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Abstract This paper presents a new robust optimization
method for supply chain network design problem by employ-
ing variable possibility distributions. Due to the variability
of market conditions and demands, there exist some impre-
ciseness and ambiguousness in developing procurement and
distribution plans. The proposed optimization method incor-
porates the uncertainties encountered in the manufacturing
industry. The main motivation for building this optimization
model is to make tools available for producers to develop
robust supply chain network design. The modeling approach
selected is a fuzzy value-at-risk (VaR) optimization model,
in which the uncertain demands and transportation costs
are characterized by variable possibility distributions. The
variable possibility distributions are obtained by using the
methodof possibility critical value reduction to the secondary
possibility distributions of uncertain demands and costs.
We also discuss the equivalent parametric representation of
credibility constraints and VaR objective function. Further-
more, we take the advantage of structural characteristics of
the equivalent optimization model to design a parameter-
based domain decomposition method. Using the proposed
method, the original optimization problem is decomposed to
two equivalent mixed-integer parametric programming sub-
models so that we can solve the original optimization prob-
lem indirectly by solving its sub-models. Finally, we present
an application example about a food processing company
with four suppliers, five plants, five distribution centers and
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five customer zones. We formulate our application example
as parametric optimization models and conduct our numer-
ical experiments in the cases when the input data (demands
and costs) are deterministic, have fixed possibility distribu-
tions and have variable possibility distributions. Experimen-
tal results show that our parametric optimization method can
provide an effective and flexible way for decision makers to
design a supply chain network.

Keywords Supply chain network design · Value-at-risk ·
Variable possibility distribution · Parameter decomposition
method

Introduction

The supply chain is composed of some business entities,
mainly including suppliers, plants, distribution centers and
customers, whose functions are to acquire raw materials,
convert them to finished products, and distribute these prod-
ucts to customers. The supply chain network design seeks to
determine the configuration of supply chain networkwith the
objective of minimizing the total costs while satisfying ser-
vice levels. As an overall research issue, supply chain plan
usually involves several levels of hierarchical decisions to
improve its performance. The strategic level supply chain
plan involves deciding the configuration of the network, i.e.,
the number, location, capacity and technology of the facili-
ties. The tactical level supply chain plan consists of decid-
ing the aggregate quantities and material flows for purchas-
ing, processing, and distribution of products. The operational
level supply chain plan includes fulfilling the demands of the
customers.

The supply chain network design problem can be thought
as an extension of facility location problem. The facility loca-
tion problem is composed of a set of potential facility sites
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where a facility can be opened and a set of demand points that
must be serviced, and its goal is to determine which subset of
facilities to open so as to minimize the total costs of delivery
of goods to the customers plus the opening costs of facili-
ties (Gülpınar et al. 2013). This statement establishes clearly
a link between facility location and strategic supply chain
network design, though typically no location decisions are
made on the tactical or even operational level supply chain
plan. Melo et al. (2009) gave a literature review of facility
location models in the context of supply chain management.
Different from core facility location models, there exist sev-
eral different types of facilities in supply chain network, and
each type plays a specific role, such as production and ware-
housing, and a natural product flow among them. Each set of
facilities with the same type function is usually denoted by a
layer or an echelon, i.e., the supply chain network includes
some hierarchies of facilities. Therefore, the facility loca-
tion model has been very helpful as a basis for building a
comprehensive supply chain design model.

The supply chain network design problem has been
addressed by different methods in the literature. The effect of
strategic decisions has lasted for several years, during which
the parameters of the business environment (e.g. demands
and transportation costs)may change.As shown in the related
literature (Efendigil and Önüt 2012; Taleizadeh et al. 2013),
all the strategic, tactical and operational decisions should
be made under uncertainty, which will result in more real-
istic supply chain network design models. So far, stochas-
tic approach, fuzzy technique, and robust optimization have
been developed for supply chain network design problems
under uncertainty. However, there is little research for mod-
eling and designing fuzzy supply chain network problem by
parametric optimization method, which provides us a strong
motivation to study in this active research area. On the basis
of fuzzy possibility theory (Liu and Liu 2010), we develop
a fuzzy VaR optimization model that combines facility loca-
tion and decisions on distribution of those products to mul-
tiple customer zones, in which the uncertain demands and
transportation costs are characterized by variable possibility
distributions. An application example about a food process-
ing company is provided to illustrate our parametric opti-
mization method.

The remainder of this paper is organized as follows. “Lit-
erature review” section gives an overview of related works.
“Proposed approach” section states our new robust optimiza-
tion method and major contributions. “Formulation of sup-
ply chain network design problem” section develops a new
risk-averse fuzzy optimization model for the supply chain
network design problem. “Parameter-based domain decom-
position method” section deals with the equivalent paramet-
ric programming models of the original supply chain opti-
mization model, and designs the parameter-based domain
decomposition method by the structural characteristics of

the parametric programming models. “An application exam-
ple and comparison study” section provides one application
example to illustrate our new robust parametric optimization
ideas. Some managerial implications are also derived from
the experimental results in this section. The conclusions are
summarized in the last section.

Literature review

Deterministic supply chain network design

Since Geoffrion and Graves (1974) proposed the seminal
work on designing single period multi-commodity distribu-
tion system, some interesting optimization-based approaches
have been developed for the design of supply chain networks.
Bachlaus et al. (2008) presented a multi-objective optimiza-
tion model that aimed to minimize the cost and maximize the
plant flexibility and volume flexibility for a five-echelon sup-
ply chains. Srivastava (2008) combined descriptivemodeling
with optimization techniques to provide an integrated holis-
tic conceptual framework and detailed solutions for network
configuration and design. Zhang andZhou (2011) established
nonlinear complementarity formulations for the supply chain
network equilibriummodels and solved them by the smooth-
ing Newton algorithm. Cheshmehgaz et al. (2013) formu-
lated a three-level logistic networks as the multiple crite-
ria decision making problem, and designed a Pareto-based
multi-objective evolutionary algorithm to find the compro-
mise solutions. For the recent development of supply chain
network problem, the interested reader may refer to (Chan-
dra and Grabis 2007; Dong et al. 2012; Fujita et al. 2013; Li
and Womer 2012).

Uncertain supply chain network design

Supply chain network design problems have found a breadth
of application areas while maintaining a basic assumption
of deterministic conditions, i.e., the critical parameters like
demands and transportation costs are assumed to be known in
advance. However, for these application-oriented problems,
the validity of this assumption may be questionable. In many
real-life applications, one or more of the problem parameters
are usually not known for certain. In some cases, these uncer-
tain parameters in supply chain network design are modeled
as random variables with known probability distributions.
Cohen and Lee (1988) presented a comprehensive supply
chain model by four stochastic sub-models, and a heuris-
tic procedure was introduced for the optimal solution when
these sub-models were integrated. Georgiadis and Athana-
siou (2013) employed a simulation-based system dynamics
optimization approach to studying the system’s response in
terms of transient flows, actual/desired capacity level, capac-
ity expansions/contractions and total supply chain profit in a
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closed-loop supply chainswith two sequential product-types.
Kristianto et al. (2014) designed a reconfigurable supply
chain network by optimizing inventory allocation and trans-
portation routing, in which the transportation routing was
assumed to be stochastic in nature. Zhou andMin (2011) pro-
posed a non-linear mixed-integer programming model and
used the genetic algorithm to solve the stochastic network
design problem in a closed-loop supply chain. Some draw-
backs in using the stochastic approach to designing supply
chain networks have been analyzed in (Pishvaee et al. 2011).

With the development of fuzzy theory (Zadeh 1965, 1975,
1978), more and more scholars realized the existence of
fuzzy uncertainty in decision systems (Petrovic et al. 2008;
Tsao and Lu 2012; Jolai et al. 2011; Wong 2012; Kubat and
Yuce 2012). The inclusion of fuzzy uncertainty in the supply
chain network is a challenge issue in terms of modeling and
solution, and there is a growing interest in building models
and algorithms in the literature. Gumus et al. (2009) con-
sidered a three echelon supply chain network under demand
uncertainty, and applied the proposed integrated neuro-fuzzy
and mixed integer linear programming approach to the pro-
posed network design. Miller and John (2010) built a mul-
tiple echelon supply chain model based on interval type-2
fuzzy logic, and used the genetic algorithm to search for a
near-optimal plan for the model. Paksoy et al. (2012) built a
fuzzy multi-objective linear programmingmodel to integrate
the supply chain network of an edible vegetable oils manu-
facturer, and converted the original model into an ordinary
linear programming. Pishvaee and Razmi (2012) employed
multi-objective optimization method with the emphasis on
supply chain social responsibility and environmental con-
sciousness under uncertainty, and developed an interactive
fuzzy solution method. Fazlollahtabar et al. (2013) proposed
a fuzzymathematical programmingmodel for a supply chain,
and applied two ranking functions to their solution method.
Yang and Liu (2013) developed a mean-risk fuzzy supply
chain network designmodel, and solved it by hybridmemetic
algorithm incorporating the reduced variable neighborhood
search and approximation scheme. In the present paper, we
propose a fuzzy VaR optimization model for a supply chain
with multiple products, single period and four echelons: sup-
pliers, plants, distribution centers and customer zones. We
characterize the uncertain demands and transportation costs
byvariable possibility distributions,which lead to a newpara-
metric optimization method for supply chain network design
problems.

