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Abstract A walking worker assembly line (WWAL), in
which each cross-trained worker travels along the line to
carry out all required tasks, is an example of lean system,
specifically designed to respond quickly and economically
to the fluctuating nature of market demands. Because of the
complexity of WWAL design problems, classical heuristic
approaches are not capable of solving problematic design
characteristic of WWAL of very large design space. This
paper presents a new genetic approach to address the mixed
model walking worker manual assembly line optimisation
design problem with multiple objectives. The aim is to select
a set of operational variables to perform to the required
demand for two product models. The goal is to produce the
required models at the lowest cost possible, whilst keep-
ing within an ergonomically balanced operation. Genetic
algorithms are developed to tackle this problem. This paper
describes the fundamental structure of this approach, as well
as the influence of the crossover probability, the mutation
probability and the size of the population on the performance
of the genetic algorithm. The paper also presents an appli-
cation of a developed algorithm to the operational design
problem of plastic electrical box assembly line.
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Introduction

The flexibility of assembly systems is essential in the assem-
bly industry in order to be able to respond to the changeable
characteristics of market demands. These demands, repre-
sented by increasing customisation, the shortening of a prod-
uct lifecycle, and a high product variety produced in small
batches (Shishir 2010). For this reason, it has become neces-
sary to develop dynamic, flexible and reconfigurable assem-
bly systems. The flexible labour line (or flexible assembly
line), is one of the promising techniques to create the most
effective and productive assembly systems to respond to
the challenges inmanufacturing environments (Moslemipour
and Lee 2012). On the other hand, mixed-model assembly
lines enable manufacturers to assemble multiple models in
anyorderwithin a short delivery time andwith the lowest pos-
sible cost. As a consequence, considering flexible workforce
in designing a mixed-model assembly line is an innovative
solution.

One attractive form of flexible workforce in mixed model
assembly lines is the use of cross-trained workers who can
perform all the assembly processes of products and also shift-
ing their capacity to where it is needed (Sawhney 2012).
This paper explores one such system that of staffing a line
of assembly processes for mixed models of a product, with
fewer workers than workstations on the line. This dynamic,
flexible and reconfigurable system is so-called mixed model
walking worker assembly line. In this type of assembly line,
each worker travels along the line to carry out all required
tasks (Wang et al. 2005). Walking worker assembly line
(WWAL) results in a series advantages over a traditional
lines, that is, fixedworker assembly lines (FWAL), where tra-
ditionally each worker has an assigned fixed task and contin-
uously repeats that assigned task (see Fig. 1). In this context,
rearranging assembly lines from the FWAL to the WWAL
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Fig. 1 Layout of walking worker line (Wang et al. 2005)

by a number of companies has led to achieve the followings
(Wang et al. 2005):

• Greater ease of line balancing whilst contributing to
reducing the number of buffers required;

• An adjustable number of line workers according to
demand requirement; and

• A minimisation of labour and tooling costs.

Certainly, design of such assembly lines has significantly
impacted workforce performance and consequently is more
complex in comparison with single fixed worker assembly
lines. This is because there is an essential need to consider
human worker capabilities and their limitations in opera-
tional designs for these systems (Alzuheri et al. 2010). Also,
due to the sources of complexities in manual assembly sys-
tems such as processing times at each workstation and skills
of workers who perform these tasks, most of these systems
are stochastic rather than deterministic (Longo et al. 2012).
Considering the nature of the system thus, physical workers
capabilities as well as the “multiple components” of WWAL
can lead to large design space solutions and it is more diffi-
cult (if not impossible) to use exact mathematical methods
such as integer-programming to solve problemdesign of such
system.

Therefore, this difficulty requires the use ofmeta-heuristic
approaches to solve the problem. The resulting design solu-
tions are adjusted to create an acceptable design and the best
resulting solution is implemented. Consequently, the design
process must be regarded as an iterative, generative and test-
involving process (Scholl et al. 2010).

For this purpose genetic algorithms (GAs) are proposed
to solve the WWAL optimisation design problem, aiming at
yielding optimal (or near-optimal) solution in large search
spaces quite faster than any other optimisation technique
owing to their parallel searching feature (Chambers 2010).
Currently, GAs required for such a demonstration does not
exist in literature on the topic. This paper describes develop-
ment of a novel customised GAs that are used for solving the
large scale optimisation problem that is typically can found
in manual assembly line with walking workers.

