x3 = F, E2, E7. It is also expressed as
Model 1. From the previous section it can be known that cut-
ting force F is highly correlated with E2,E7 of AE character-
istics. It also means that input variables of Model 1 have infor-
mation redundancy. Therefore, cutting force F is removed
from feature vectors. In the end, input variables correspond-
ing to the new model are: A2 = x1, x2 = E2, E7, expressed
as Model 2. The CT condition in the cutting process ( y = 1
means that CT is in the normal condition) and the corre-
sponding characteristic index sequence are input into SAS
software respectively to estimate the parameters of Models 1
and 2. The coefficients of the CT LRM are shown in Table 4.
In the output results of SAS, the overall inspection shows
that these two models have a similar statistical significance,
their values are less than 0.001. The results for an information
criterion, standard criterion, and −2 ln L are basically equal
for Models 1 and 2, namely, 619.2, 629.7 and 613.2 respec-
tively. In addition, Score statistics of Model 1 is 215.95, better
than 204.22 that of Model 2. Therefore, the goodness-of-fit
of Model 1 is better than Model 2. The estimated reliability
model is also shown as Eqs. 15 and 16, respectively.

log i t (y)1 = 36.74 − 160.0F − 4.49E2 + 91.46E7 (15)

log i t (y)2 = 11.30 − 18.17E2 + 76.70E7 (16)

After model parameters β0, β1, . . . βm are obtained, the
characteristic indices of No. 4 CT at different time are sub-
stituted into Eqs. 15 and 16, to calculate the change of relia-
bility in the tool cutting process. Figure 14 shows the results
of reliability evaluation and confidence index (CI) can be
obtained based on the two models. In an LRM, 0-1 variables
are used as explained variables, so that the threshold value
of reliability failure is 0.50 (Chen et al. 2011b). The failure
time of Model 1 is estimated to be 39.3 min, and that of
Model 2 is estimated to be 39 min. The tool failure (wearing
capacity of blade flank surface is more than 0.6 mm) time is
tested to be 40.5 min as this experiment belongs to the one
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Fig. 14 Evaluation curve of CT reliability

of accelerating destruction. The errors of above two mod-
els are 0.0296 and 0.037, respectively. From the results, the
estimated results of two models are relatively accurate. As
well, the accuracy of Model 1 is better than Model 2. But
there is a little difference between Models 2 and 1, showing
that two methods to monitor tool wear, namely, cutting force,
and AE signal are effective. Based on the above analysis, cut-
ting force is better for condition monitoring and reliability
estimation.

At present, the cutting force measurement is only used
in the experimental study. But it is hard to be applied to
the actual production for CT condition monitoring. During
cutting and processing, restricted by acquisition hardware,
installation, environmental conditions, it is difficult to obtain
accurate cutting force, and is harder to popularize the use of
dynamometer in the large-scale automated production. The
method for reliability evaluation of CT based on AE signal
is better. There is a close relationship with AE signal for
cutting force though it is not as good as cutting force. But it
is convenient to monitor. Therefore, Model 2 can be selected
for practical application investigation in the future. A system
is also investigated based on this method for CT condition
monitoring and reliability analysis to ensure the quality of
product.

Conclusion

This paper studies the condition monitoring based on the
milling process and the method for operation reliability eval-
uation. The AE characteristics have a larger correlation with
tool wear. AE signal has great correlation with wavelet packet
energy and cutting force in some frequency bands. A more
accurate results can be obtained through using cutting force
and AE characteristics in the CT reliability evaluation. The
method to combine AE characteristics with the LRM can
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also be used for accurate CT reliability evaluation. Under the
condition that the actual cutting force is difficulty to obtain,
the CT reliability evaluation model based on AE is more
practical.
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