Robust supply chain network design

Robust optimization was first proposed by Soyster (1973)
for inexact linear programming problems. Ben-Tal and
Nemirovski (1998) and El-Ghaoui et al. (1998) extended the
work of Soyster (1973) for uncertain linear problems with

different convex uncertain sets, which put a significant step
forward in robust optimization theory. In the area of softworst
case robust optimization, Inuiguchi and Sakawa (1998) used
the min-max regret approach for fuzzy mathematical pro-
gramming, whose work was later followed by Kasperski and
Kulej (2009) and Nie et al. (2007). Bertsimas and Sim (2004)
proposed a less conservative worse case method based on
Soyster’s work. Mulvey et al. (1995) presented a more flexi-
ble robust optimizationmethod for scenario-based stochastic
programming models, which is usually categorised into real-
istic robust optimization.

In recent years, many authors applied the robust optimiza-
tion to real world problems, including inventory manage-
ment (Ben-Tal et al. 2009), capacity expansion plans (Chien
and Zheng 2012), portfolio selection (El-Ghaoui et al. 2003),
facility location (Gülpınar et al. 2013) and the supply chain
network design problems. Pan and Nagi (2010) formulated
a robust optimization model for an agile manufacturing sup-
ply chain under demand uncertainty, and designed a heuristic
to solve it based on the k-shortest path algorithm. In order
to handle the inherent uncertainty of input data, Pishvaee
et al. (2011) gave a robust optimization model in a closed-
loop supply chain network design problem, and assessed the
robustness of the solutions obtained by the proposed model
under different test problems.Hasani et al. (2012) presented a
general comprehensivemodel of strategic closed-loop supply
chain networkdesignbasedon an interval robust optimisation
technique. Baghalian et al. (2013) constructed a stochastic
formulation for designing a network of multi-product supply
chains based on reliability theory and robust optimization
concept, and created a transformation based on the piece-
wise linear method to solve the model to attain global opti-
mality. Baud-Lavigne et al. (2014) considered the problem of
finding the robust solutions for the joint product family and
supply chain design problem. Our work in the present paper
differs from the above mentioned robust studies because it
emphasizes the uncertain demands and transportation costs
have variable possibility distributions instead of fixed pos-
sibility distributions. The robustness in our paper refers to
the variable possibility distributions of uncertain demands
(costs). There are two types of parameters to describe our
variable possibility distributions. The first type parameters θ

describe the degrees of uncertainty that demands (costs) take
their values, while the second type parameters α represent
the possibility levels in the supports of uncertain demands
(costs). Given the first type parameters θ , the possibility dis-
tributions run over the supports of uncertain demands (costs)
as the parameters α vary in the unit interval [0, 1].

Proposed approach

In the present paper, we propose a new fuzzy optimization
model for supply chain network design problem, inwhich the
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demands and transportation costs are characterized by vari-
able possibility distributions. Based on risk-averse criterion,
we construct the objective function by using the value-at-risk
of the total costs. In addition, we model the requirements
of customers demands as credibility constraints to reflect
the service levels of supply chain. We obtain the paramet-
ric possibility distributions of uncertain demands and costs
via the method of possibility critical value (PCV) reduction,
and convert the original credibility-constrained optimization
problem into its equivalent parametric programmingmodels.
The major new contributions are offered as follows.

(i) We propose a new robust method to characterize uncer-
tain demands and costs included in the supply chain net-
work design problems by using variable possibility dis-
tributions instead of fixed possibility distributions. The
variable possibility distributions are obtained by using
the method of PCV reduction to the secondary possi-
bility distributions of uncertain demands and costs, and
characterized by two types of parameters.

(ii) On the basis of risk-averse criterion, we develop a new
fuzzy supply chain network design model with VaR
objective, in which the service quality of supply chain
is described by credibility levels. When the uncertain
demands and costs are mutually independent (i.e., the
joint possibility distribution of uncertain demands and
costs can be represented as the minimum of their mar-
ginal possibility distributions), we discuss the equiva-
lent representations of credibility constraints, and turn
the original supply chain optimization problem to its
equivalent parametric programming models, which can
be solved by the designed parameter-based domain
decomposition method.

(iii) We provide a practice-oriented case about a food
processing company to demonstrate the effectiveness of
the proposed optimizationmethod. Compared to several
related studies on this topic, the computational results
reported in the numerical experiments show the credi-
bility and superiority of the proposed parametric opti-
mization method. In our optimization method, decision
makers can select various values of parameters depend-
ing on their preference or attitude towards risk. What’s
more, some managerial insights are derived from the
experimental results.

Formulation of supply chain network design problem

Problem description and notations

The supply chain network design is the most basic deci-
sion of supply chain management, and it influences all other

decisions concerning a supply chain and has the most exten-
sive effect on the return and service levels of supply chain
(Baghalian et al. 2013). In a realistic supply chain, there are
various sources and types of uncertainty along the supply
chain network. For example, we usually cannot foretell pre-
cisely the demands of customers and transportation costs.
In such cases, the domain experts’ subjective opinions are
helpful to describe these uncertain parameters. As a conse-
quence, fuzzy supply chain design models have been devel-
oped in the literature, inwhich uncertain parameters are often
characterized by fixed possibility distributions or member-
ship functions. In this paper, we further address this issue by
robust parametric optimization approach. In our method, we
will characterize the uncertain demands and costs by variable
possibility distributions instead of fixed possibility distribu-
tions. The variable possibility distributions are obtained by
using the method of PCV reduction to the secondary pos-
sibility distributions of uncertain demands and costs. The
reduced fuzzy demands and costs have variable possibility
distributions with two types of parameters θ and α. When
the parameter α varies in the unit interval [0, 1], the variable
distribution distributions run over the supports of demands
and costs, so that the important information about demands
and costs cannot be lost. In the following, we will adopt this
robust modeling idea to characterize the uncertain parame-
ters included in fuzzy supply chain network design problems.
In “Appendix” of the paper, we provide detailed discussion
about the method of PCV reduction, parametric possibility
distributions of reduced fuzzy variables as well as their prop-
erties.

Let S, V, I, J, K andM be the sets of suppliers, rawmate-
rials, products, plants, distribution centers and customers,
respectively. In order to describe conveniently the supply
chain network design model, we collect the required para-
meters in Table 1.

According to the secondary possibility distributions of
uncertain coefficients d̃im, ξ̃vs j , ζ̃i jk, η̃ikm , we employ the
method of upper PCV reduction to obtain the upper reduced
fuzzy variables ξUvs j , ζUi jk and ηUikm , and use the method of
lower PCV reduction to get the lower reduced fuzzy vari-
able dL

im . For the sake of presentation, we denote x =
{xvs j , yi jk, zikm, u j , wk} and ξ = {ξUvs j , ζUi jk, ηUikm}.

The total costs of supply chain

The supply chain network design problem determines where
the facilities (e.g. plants, distribution centers) should be
located for the least total costs. The total costs usually include
the following four parts: fixed cost, procurement cost, pro-
duction cost and transhipment cost.

Fixed cost arises when a plant or a distribution center at
the potential location is opened, which is independent of the
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Table 1 List of notations

Notations Definitions

P Maximum number of opened plants

Q Maximum number of opened distribution centers

f j Fixed cost for open and operating plant j

gk Fixed cost for open and operating distribution center k

avs Capacity of raw material v in supplier s

qvs Unit cost of raw material v ordered from supplier s

nvi Units of raw material v required to produce one unit of
product i

bi j Capacity limit of product i in plant j

pi j Unit production cost of product i in plant j

cik Capacity limit of product i in distribution center k

d̃im Type-2 fuzzy demand of customer zone m for product i

ξ̃vs j Type-2 fuzzy unit transportation cost from supplier s to
plant j for raw material v

ζ̃i jk Type-2 fuzzy unit transportation cost from plant j to
distribution center k for product i

η̃ikm Type-2 fuzzy unit transportation cost from distribution
center k to customer m for product i

xvs j Total units of raw material v ordered by plant j from
supplier s

yi jk Total units of product i transported from plant j to
distribution center k

zikm Total units of product i distributed from distribution
center k to customer m

u j Binary variable indicating whether plant j is opened or not

wk Binary variable indicating whether distribution center k is
opened or not

production or distribution activities. The fixed cost of the
whole supply chain is represented as

∑
j f j u j + ∑

k gkwk .
Procurement cost and production cost are paid for pur-

chasing the raw materials from the suppliers and manufac-
turing the final product at the plants. They can be expressed
as

∑
v,s(qvs

∑
j xvs j ) + ∑

i, j (pi j
∑

k yi jk).
Transhipment cost is incurred for transporting raw mate-

rials from suppliers to plants, and transporting final products
from the plants to distribution centers aswell as fromdistribu-
tion centers to customers. The total transhipment cost is writ-
ten as

∑
v,s, j ξ

U
vs j xvs j + ∑

i, j,k ζUi jk yi jk + ∑
i,k,m ηUikmzikm .

Therefore, the total cost function C(x, ξ) of our supply
chain network is represented as

C(x, ξ) =
∑

j

f j u j +
∑

k

gkwk +
∑

v,s, j

ξUvs j xvs j

+
∑

i, j,k

ζUi jk yi jk +
∑

i,k,m

ηUikmzikm

+
∑

v,s

(
qvs

∑

j

xvs j

)
+

∑

i, j

(
pi j

∑

k

yi jk
)
,

which is the function of reduced fuzzy variables ξ =
{ξUvs j , ζUi jk, ηUikm}.