In the next section of this paper, a literature review is
conducted for research work that considers WWAL. Sec-

tion “Design problem: mixed model assembly system opti-
misation problem”, introduces the design problem that this
paper attempts to solve. Section “The mathematical model”
includes a summarised background about the mathematical
model, which drivesGAs comprising the objective functions.
In “Genetic algorithms” section, GAs are reviewed as the
approach for optimisation selected to handle the design prob-
lem presented in this paper, and there follows a description
of the developed structure for this approach. Then the results
of the GAs application are presented and analysed in “The
results and analysis of design optimisation problem” section.
Finally, in “Conclusions” section, the conclusionof this paper
is presented.

Literature review

In last 15 years, research has investigated the subject of cross-
trained walking (moving) workers performance in produc-
tion systems. Mileham et al. (2000) and Nakade and Nishi-
waki (2008) give a summary of this research. However, all
this research was limited to the application of moving cross-
trained workers in a cell in linear or U-shaped production
line in the industry. In addition, most of the research referred
to systems including such applications by names other than
WWAL. The term WWAL is a recent concept (Bley et al.
2007; Mileham et al. 2008). Publications have focussed little
on the subject of this type of assembly line, and even then,
it has only been on the initial stages of the design phase.
Table 1 summarises the number of research papers published
by topic.

As the results of Table 1 show, most of the research
carried out using both simulation technique and integer-
programming approach for designing WWAL, so far has
considered the single model type at early stage of the design
phase. As a result, the design process was relatively sim-
ple due to the considerably large amount of extant research
examining solution techniques offered on the problem struc-
ture of FWAL, which is also applicable in solving simple
WWAL problems. Although WWAL is an important consid-
eration in assembling different models as noted previously,
there has been no research reported on the operational aspects
of mixed model assembly line design with walking workers.

Since cross-trained workers have become a necessary
requirement of WWAL, effective operational design is criti-
cal for enhancing productivity and maximising the useful-
ness of a given assembly system by optimising the util-
isation of workers effectively. This improvement in sys-
tem performance should be concerned with investigating the
ergonomics consequences of any improvement processes, in
terms of exposure to risk factors for work-related muscu-
loskeletal injuries. This results in a multi-objective design
problem.
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Table 1 Summary of the research papers conducted on WWAL

The paper Modelling descriptions Issues addressed in study

Wang et al. (2005) Witness, simulation package The better of WWAL over fixed workers FWAL—in
terms of line performance measures

Wang et al. (2007a) Witness, simulation package Influencing in line performance with varying the
numbers of workers and workstations in WWAL

Wang et al. (2007b) Witness, simulation package and Statistical
Distribution Functions (SDFs) used for analyses
collected data

Modelling and simulation of a linear walking worker
assembly line considered being a random system
due to the randomness of input parameters that can
have a significant impact on performance of the
system

Lassalle et al. (2007) Witness, simulation software and an external
user-friendly interface for its input and output data
which were managed and controlled by a series of
MS ExcelTM spread sheets

Examined of the variable behaviour in-process
waiting time that takes place on a linear WWAL
based on two assumptions related workers
performance:

• Same performance during a period of production

• Variable performance levels during a period of
production

Mileham et al. (2008) Mathematical modelling Summarised the advantages and shortcomings of
application of WWAL on short section on a
semi-automated automotive engine assembly line

Wang et al. (2009) A combination of computer simulation and
mathematical analysis

Evaluated in-progress waiting time due to
bottlenecks (e.g. machine with the longest
processing time or a walking worker with variable
performance) that affects the overall system
performance

However, as noted from the review of literature, none
of the researchers focused on operational design problems
of mixed model lines adopted from the WWAL approach.
Also, because of the nature of WWAL, and because the
design problem is a multi-objective one, it is expected to
be a large-scale one. This paper explores one such prob-
lem that of optimising operational design for mixed model
assembly lines with walking workers in an industrial envi-
ronment for made-to-order assemblages with some specific
objectives, constrains and considerations about productivity
and ergonomics.

Although there are many alternative heuristic methods
for solving multiple objective design problems, there is still
no clear guidance available regarding the optimal choice
for a particular problem. GAs seem particularly desirable
to solve multi-objective optimisation problems because they
deal simultaneously with a set of possible solutions (the so-
called population)which allows to find an entire set of Pareto-
optimal solutions in a single run of the algorithm, instead
of having to perform a series of separate runs as in the case
of the traditional mathematical programming techniques. On
the other hand, GAs have been applied successfully in a wide
variety of optimisation problems (Li et al. 2007). Therefore,
developed GAs has been used to solve the problem presented
in this paper. At the same time, a mathematical model is pro-
posed for driving developed GAs. A detailed description of
this model can be seen in Al-Zuheri et al. (2013). Thus, this
paper focused mainly on the development of genetic algo-

rithms to optimise multi-objective functions of performance
measures in terms of productivity and ergonomics of mixed
model assembly line using WWAL approach for assembling
a plastic electrical box.