We interpret the value of C(x, ξ) as loss. If we denote
�(x, C̄) = Cr{C(x, ξ) ≤ C̄} as the credibility distribution
function of C(x, ξ), then for any given 0 < β < 1, the VaR
function ν(x, β) is defined as

ν(x, β) = min{C̄ | �(x, C̄) ≥ β}, (1)

where β will typically have a large value, for instance, β =
0.95. In this case, the interpretation of ν(x, β) is a minimal
loss level, corresponding to the decision vector x, with the
following property: the credibility of the event that loss will
not exceed ν(x, β) is at least β.

In our supply chain network design model, we consider
minimizing the VaR of the total cost function C(x, ξ), i.e.,

min ν(x, β)

subject to : x ∈ D,
(2)

where D is the feasible region of decision vectors. By the
definitionofν(x, β) and introducing an additional variable C̄ ,
model (2) is equivalent to the following formulation results:

min C̄
subject to : �(x, C̄) ≥ β,

x ∈ D,

(3)

where �(x, C̄) is the credibility distribution function Cr{C
(x, ξ) ≤ C̄}.

The service levels of supply chain

In addition to cost-effective operations, a successful sup-
ply chain should react in respond to the demands of cus-
tomers. Since the exact demands are not known in advance,
we describe them by variable possibility distributions with
two types of parameters. In this case, the demands of cus-
tomers may be satisfied partly.We have twomethods to mea-
sure the the service levels of our supply chain network.

Joint credibility constraint: Given the service level β ∈
(0, 1), the amount of product from the distribution center to
customer should meet the demands of customers as much as
possible, which can be models as

Cr

{

dL
im ≤

K∑

k=1

zikm,∀i, m

}

≥ β. (4)

Separate credibility constraints: Given the service levels
βim ∈ (0, 1), the amount of product i from the distribution
center k to customer m should meet the demand of customer
m as much as possible, which can be written as
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Cr

{

dL
im ≤

K∑

k=1

zikm

}

≥ βim, for all i, m. (5)

From the computational viewpoint, joint credibility con-
straint is more difficult to check than separate credibility con-
straints. However, in the case that demands dL

im are mutually
independent in the sense of Liu and Gao (2007), we have

Cr

{

dL
im ≤

K∑

k=1

zikm,∀i, m

}

= min
i,m

Cr

{

dL
im ≤

K∑

k=1

zikm

}

.

In this case, joint credibility constraint (4) is equivalent to

Cr

{

dL
im ≤

K∑

k=1

zikm

}

≥ β, for all i, m, (6)

which is special case of separate credibility constraints (5)
with βim = β for all i and m.

In our supply chain network design problem, we assume
the demands aremutually independent in the sense of Liu and
Gao (2007). Therefore, it suffices to consider separate cred-
ibility constraints (5) in our optimization model formulated
in the next section.

Supply chain network design model

Using the notations above, we can build the following fuzzy
supply chain network design model subject to the separate
credibility constraints:

min C̄
subject to: Cr

{
C(x, ξ) ≤ C̄

} ≥ β, (C-1)
J∑

j=1
xvs j ≤ avs, for all

v, s (C-2)
I∑

i=1
nvi

K∑

k=1
yi jk ≤

S∑

s=1
xvs j , for all j, v (C-3)

K∑

k=1
yi jk ≤ u jbi j , for all i, j (C-4)

M∑

m=1
zikm ≤

J∑

j=1
yi jk, for all i, k (C-5)

M∑

m=1
zikm ≤ wkcik, for all i, k (C-6)

J∑

j=1
u j ≤ P (C-7)

K∑

k=1
wk ≤ Q (C-8)

Cr

{

dL
im ≤

K∑

k=1
zikm

}

≥ βim, for all

i, m (C-9)
xvs j , yi jk, zikm ≥ 0, for all v, s,
i, j, k, m (C-10)
u j , wk ∈ {0, 1}, for all j, k. (C-11)

(7)

From the equivalent formulation between problems (2)
and (3), we know that the objective of model (7) is to min-
imize the VaR of the total cost function C(x, ξ) at given
confidence level β. Constraints (C-2), (C-4) and (C-6) are
the raw materials capacity limits of suppliers, the production
capacity limits of plants and the distribution capacity limits
of distribution centers. Constrains (C-3) and (C-5) are the
raw materials and products balance constraints. Constraints
(C-7) and (C-8) are the number limits of opened plants and
distribution centers. Constraint (C-9) guarantees the product
i allocated from distribution centers to customer m to sat-
isfy the demands of customers under a prescribed service
level βim . Constraint (C-10) is the non-negativity limits for
all variables, and constraint (C-11) is the binary limits of
variables.

Model (7) is a mixed-integer programming problem sub-
ject to credibility constraints. Its general solution methods
require the conversion of credibility constraints (C-1) and
(C-9) to their deterministic equivalents. However, this con-
version is usually hard to perform and only successfully in
some special cases. In the subsequent section we will discuss
the equivalent programming problem of model (7).

Parameter-based domain decomposition method

The equivalent parametric programming models

To solve model (7), it is required to check the credibility
constraints (C-1) and (C-9). For this purpose, this section
will discuss the equivalent programming problem of model
(7) in some special cases.

Assume ξ̃vs j , ζ̃i jk, η̃ikm and d̃im are mutually independent
type-2 triangular fuzzy variables such that their elements are
defined by

ξ̃vs j = (ξ̃
r1
vs j , ξ̃

r2
vs j , ξ̃

r3
vs j ; θ

ξ
l,vs j , θ

ξ
r,vs j ),

ζ̃i jk = (ζ̃
r1
i jk, ζ̃

r2
i jk, ζ̃

r3
i jk; θ

ζ
l,i jk, θ

ζ
r,i jk),

η̃i jk = (η̃
r1
ikm, η̃

r2
ikm, η̃

r3
ikm; θ

η
l,ikm, θ

η
r,ikm),

and

d̃im = (d̃r1im, d̃r2im, d̃r3im; θdl,im, θdr,im).

Suppose ξUvs j , ζ
U
i jk, η

U
ikm are the upper reduced fuzzy vari-

ables of ξ̃vs j , ζ̃i jk, η̃ikm , respectively, and dL
im is the lower

fuzzy variable of d̃im . Then ξUvs j , ζ
U
i jk, η

U
ikm and dL

im aremutu-
ally independent fuzzy variables in the sense of Liu and Gao
(2007).

If β > 0.5, then credibility constraint (C-1) has the fol-
lowing equivalent expression
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∑

v,s, j

xvs jξ
U
vs j,sup,Pos(2 − 2β) +

∑

i, j,k

yi jkζ
U
i jk,sup,Pos(2 − 2β)

+
∑

i,k,m

zikmηUikm,sup,Pos(2 − 2β) ≤ C̄ −
∑

j

f j u j

−
∑

k

gkwk −
∑

v,s

(
qvs

∑

j

xvs j

)
−

∑

i, j

(
pi j

∑

k

yi jk
)
.

(8)

If we denote A = {(v, s, j) | 0.5 < β ≤ (3 − (1 −
α

ξ
vs j )θ

ξ
r,vs j )/4}, B = {(i, j, k) | 0.5 < β ≤ (3 − (1 −

α
ζ
i jk)θ

ζ
r,i jk)/4} and C = {(i, k,m) | 0.5 < β ≤ (3 − (1 −

α
η
ikm)θ

η
r,ikm)/4}, then it follows from Theorem 3 that Eq. (8)

is equivalent to

∑

(v,s, j)∈A

xvs j
(2 − 2β − (1 − α

ξ
vs j )θ

ξ
r,vs j )ξ̃

r2
vs j + (2β − 1)ξ̃r3

vs j

1 − θ
ξ
r,vs j + α

ξ
vs j θ

ξ
r,vs j

+
∑

(v,s, j)/∈A

xvs j
2(1 − β)ξ̃

r2
vs j + (2β − 1 + (1 − α

ξ
vs j )θ

ξ
r,vs j )ξ̃

r3
vs j

1 + θ
ξ
r,vs j − α

ξ
vs j θ

ξ
r,vs j

+
∑

(i, j,k)∈B
yi jk

(2 − 2β − (1 − α
ζ
i jk )θ

ζ
r,i jk )ζ̃

r2
i jk + (2β − 1)ζ̃ r3i jk

1 − θ
ζ
r,i jk + α

ζ
i jkθ

ζ
r,i jk

+
∑

(i, j,k)/∈B
yi jk

2(1 − β)ζ̃
r2
i jk + (2β − 1 + (1 − α

ζ
i jk )θ

ζ
r,i jk )ζ̃

r3
i jk

1 + θ
ζ
r,i jk − α

ζ
i jkθ

ζ
r,i jk

+
∑

(i,k,m)∈C
zikm

(2 − 2β − (1 − α
η
ikm )θ

η
r,ikm )η̃

r2
ikm + (2β − 1)η̃r3ikm

1 − θ
η
r,ikm + α

η
ikmθ

η
r,ikm

+
∑

(i,k,m)/∈C
zikm

2(1 − β)η̃
r2
ikm + (2β − 1 + (1 − α

η
ikm )θ

η
r,ikm )η̃

r3
ikm

1 + θ
η
r,ikm − α

η
ikmθ

η
r,ikm

+
∑

j

f j u j +
∑

k

gkwk +
∑

v,s

(
qvs

∑

j

xvs j
)

+
∑

i, j

(
pi j

∑

k

yi jk
)

≤ C̄ .

For convenience, we write the function in the left-hand
side of the above inequality as F(x; θ, α, β) with θ =
(θl , θr ).

On the other hand, ifβim > 0.5, then credibility constraint
(C-9) is equivalent to

dL
im,sup,Pos(2 − 2βim) ≤

K∑

k=1

zikm, for all i, m. (9)

Let D = {(i,m) | 0.5 < βim ≤ (3 + (1 − αim)θdl,im)/4}.
Then, by Theorem 2, Eq. (9) is equivalent to the following
constraints

(2 − 2βim + (1 − αim)θdl,im)dr2im + (2βim − 1)dr3im
1 + θdl,im − αimθdl,im

≤
K∑

k=1

zikm, for (i,m) ∈ D,

or

(2 − 2βim)dr2im + (2βim − 1 − (1 − αim)θdl,im)dr3im
1 − θdl,im + αimθdl,im

≤
K∑

k=1

zikm, for (i,m) /∈ D.

Using the equivalent representations of credibility con-
straint (C-9), model (7) can be divided into two sub-models
determined by the domain of parameter βi,m . Hence, we can
solve model (7) indirectly by solving its sub-models.

If the parameter βim satisfies 0.5 < βim ≤ (3 + (1 −
αim)θdl,im)/4, then we solve the following parametric pro-
gramming sub-model

min F(x; θ, α, β)

subject to:
J∑

j=1
xvs j ≤ avs, for all v, s

I∑

i=1
nvi

K∑

k=1
yi jk ≤

S∑

s=1
xvs j , for all j, v

K∑

k=1
yi jk ≤ u jbi j , for all i, j

M∑

m=1
zikm ≤

J∑

j=1
yi jk, for all i, k

M∑

m=1
zikm ≤ wkcik, for all i, k

J∑

j=1
u j ≤ P

K∑

k=1
wk ≤ Q

(2−2βim+(1−αim )θdl,im)d
r2
im+(2βim−1)d

r3
im

1+θdl,im−αimθdl,im

≤
K∑

k=1
zikm, for (i,m) ∈ D,

xvs j , yi jk, zikm ≥ 0, for all v, s, i, j, k, m
u j , wk ∈ {0, 1}, for all j, k.

(10)

If the parameter βim meets the constraint (3 + (1 −
αim)θdl,im)/4 < βim ≤ 1, then we solve the following para-
metric programming sub-model

min F(x; θ, α, β)

subject to:
J∑

j=1

xvs j ≤ avs , for all v, s

I∑

i=1

nvi

K∑

k=1

yi jk ≤
S∑

s=1

xvs j , for all j, v

K∑

k=1

yi jk ≤ u j bi j , for all i, j
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M∑

m=1

zikm ≤
J∑

j=1

yi jk , for all i, k

M∑

m=1

zikm ≤ wkcik , for all i, k (11)

J∑

j=1

u j ≤ P

K∑

k=1

wk ≤ Q

(2 − 2βim)dr2im + (2βim − 1 − (1 − αim)θdl,im)dr3im

1 − θdl,im + αimθdl,im

≤
K∑

k=1

zikm , for (i,m) /∈ D

xvs j , yi jk , zikm ≥ 0, for all v, s, i, j, k, m

u j , wk ∈ {0, 1}, for all j, k.

Domain decomposition method

Just as discussed in the above section, a decision maker may
prefer setting a predetermined confidence levels β and βim
and expect tominimize the total costs. According to the struc-
tural characteristics of model (7), we employ a parameter-
based domain decomposition method to solve its equivalent
sub-models (10) and (11).

For a given confidence level β and service levels βim , the
solution process of model (7) by the proposed decomposition
method is summariazed as follows.

Step 1 Solve the mixed-integer programming sub-models
(10) and (11) to find local optimal solutions.

Step 2 Compute the objective values F(x; θ, α, β) corre-
sponding to the local optimal solutions.

Step 3 Chose the minimum as the global optimal solution
to model (7) by comparing the obtained objective
values.

The feasible region of model (7) is decomposed into two
disjoint subregions according to the values of parametersβim .
The solution process is implemented at most two times by
solving two different sub-models and followed by compar-
ing the optimal solutions to the two sub-models. We refer
to this solution procedure as the parameter-based domain
decomposition method.

Sub-models (10) and (11) are mixed-integer paramet-
ric programs. We can solve them by using conventional
optimization algorithms when the parameters vary in their
domains. For example, given the parameters α, β, θl and θr ,
we can make use of the branch-and-bound method to solve
it. It is known that the LINGO software is a state-of-the-art

Table 2 Capacities limits and fixed costs

Suppliers Plants Distribution centers

Capacities Price Capacities Fixed costs Capacities Fixed costs

450 6.2 550 1800 530 900

480 5.5 490 900 590 1,000

390 4.6 400 1,100 370 2,000

360 5.8 500 2,000 400 1,300

300 900 580 1,500

optimization tool including the branch-and-bound IP code.
In the next section, we will demonstrate the effectiveness
of the parameter-based domain decomposition method via
numerical experiments.

An application example and comparison study

Problem statement

In this subsection, we consider a practical supply chain net-
work design problem about a food processing company.
The company boasts advanced equipments, first class tech-
nology and reliable quality. The products in the company
include stripped chickens, broilers, pig trotters, irascible don-
key meat, chicken wings, chicken claws and chicken necks.
In recent years, product sales nationwide coverage, a strong
potential for growth. Therefore, the company is planning to
produce a newcooked food, roast chickens,which can be pro-
duced with lower cost as a result of sufficient raw material,
chickens, and advanced slaughter processing facilities. The
manager of the company wishes to design a supply chain net-
work for the new product to determine the number of plants
and distribution centers to be opened, and the distribution
strategy so that the demands of customers can be satisfied
under all capacities constraints.

For convenience,we assume that there are 4 subcompanies
to supply the raw chickens, 5 plants with the high technology
of cooked food processing, advanced facilities and rigorous
hygienic index, 5 distribution centers to process quick-freeze
storage and cold-storage and 5 customer zones in the supply
chain network. We assume that one roast chicken requires
one unit raw material chicken. Considering the market and
other factors,we assume that the number of openedplants and
distribution centers are nomore than four in thewhole region,
and unit producing cost of product is 1. In addition, the costs
of purchasingunit rawchicken, the costs of opening theplants
and distribution centers, and the capacities of the suppliers,
plants and distribution centers are provided in Table 2.

To design an efficient supply chain network, our model
requires two kinds of key input data: the transportation costs
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Table 3 Type-2 fuzzy transportation costs ξ̃vs j , ζ̃i jk and η̃ikm

Suppliers Plants
P1 P2 P3 P4 P5

S1 (4̃.5, 4̃.8, 6̃; θl , θr ) (̃4, 5̃.2, 6̃; θl , θr ) (2̃.7, 3̃, 6̃; θl , θr ) (̃6, 7̃.3, 7̃.8; θl , θr ) (̃4, 4̃.3, 4̃.8; θl , θr )

S2 (5̃.5, 7̃, 9̃; θl , θr ) (2̃.4, 2̃.6, 6̃; θl , θr ) (̃4, 6̃.5, 7̃; θl , θr ) (1̃.5, 2̃, 2̃.5; θl , θr ) (̃3, 4̃.3, 6̃.8; θl , θr )

S3 (6̃.5, 6̃.8, 7̃; θl , θr ) (5̃.5, 6̃.8, 7̃; θl , θr ) (4̃.8, 5̃, 9̃; θl , θr ) (̃1, 4̃.5, 5̃; θl , θr ) (̃6, 7̃.3, 7̃.8; θl , θr )

S4 (4̃.5, 4̃.8, 5̃; θl , θr ) (4̃.5, 5̃, 5̃.5; θl , θr ) (̃8, 8̃.5, 9̃; θl , θr ) (6̃.4, 6̃.8, 8̃; θl , θr ) (̃6, 7̃, 7̃.8; θl , θr )

Plants Distribution centers

D1 D2 D3 D4 D5

P1 (5̃.5, 7̃, 9̃; θl , θr ) (2̃.4, 3̃, 6̃; θl , θr ) (̃4, 6̃.2, 7̃; θl , θr ) (̃1, 2̃, 2̃.5; θl , θr ) (̃2, 7̃.3, 7̃.8; θl , θr )

P2 (̃4, 4̃.8, 6̃; θl , θr ) (̃5, 5̃.2, 6̃; θl , θr ) (̃2, 2̃.7, 3̃; θl , θr ) (̃6, 7̃, 7̃.3; θl , θr ) (̃6, 7̃.3, 1̃0; θl , θr )

P3 (̃5, 5̃.5, 9̃; θl , θr ) (2̃.4, 2̃.6, 6̃; θl , θr ) (̃4, 6̃.5, 7̃; θl , θr ) (1̃.5, 2̃, 2̃.5; θl , θr ) (̃4, 7̃.3, 7̃.8; θl , θr )

P4 (̃6, 6̃.8, 7̃; θl , θr ) (̃5, 6̃.8, 7̃; θl , θr ) (4̃.5, 4̃.8, 9̃; θl , θr ) (̃1, 4̃.5, 5̃; θl , θr ) (̃6, 6̃.4, 7̃.8; θl , θr )

P5 (̃4, 6̃.1, 7̃; θl , θr ) (̃5, 6̃, 7̃; θl , θr ) (̃7, 8̃, 1̃2; θl , θr ) (̃3, 4̃.5, 5̃; θl , θr ) (̃6, 6̃.4, 7̃.8; θl , θr )

Distribution centers Customer zones

C1 C2 C3 C4 C5

D1 (̃6, 6̃.5, 6̃.8; θl , θr ) (5̃.5, 6̃.8, 7̃; θl , θr ) (4̃.8, 5̃, 9̃; θl , θr ) (̃1, 4̃.8, 5̃; θl , θr ) (̃3, 4̃.8, 5̃; θl , θr )

D2 (̃4, 4̃.8, 6̃; θl , θr ) (4̃.4, 4̃.5, 5̃; θl , θr ) (̃4, 4̃.5, 8̃; θl , θr ) (̃2, 3̃.5, 6̃; θl , θr ) (̃1, 3̃.6, 5̃; θl , θr )

D3 (4̃.5, 4̃.8, 5̃; θl , θr ) (4̃.5, 5̃, 5̃.5; θl , θr ) (̃8, 8̃.8, 9̃; θl , θr ) (̃6, 6̃.4, 8̃; θl , θr ) (̃4, 4̃.8, 5̃; θl , θr )

D4 (5̃.5, 7̃, 9̃; θl , θr ) (2̃.4, 3̃, 6̃; θl , θr ) (̃4, 6̃.5, 7̃; θl , θr ) (̃1, 1̃.5, 2̃.5; θl , θr ) (̃3, 4̃.5, 5̃; θl , θr )

D5 (̃6, 6̃.8, 7̃; θl , θr ) (̃5, 6̃.8, 7̃; θl , θr ) (4̃.5, 4̃.8, 9̃; θl , θr ) (̃1, 4̃.5, 5̃; θl , θr ) (̃6, 6̃.4, 7̃.8; θl , θr )

and demands of customers. Since we have not enough data
to analyze the parameters in advance, it is difficult for a
new product to obtain perfect information about the para-
meters in our supply chain network problem. In this sit-
uation, we adopt type-2 fuzzy variables to represent the
uncertain demands and costs. By analyzing the sales vol-
ume of the similar product like Dawu roast chicken, Dezhou
braised chicken, the manager can estimate the amount of
demand is between 100 and 500. Without loss of general-
ity, the demands of customer zone Cm,m = 1, 2, 3, 4, 5, are
randomly generated from the interval [100,500], and rep-
resented by (455, 460, 490; θ l , θr ), (120, 160, 180; θ l , θr ),
(280, 330, 360; θ l , θr ), (280, 315, 360; θ l , θr ), and (200,
235, 250; θ l , θr ) respectively. Using the similar method, we
generate the transportation costs from the suppliers to plants,
plants to distribution centers, distribution centers to cus-
tomers, and provide the generated data in Table 3.

Computational results with deterministic input data

First, we solve our supply chain network design problem
with deterministic input data. For the sake of comparison,
the deterministic input data in Table 4 are the mean values of
fuzzy transportation costs and demands collected in Table 5.

In this situation, we employ LINGO software to solve our
supply chain network design model and obtain the following
optimal solution with objective value 35955.03.

u1 = 1.000000, x131 = 190.0000, x141 = 360.0000;
u2 = 1.000000, x122 = 480.0000, x132 = 10.0000;
u3 = 1.000000, x113 = 396.2500, x133 = 3.75000;
u5 = 1.000000, x115 = 53.7500;
w1 = 1.000000, y121 = 490.0000, y151 = 13.7500;
w2 = 1.000000, y112 = 190.0000, y132 = 400.0000;
w4 = 1.000000, y114 = 360.0000, y154 = 40.0000;
z121 = 466.2500; z122 = 72.5000, z142 = 82.5000;
z113 = 325.0000; z144 = 317.5000;
z115 = 178.7500, z125 = 51.2500.

Weplot the obtained optimal solution inFig. 1, fromwhich
we observe that the food processing company needs to open
4 plants located in P1, P2, P3 and P5; 3 distribution centers
lied in D1, D2 and D4, and assign 466.25 unit products to
C1 supplied by D2, 155 unit products to C2 supplied 72.5
units by D2 and 82.5 units by D4, 325 unit products to C3

supplied by D1, 317.5 unit products to C4 supplied by D4,
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Table 4 Mean values of triangular fuzzy transportation costs and demands

Suppliers Plants

P1 P2 P3 P4 P5

S1 5.0250 5.1000 3.6750 7.1000 4.3500

S2 7.1250 3.4000 6.0000 2.0000 4.6000

S3 6.7750 6.5250 5.9500 3.7500 7.1000

S4 4.7750 5.0000 8.5000 7.0000 6.9500

Plants Distribution centers

D1 D2 D3 D4 D5

P1 7.1250 3.6000 5.8500 1.8750 6.1000

P2 4.9000 5.3500 2.6000 6.8250 7.6500

P3 6.2500 3.4000 6.0000 2.0000 6.6000

P4 6.6500 6.4000 5.7750 3.7500 6.6500

P5 5.8000 6.0000 8.7500 4.2500 6.6500

Distribution centers Customer zones

C1 C2 C3 C4 C5

D1 6.4500 6.5250 5.9500 3.9000 4.4000

D2 4.9000 4.6000 5.2500 3.7500 3.3000

D3 4.7750 5.0000 8.6500 6.7000 4.6500

D4 7.1250 3.6000 6.0000 1.6250 4.2500

D5 6.6500 6.4000 5.7750 3.7500 6.6500

Demands 466.2500 155.0000 325.0000 317.5000 230.0000

Table 5 Triangular fuzzy transportation costs and demands

Suppliers Plants
P1 P2 P3 P4 P5

S1 (4.5, 4.8, 6) (4, 5.2, 6) (2.7, 3, 6) (6, 7.3, 7.8) (4, 4.3, 4.8)

S2 (5.5, 7, 9) (2.4, 2.6, 6) (4, 6.5, 7) (1.5, 2, 2.5) (3, 4.3, 6.8)

S3 (6.5, 6.8, 7) (5.5, 6.8, 7) (4.8, 5, 9) (1, 4.5, 5) (6, 7.3, 7.8)

S4 (4.5, 4.8, 5) (4.5, 5, 5.5) (8, 8.5, 9) (6.4, 6.8, 8) (6, 7, 7.8)

Plants Distribution centers

D1 D2 D3 D4 D5

P1 (5.5, 7, 9) (2.4, 3, 6) (4, 6.2, 7) (1, 2, 2.5) (2, 7.3, 7.8)

P2 (4, 4.8, 6) (5, 5.2, 6) (2, 2.7, 3) (6, 7, 7.3) (6, 7.3, 10)

P3 (5, 5.5, 9) (2.4, 2.6, 6) (4, 6.5, 7) (1.5, 2, 2.5) (4, 7.3, 7.8)

P4 (6, 6.8, 7) (5, 6.8, 7) (4.5, 4.8, 9) (1, 4.5, 5) (6, 6.4, 7.8)

P5 (4, 6.1, 7) (5, 6, 7) (7, 8, 12) (3, 4.5, 5) (6, 6.4, 7.8)

Distribution centers Customer zones

C1 C2 C3 C4 C5

D1 (6, 6.5, 6.8) (5.5, 6.8, 7) (4.8, 5, 9) (1, 4.8, 5) (3, 4.8, 5)

D2 (4, 4.8, 6) (4.4, 4.5, 5) (4, 4.5, 8) (2, 3.5, 6) (1, 3.6, 5)

D3 (4.5, 4.8, 5) (4.5, 5, 5.5) (8, 8.8, 9) (6, 6.4, 8) (4, 4.8, 5)

D4 (5.5, 7, 9) (2.4, 3, 6) (4, 6.5, 7) (1, 1.5, 2.5) (3, 4.5, 5)

D5 (6, 6.8, 7) (5, 6.8, 7) (4.5, 4.8, 9) (1, 4.5, 5) (6, 6.4, 7.8)

Demands (455, 460, 490) (120, 160, 180) (280, 330, 360) (280, 315, 360) (200, 235, 250)
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Fig. 1 The network structure with deterministic input data

and 230 unit products to C5 supplied 178.75 units by D1 and
51.25 units by D2.

Computational results with fixed possibility distributions

In this subsection, we use LINGO software to solve our sup-
ply chain network design model when the input data have
fixed possibility distributions collected in Table 5.

For simplicity, we set the parameters βim = β for each
pair (i,m) in model (7). Given β = β = 0.95, we have the
following optimal solution with objective value 44,995.16,

u2 = 1.000000, x132 = 130.0000, x142 = 360.0000;
u3 = 1.000000, x113 = 214.0000, x133 = 186.0000;
u4 = 1.000000, x124 = 480.0000, x134 = 20.00000;
u5 = 1.000000, x115 = 236.0000;
w1 = 1.000000, y121 = 120.0000, y141 = 146.0000;
w2 = 1.000000, y142 = 354.0000, y152 = 236.0000;
w3 = 1.000000, y123 = 370.0000;
w4 = 1.000000, y134 = 400.0000;

z111 = 17.5000, z121 = 99.5000, z131 = 370.0000;
z122 = 178.0000; z123 = 312.5000, z143 = 44.5000;
z144 = 355.5000; z115 = 248.5000.

The optimal solution is shown in Fig. 2, which implies
that the food processing company needs to open 4 plants
located in P2, P3, P4 and P5; 4 distribution centers lied in
D1, D2, D3 and D4, and assign 487 unit products to C1 sup-
plied by D1, D2 and D3, 178 unit products toC2 supplied by
D2, 357 unit products to C3 supplied by D2 and D4, 355.5
and 248.5 unit products to C4 and C5 supplied by D4 and
D1.

Compared with the computational results under determin-
istic input data, we find that the network structure changes
greatly. In deterministic case, it is required to construct three
distribution centers D1, D2 and D4, while in the case of fixed
possibility distributions, there are four distribution centers
D1, D2, D3 and D4. In addition, it is easy to check that the
optimal solution in deterministic case is not a feasible solu-
tion in the second case.
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Fig. 2 The network structure with fixed possibility distributions

Table 6 Computational results with various values of parameters β and
β

β β Valueopt β β Valueopt

0.63 0.98 40,737.63 0.65 0.85 41,891.75

0.71 0.98 42,036.63 0.73 0.85 42,444.15

0.75 0.98 42,653.96 0.85 0.85 43,272.75

0.86 0.98 44,332.38 0.92 0.85 43,761.00

0.98 0.98 45,489.89 0.99 0.85 44,252.92

In order to identify parameters’ influence on solution qual-
ity, we compute the optimal values by adjusting the values
of parameters β and β, and report the computational results
in Table 6.

The parameter β in the objective function represents a
decision maker’s attitude towards risk, while the parameter
β in the credibility constraint reflects the service level of a
supply chain network. Table 6 tells us that the total costs
will increase when the service level increases. Thus, a deci-

sion maker can find a suitable solution according to his risk
preference level β.

Computational results with variable possibility distributions

Now, we adopt variable possibility distributions to charac-
terize the uncertain demands and transportation costs in our
supply chain network design model. For the sake of presen-
tation, we set the parameters θ

ξ
l,vs j = θ

ζ
l,i jk = θ

η
l,ikm = θl ,

θ
ξ
r,vs j = θ

ζ
r,i jk = θ

η
r,ikm = θr , θdl,im = θ l , θdr,im = θr , α

ξ
vs j =

α
ζ
i jk = α

η
ikm = α, and αim = α for each v, s, i, j, k,m in

model (7). To identify the influence of model parameters on
solutions, we perform our numerical experiments according
to the following three cases.
Case I: The influence of parameter θ

With various values of parameter (θl , θr ) in the objective
and parameter (θ l , θr ) in the service level constraints, we
report the computational results in Tables 7 and 8, respec-
tively. From Table 7, we observe that the optimal value is
a monotone increasing function with respect to θr ∈ (0, 1].
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Table 7 Computational results with various values of parameters
(θl , θr )

β (θl , θr ) α β (θ l , θr ) α Valueopt

0.72 (0.82, 0.05) 0.80 0.98 (0.3, 0.8) 0.25 42,186.03

0.72 (0.82, 0.32) 0.80 0.98 (0.3, 0.8) 0.25 42,383.76

0.72 (0.82, 0.58) 0.80 0.98 (0.3, 0.8) 0.25 42,596.97

0.72 (0.82, 0.87) 0.80 0.98 (0.3, 0.8) 0.25 42,791.81

0.72 (0.82, 1.00) 0.80 0.98 (0.3, 0.8) 0.25 42,871.52

Table 8 Computational results with various values of parameters
(θ l , θr )

β (θ l , θr ) α β (θl , θr ) α Valueopt

0.81 (0.18, 0.58) 0.65 0.86 (0.82, 0.45) 0.80 43,271.71

0.81 (0.45, 0.58) 0.65 0.86 (0.82, 0.45) 0.80 43,048.60

0.81 (0.65, 0.58) 0.65 0.86 (0.82, 0.45) 0.80 42,906.73

0.81 (0.85, 0.58) 0.65 0.86 (0.82, 0.45) 0.80 42,801.73

0.81 (0.97, 0.58) 0.65 0.86 (0.82, 0.45) 0.80 42,749.72

Table 9 Computational results with various values of parameter α

β (θl , θr ) α β (θ l , θr ) α Valueopt

0.72 (0.82, 0.45) 0.00 0.98 (0.3, 0.8) 0.25 43,491.99

0.72 (0.82, 0.45) 0.29 0.98 (0.3, 0.8) 0.25 43,197.35

0.72 (0.82, 0.45) 0.66 0.98 (0.3, 0.8) 0.25 42,724.92

0.72 (0.82, 0.45) 0.83 0.98 (0.3, 0.8) 0.25 42,432.78

0.72 (0.82, 0.45) 0.97 0.98 (0.3, 0.8) 0.25 42,198.25

Table 10 Computational results with various values of parameter α

β (θ l , θr ) α β (θl , θr ) α Valueopt

0.81 (0.58, 0.72) 0.00 0.86 (0.82, 0.45) 0.80 42,505.15

0.81 (0.58, 0.72) 0.29 0.86 (0.82, 0.45) 0.80 42,667.44

0.81 (0.58, 0.72) 0.66 0.86 (0.82, 0.45) 0.80 42,971.18

0.81 (0.58, 0.72) 0.83 0.86 (0.82, 0.45) 0.80 43,150.91

0.81 (0.58, 0.72) 0.97 0.86 (0.82, 0.45) 0.80 43,271.85

From Table 8, we find that the optimal value is a monotone
decreasing function with respect to θ l ∈ (0, 1].
Case II: The influence of parameter α

With various values of parameter α in the objective func-
tion and parameter α in the credibility constraints, we report
the computational results in Tables 9 and 10, respectively.
Table 9 shows that the optimal value decreases with respect
to α ∈ (0, 1], and Table 10 implies that the optimal value
increases with respect to α.
Case III: The influence of all model parameters

With various values of all model parameters in the objec-
tive function and credibility constraints, we report the com-

putational results in Table 11, where we denote (θ l , θr ) =
(θl , θr ) and α = α for convenience.

From Table 11, we observe that the optimal cost varies
while the parameters (θl , θr ), α, β and β̄ change their values
between 0 and 1. From the computational results, we con-
clude that variable possibility distributions have some advan-
tages over fixed possibility distributions when we employ
them to design supply chain network problem.

Managerial implications

Using the proposed parametric optimization method to our
application example, we derive the following managerial
implications from the experimental results.

(I) In our application example, we first consider the deter-
ministic supply chain network designmodel, where the
input data is obtained by replacing all fuzzy demands
and costs by their mean values. The experimental
results show that we cannot do in this way. Since the
optimal solution under deterministic input data is not
a feasible solution to the model with fixed possibility
distributions, we cannot adopt such a solution to design
our supply chain network problem.

(II) We also formulate our application example as a
fuzzy supply chain network design model, where the
demands and costs have fixed possibility distributions.
Compared with the computational results under deter-
ministic input data, we observe that the network struc-
ture in this case changes greatly. That is, the network
structure for our application example strongly depends
on the demands and costs. If a decision maker cannot
obtain their exact possibility distributions in the mod-
eling process, then we advise not to adopt the obtained
solution to design our supply chain network problem.

(III) We finally formulate our application example as a
robust supply chain network design model, where the
uncertain demands and costs are characterized by vari-
able possibility distributions. In our application exam-
ple, since we have not enough data to analyze the
demands and costs in advance, it is difficult for a new
product to obtain perfect information about the two
parameters. In this case, the developed parametric opti-
mization method would provide an effective way for
decision makers to design supply chain network. The
computational results support our arguments. There are
two types of parameters for decision makers to man-
age our optimization model. The parameters θl and θr
describe the degrees of uncertainty that demands and
costs take their values, while the parameter α repre-
sents the possibility level in the supports of uncertain
demands and costs. The decision makers can adjust the
values of model parameters according to their attitude
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Table 11 Computational results with various values of model parameters

(θl , θr ) α β β Valueopt (θl , θr ) α β β Valueopt

(0.2, 0.8) 0.2 0.7 0.85 42,595.34 (0.8, 0.2) 0.2 0.7 0.85 34,425.60

0.98 43,662.64 0.98 35,825.77

0.98 0.85 44,401.45 0.98 0.85 43,581.45

0.98 45,533.39 0.98 45,253.01

0.5 0.7 0.85 42,200.55 0.5 0.7 0.85 36,446.26

0.98 43,189.90 0.98 37,726.69

0.98 0.85 44,468.56 0.98 0.85 39,582.60

0.98 45,525.95 0.98 41,074.65

0.95 0.7 0.85 41,127.01 0.95 0.7 0.85 40,996.09

0.98 42,009.52 0.98 41,904.53

0.98 0.85 44,533.54 0.98 0.85 44,494.50

0.98 45,495.51 0.98 45,485.61

(0.5, 0.5) 0.2 0.7 0.85 41,633.60 (1.0, 1.0) 0.2 0.7 0.85 42,166.00

0.98 43,113.55 0.98 47,637.40

0.98 0.85 43,869.69 0.98 0.85 39,458.32

0.98 44,537.00 0.98 44,980.29

0.5 0.7 0.85 41,584.12 0.5 0.7 0.85 42,375.14

0.98 42,762.82 0.98 44,161.39

0.98 0.85 44,070.32 0.98 0.85 43,518.65

0.98 44,818.13 0.98 45,403.50

0.95 0.7 0.85 41,062.13 1.0 0.7 0.85 41,005.74

0.98 41,957.44 0.98 41,877.31

0.98 0.85 44,514.32 0.98 0.85 45,028.54

0.98 45,490.63 0.98 45,988.69

towards risk. Tables 7 and 8 summarize the influence
of parameters θl and θr on the network design; Tables 9
and 10 summarize the influence of parameter α on the
network design, and Table 11 demonstrates the influ-
ence of all model parameters on the network design.
The computational results demonstrate the advantages
of parametric possibility distributions over fixed pos-
sibility distributions when we employ them to design
supply chain networks.

Conclusions

The supply chain network design problem is one of the most
comprehensive strategic decision issues that need to be opti-
mized for the long-term efficient operation of a company.
The purpose of this paper is to develop a new robust opti-
mization method for supply chain network design problem
under fuzzy uncertainty. The objective function was con-
structed based on risk-averse criterion, and the service levels
of supply chain were measured by credibility constraints.
More importantly, we characterized uncertain demands and
costs by variable possibility distributions instead of fixed

ones. The variable possibility distributions were obtained by
using the method of PCV reduction to secondary possibil-
ity distributions of uncertain demands and costs. Based on
the equivalent representations of credibility constraints, we
transformed the original supply chain network design model
to its equivalent parametric programming models. Further-
more, according to the structural characteristics of parameter
programmingmodel, we designed a parameter-based domain
decompositionmethod todecompose the equivalent paramet-
ric programming model to two mixed-integer programming
sub-models. At the end of this paper, we presented one appli-
cation example about a food processing company to demon-
strate our parametric optimization idea and the effectiveness
of solution method.

According to the computational results, we synthesize the
following main managerial implications. The network struc-
ture for our application example strongly depends on the
input data (demands and costs). The optimal solution under
deterministic input data is not a feasible solution to themodel
with fixed possibility distributions, we cannot adopt such a
solution to design our supply chain network problem. In addi-
tion, if a decision maker cannot obtain the exact possibility
distributions of demands and costs in the modeling process,
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then we advise not to adopt the obtained solution to design
our supply chain network problem. Since there are two types
of parameters for decision makers to manage our optimiza-
tion model, the developed parametric optimization method
would provide an effective way for the decision makers to
design supply chain networks.

Future research might address the following topics. First,
as far as the total costs incurred from supply chain net-
work design are concerned, our current model assumes a
risk-averse decision maker. An extension of the model to the
case of risk-neural decision maker is possible. Secondly, the
current model considers the total costs as a single objective
function, a multi-objective optimization model that accounts
for both economical and environmental objectives may be
helpful in practice. Third, the present model assumes the
productive and transportation capacities are fixed quantities,
the case with uncertain capacities is an important issue for
future research.
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Appendix

In this appendix, we deal with the method of PCV reduction,
parametric possibility distributions of the reduced fuzzy vari-
ables and their properties.

Let (
,A, P̃os) be a fuzzy possibility space (Liu and Liu
2010), where 
 is an abstract space of generic elements γ

andA is a class of subsets of 
 that is closed under arbitrary
unions, intersections and complement in
. Assume that ξ̃ is a
type-2 fuzzy variable with secondary possibility distribution
μ̃ξ̃ (x). To reduce the uncertainty in μ̃ξ̃ (x), we employ the
lower and upper possibility critical values (PCVs) of μ̃ξ̃ (x)
as the representing values of the regular fuzzy variable (RFV)
μ̃ξ̃ (x). According to Bai and Liu (2014), the lower PCV of

μ̃ξ̃ (x) with respect to possibility, denoted by VaRL
α (μ̃ξ̃ (x)),

is defined as

VaRL
α (μ̃ξ̃ (x)) = inf{ t | Pos{μ̃ξ̃ (x) ≤ t} ≥ α},

while the upper PCV of μ̃ξ̃ (x) with respect to possibility,

denoted by VaRU
α (μ̃ξ̃ (x)), is defined as

VaRU
α (μ̃ξ̃ (x)) = sup{ t | Pos{μ̃ξ̃ (x) ≥ t} ≥ α}.

Themethod is referred to as the PCV reduction. The variables
obtained by the methods of lower and upper PCV reduction

are called the lower and upper reduced fuzzy variables, and
denoted by ξ L and ξU , respectively.

We call ξ̃ a type-2 triangular fuzzy variable if its secondary
possibility distribution μ̃ξ̃ (x) is the following RFV
(
x − r1
r2 − r1

− θl min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}

,
x − r1
r2 − r1

,
x − r1
r2 − r1

+ θr min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

})

for any x ∈ [r1, r2], and the next RFV
(
r3 − x

r3 − r2
− θl min

{
r3 − x

r3 − r2
,
x − r2
r3 − r2

}

,
r3 − x

r3 − r2
,
r3 − x

r3 − r2

+ θr min

{
r3 − x

r3 − r2
,
x − r2
r3 − r2

})

for any x ∈ [r2, r3], where θl , θr ∈ [0, 1] are two parameters
characterizing the degree of uncertainty that ξ̃ takes the value
x . For convenience, we denote a type-2 triangular fuzzy vari-
able ξ̃ with the above secondary possibility distribution by
(r̃1, r̃2, r̃3; θl , θr ).

Theorem 1 Let ξ̃ = (r̃1, r̃2, r̃3; θl , θr ) be a type-2 triangular
fuzzy variable. If we denote θ = (θl , θr ), then the reduced
fuzzy variables ξ L and ξU have the following parametric
possibility distributions

μξ L (x; θ, α)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − θl + αθl)
x−r1
r2−r1

, if x ∈ [r1, r1+r2
2 ]

(1+θl−αθl )x−(1−α)θl r2−r1
r2−r1

, if x ∈ [ r1+r2
2 , r2]

−(1+θl−αθl )x+(1−α)θl r2+r3
r3−r2

, if x ∈ [r2, r2+r3
2 ]

(1 − θl + αθl)
r3−x
r3−r2

, if x ∈ [ r2+r3
2 , r3],

(12)

μξU (x; θ, α)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 + θr − αθr )
x−r1
r2−r1

, if x ∈ [r1, r1+r2
2 ]

(1−θr+αθr )x+(1−α)θr r2−r1
r2−r1

, if x ∈ [ r1+r2
2 , r2]

−(1−θr+αθr )x−(1−α)θr r2+r3
r3−r2

, if x ∈ [r2, r2+r3
2 ]

(1 + θr − αθr )
r3−x
r3−r2

, if x ∈ [ r2+r3
2 , r3].

(13)

Proof We only prove Eq. (12), and Eq. (13) can be proved
similarly.

Note that the secondary possibility distribution μ̃ξ̃ (x) of

ξ̃ is the following triangular RFV
(
x − r1
r2 − r1

− θl min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

}

,
x − r1
r2 − r1

,
x − r1
r2 − r1

+ θr min

{
x − r1
r2 − r1

,
r2 − x

r2 − r1

})

for any x ∈ [r1, r2], and
(
r3 − x

r3 − r2
− θl min

{
r3 − x

r3 − r2
,
x − r2
r3 − r2

}

,
r3 − x

r3 − r2
,
r3 − x

r3 − r2

+ θr min

{
r3 − x

r3 − r2
,
x − r2
r3 − r2

})

123



1146 J Intell Manuf (2016) 27:1131–1149

for any x ∈ [r2, r3]. Since ξ L is the lower PCV reduction of
ξ̃ , we have

μξ L (x; θ, α)

= Pos{ξ L = x}

=
⎧
⎨

⎩

x−r1
r2−r1

− (1 − α)θl min
{
x−r1
r2−r1

,
r2−x
r2−r1

}
, if x ∈ [r1, r2]

r3−x
r3−r2

− (1 − α)θl min
{
r3−x
r3−r2

,
x−r2
r3−r2

}
, if x ∈ [r2, r3]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − θl + αθl )
x−r1
r2−r1

, if x ∈ [r1, r1+r2
2 ]

(1+θl−αθl )x−(1−α)θl r2−r1
r2−r1

, if x ∈ [ r1+r2
2 , r2]

−(1+θl−αθl )x+(1−α)θl r2+r3
r3−r2

, if x ∈ [r2, r2+r3
2 ]

(1 − θl + αθl )
r3−x
r3−r2

, if x ∈ [ r2+r3
2 , r3],

which completes the proof of Eq. (12). ��
Theorem 2 Let ξ̃ = (r̃1, r̃2, r̃3; θl , θr ) be a type-2 triangular
fuzzy variable, and ξ L its lower PCV reduced fuzzy variable.

(i) If β ∈ (0, (1 − (1 − α)θl)/4], then Cr{ξ L ≤ r} ≥ β is
equivalent to

(1 − 2β − (1 − α)θl)r1 + 2βr2
1 − θl + αθl

≤ r.

(ii) If β ∈ ((1 − (1 − α)θl)/4, 0.5], then Cr{ξ L ≤ r} ≥ β

is equivalent to

(1 − 2β)r1 + (2β + (1 − α)θl)r2
1 + θl − αθl

≤ r.

(iii) If β ∈ (0.5, (3 + (1 − α)θl)/4], then Cr{ξ L ≤ r} ≥ β

is equivalent to

(2 − 2β + (1 − α)θl)r2 + (2β − 1)r3
1 + θl − αθl

≤ r.

(iv) If β ∈ ((3 + (1 − α)θl)/4, 1], then Cr{ξ L ≤ r} ≥ β is
equivalent to

(2 − 2β)r2 + (2β − 1 − (1 − α)θl)r3
1 − θl + αθl

≤ r.

Proof Weonly prove assertions (i)-(i i), and assertions (i i i)-
(iv) can be proved similarly.

Since ξ L is the lower reduced fuzzy variable of ξ̃ , its para-
metric possibility distribution μξ L (x) is given by Eq. (12).

If β ≤ 0.5, then by the definition of credibility measure
(Liu and Liu 2002), we have

Cr{ξ L ≤ r} = 1

2

(

1 + sup
x≤r

μξ L (x; θ, α) − sup
x>r

μξ L (x; θ, α)

)

= 1

2
sup
x≤r

μξ L (x; θ, α).

ThusCr{ξ L ≤ r} ≥ β is equivalent to supx≤r μξ L (x; θ, α) ≥
2β. If we denote

ξ L
inf,Pos(β) = inf

{

r | sup
x≤r

μξ L (x; θ, α) ≥ β

}

for β ∈ (0, 1], then we have ξ L
inf,Pos(2β) ≤ r .

Note that μξ L ((r1 + r2)/2) = (1 − (1 − α)θl)/2. If 0 <

2β ≤ (1 − (1 − α)θl)/2, i.e., β ∈ (0, (1 − (1 − α)θl)/4],
then ξ L

inf,Pos(2β) is the solution of the following equation

(1 − θl + αθl)
x − r1
r2 − r1

− 2β = 0.

Solving the above equation, we have

ξ L
inf,Pos(2β) = (1 − 2β − (1 − α)θl)r1 + 2βr2

1 − θl + αθl
.

On the other hand, if 1 ≥ 2β > (1 − (1 − α)θl)/2, i.e.,
β ∈ ((1− (1−α)θl)/4, 0.5], then ξ L

inf,Pos(2β) is the solution
of the following equation
(1 + θl − αθl)x − (1 − α)θlr2 − r1

r2 − r1
− 2β = 0.

Solving the above equation, we have

ξ L
inf,Pos(2β) = (1 − 2β)r1 + (2β + (1 − α)θl)r2

1 + θl − αθl
.

The proof of theorem is complete. ��
Theorem 3 Let ξ̃i = (r̃ i1, r̃

i
2, r̃

i
3; θl,i , θr,i ) be a type-2 trian-

gular fuzzy variable, and ξUi its upper PCV reduced fuzzy
variable for i = 1, 2, . . . , n. Suppose ξ̃1, ξ̃2, . . . , ξ̃n are
mutually independent, (1 − α1)θr,1 ≤ (1 − α2)θr,2 ≤ · · · ≤
(1 − αn)θr,n and ki ≥ 0 for i = 1, 2, . . . , n.

(i) If β ∈ (0, (1+ (1−α1)θr,1)/4], then Cr{∑n
i=1 kiξ

U
i ≤

r} ≥ β is equivalent to

n∑

i=1

ki
(1 − 2β + (1 − αi )θr,i )r i1 + 2βr i2

1 + θr,i − αiθr,i
≤ r.

(ii) If there exists an i0, 1 ≤ i0 < n such that β ∈
((1+ (1−αi0)θr,i0)/4, (1+ (1−αi0+1)θr,i0+1)/4], then
Cr{∑n

i=1 kiξ
U
i ≤ r} ≥ β is equivalent to

i0∑

i=1

ki
(1 − 2β)r i1 + (2β − (1 − αi )θr,i )r i2

1 − θr,i + αiθr,i

+
n∑

i=i0+1

ki
(1 − 2β + (1 − αi )θr,i )r i1 + 2βr i2

1 + θr,i − αiθr,i
≤ r.

(iii) If β ∈ ((1+(1−αn)θr,n)/4, 0.5], thenCr{∑n
i=1 kiξ

U
i ≤

r} ≥ β is equivalent to

n∑

i=1

ki
(1 − 2β)r i1 + (2β − (1 − αi )θr,i )r i2

1 − θr,i + αiθr,i
≤ r.
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(iv) If β ∈ (0.5, (3−(1−αn)θr,n)/4], thenCr{∑n
i=1 kiξ

U
i ≤

r} ≥ β is equivalent to

n∑

i=1

ki
(2 − 2β − (1 − αi )θr,i )r i2 + (2β − 1)r i3

1 − θr,i + αiθr,i
≤ r.

(v) If there exists an i0, 1 ≤ i0 < n such that β ∈
((3− (1−αi0+1)θr,i0+1)/4, (3− (1−αi0)θr,i0)/4], then
Cr{∑n

i=1 kiξ
U
i ≤ r} ≥ β is equivalent to

i0∑

i=1

ki
(2 − 2β − (1 − αi )θr,i )r i2 + (2β − 1)r i3

1 − θr,i + αiθr,i

+
n∑

i=i0+1

ki
2(1 − β)r i2 + (2β − 1 + (1 − αi )θr,i )r i3

1 + θr,i − αiθr,i

≤ r.

(vi) If β ∈ ((3− (1− α1)θr,1)/4, 1], then Cr{∑n
i=1 kiξ

U
i ≤

r} ≥ β is equivalent to

n∑

i=1

ki
2(1 − β)r i2 + (2β − 1 + (1 − αi )θr,i )r i3

1 + θr,i − αiθr,i
≤ r.

Proof Weonlyprove assertions (i)-(i i i), and assertions (iv)-
(vi) can be proved similarly.

Since ξUi is the upper reduced fuzzy variable of ξ̃i , its
parametric possibility distribution is as follows

μξUi
(x; θ, α)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1 + θr,i − αiθr,i )
x−r i1
r i2−r i1

, if x ∈ [r i1, r i1+r i2
2 ]

(1−θr,i+αi θr,i )x+(1−αi )θr,i r i2−r i1
r i2−r i1

, if x ∈ [ r i1+r i2
2 , r i2]

−(1−θr,i+αi θr,i )x−(1−αi )θr,i r i2+r i3
r i3−r i2

, if x ∈ [r i2, r i2+r i3
2 ]

(1 + θr,i − αiθr,i )
r i3−x

ri3−r i2
, if x ∈ [ r i2+r i3

2 , r i3].

Denote ξ = ∑n
i=1 kiξ

U
i . If β ≤ 0.5, then we have

Cr{ξ ≤ r} = 1

2

(

1 + sup
x≤r

μξ (x; θ, α) − sup
x>r

μξ (x; θ, α)

)

= 1

2
sup
x≤r

μξ (x; θ, α).

Thus Cr{ξ ≤ r} ≥ β is equivalent to supx≤r μξ (x; θ, α) ≥
2β. If we denote

ξinf,Pos(β) = inf

{

r | sup
x≤r

μξ (x; θ, α) ≥ β

}

for β ∈ (0, 1], then we have ξinf,Pos(2β) ≤ r .
Since ξU1 , ξU2 , . . . , ξUn are mutually independent fuzzy

variables, by Liu and Gao (2007), we have

ξinf,Pos(2β) =
(

n∑

i=1

kiξ
U
i

)

inf,Pos

(2β)

=
n∑

i=1

kiξ
U
i,inf,Pos(2β) ≤ r.

Note that μξUi
((r i1 + r i2)/2) = (1+ (1−αi )θr,i )/2. If 0 <

2β ≤ (1+ (1−αi )θr,i )/2, i.e., β ∈ (0, (1+ (1−αi )θr,i )/4],
then for each i , ξUi,inf,Pos(2β) is the solution of the following
equation

(1 + θr,i − αiθr,i )
x − r i1
r i2 − r i1

− 2β = 0.

Solving the above equation, we have

ξUi,inf,Pos(2β) = (1 − 2β + (1 − αi )θr,i )r i1 + 2βr i2
1 + θr,i − αiθr,i

.

On the other hand, if 1 ≥ 2β > (1+ (1− αi )θr,i )/2, i.e.,
β ∈ ((1+ (1−αi )θr,i )/4, 0.5], then for each i , ξUi,inf,Pos(2β)

is the solution of the following equation

(1 − θr,i + αiθr,i )x + (1 − αi )θr,i r i2 − r i1
r i2 − r i1

− 2β = 0.

Solving the above equation, we have

ξUi,inf,Pos(2β) = (1 − 2β)r i1 + (2β − (1 − αi )θr,i )r i2
1 − θr,i + αiθr,i

.

According to the inequalities (1−α1)θr,1 ≤ (1−α2)θr,2 ≤
· · · ≤ (1 − αn)θr,n , we have the following results.

If 0 < 2β ≤ (1 + (1 − α1)θr,1)/2, then β ≤ (1 + (1 −
αi )θr,i )/4 for i = 1, 2, . . . , n. Therefore, if β ∈ (0, (1 +
(1−α1)θr,1)/4], then Cr{∑n

i=1 kiξ
U
i ≤ r} ≥ β is equivalent

to
n∑

i=1

ki
(1 − 2β + (1 − αi )θr,i )r i1 + 2βr i2

1 + θr,i − αiθr,i
≤ r.

If there exists an i0, 1 ≤ i0 < n such that (1 +
(1 − αi0)θr,i0)/2 < 2β ≤ (1 + (1 − αi0+1)θr,i0+1)/2, i.e.,
β ∈ ((1+ (1−αi0)θr,i0)/4, (1+ (1−αi0+1)θr,i0+1)/4], then
Cr{∑n

i=1 kiξ
U
i ≤ r} ≥ β is equivalent to

i0∑

i=1

ki
(1 − 2β)r i1 + (2β − (1 − αi )θr,i )r i2

1 − θr,i + αiθr,i

+
n∑

i=i0+1

ki
(1 − 2β + (1 − αi )θr,i )r i1 + 2βr i2

1 + θr,i − αiθr,i
≤ r.

If 1 ≥ 2β > (1 + (1 − αn)θr,n)/2, then β ≥ (1 + (1 −
αi )θr,i )/4 for i = 1, 2, . . . , n. Therefore, if β ∈ ((1 + (1 −
αn)θr,n)/4, 0.5], then Cr{∑n

i=1 kiξ
U
i ≤ r} ≥ β is equivalent

to
n∑

i=1

ki
(1 − 2β)r i1 + (2β − (1 − αi )θr,i )r i2

1 − θr,i + αiθr,i
≤ r.

The proof of theorem is complete. ��
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