Design problem: mixed model assembly system
optimisation problem

Let’s assume, hypothetically speaking, an assembly cycle of a
plastic electrical box produced in a design andmanufacturing
company. Figure 2 shows the plastic box assembly process
and the models. The product is assembled on a flow line with
seven workstations.

The line is used to assemble two different model types. To
assemble model A requires processing on workstations (1,
3, 4, 6, 7) and model B requires processing on workstations
(1, 2, 4, 5, 6, 7). Therefore, the models are nearly identical
except that with model B process 2 is substituted for process
3 in model A. In addition, model B requires process 5 while
model A does not. The processes must be run and completed
in the exact sequence given for each model,

Table 2 gives average working time, and average expen-
diture for the metabolic energy requirement schedules of the
two model types needed to complete the assembly tasks.
The average working time are determined through method
time measurement (MTM) and hence require re-calculation
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Fig. 2 Illustration of plastic electrical box assembly process; a the assembly line, b model A, c model B

Table 2 Task descriptions, average working time, required metabolic energy expenditure and the weight of the each model of product at each
workstation on the line

Workstations The task Model type A Model type B

Average working
time (s)

Metabolic energy
expenditure
(kcal)

Weight of product
after process (kg)

Average working
time (s)

Metabolic energy
expenditure
(kcal)

Weight of product
after process (kg)

k1 Preparing 40 1.581 3.67 40 1.581 4.57

k2 Trimming – – – 30 1.511 4.30

k3 Fastening 55 1.811 5.22 – – –

k4 Inserting 86 1.632 8.52 86 1.632 4.82

k5 Assembling – – – 70 1.293 6.52

k6 Testing 75 1.46 8.52 75 1.46 6.52

k7 Packing 44 1.163 9.65 44 1.163 7.34

Total working
time = 300s

Total energy
expenditure =
7.637 Kcal

Final weight of
product =
9.65kg

Total working
time = 345s

Total energy
expenditure =
8.64 Kcal

Final weight of
product =
7.34kg

according to the variable requirements in themodel proposed
in Al-Zuheri et al. (2013).

Also Table 2 lists the product model data in terms of task
descriptions and the weight of the product of each model at
each workstation on the line.

Let’s assume, that on this particular day the “make to
order” WWAL is asked to assemble of 80 and 100 prod-
ucts from model A and model B, respectively. In this design
problem, the assumptions that the available production time
per that day for assembly of both models is one eight hour
shift per day (480 min). Each model gets exactly half of
this available time, then each model will have 90–240min
of assembly time to produce the required rate. The avail-
able production time is split between the two models. The
required production demand frommodel A is assembled first
and then production demand of model B. The workstations
are located to ensure an efficient layout, and themost efficient
assembly process arrangement maximises productivity of
workers.

The design problem is to determine which number of
workers and their skill levels (low and high) to select and
which walking speed of workers (slow or fast) to assign so as
to meet production demand requirements for the two product
models as well as optimising the system operational design
as mentioned in the objectives in “Design problem: mixed
model assembly systemoptimisation problem” section.Also,
the design problem includes determining the best available
assembly time for both models to match the set design objec-
tives.

Rather than the specific data that are given in Table 2, the
parameters related to structure of the system and for work-
ers gender, weight, and their cost, according skill levels are
shown in Table 3, while the operational design variables that
will affect the objective design functions are:

Variable x1: skill level of slow walking workers;
Variable x2: number of slow walking workers;
Variable x3: walking speed of workers;
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Table 3 Input parameters of the

WWAL and their levels Parameters Notation Values Unit

Average weight of workers BW 82 kg

Number of workers on the line M 5 –

Gender of workers G Male –

Age of workers – 25–45 Years

Variance of performing tasks VK 0.15 –

Penalty function of fatigue ε 0.97 –

Factor of guaranteeing tasks α 1.64 –

The distance between workstation and other DT 4 m

Cost of worker per hour working Cmj Worker skill level Cost $/h

100 % 25

90 % 23

80 % 21

70 % 20

Grade of the floor surface g 0.9 –

Variable x4: the available assembling time for model A; and
Variable x5: the available assembling time for model B.

These five critical variables are set to a different level as
shown in Table 4. Based on these settings, there are a total
of hundred thousands of different combinations and for each
combination the model has a fitness function value is also
equal to performance measure (objective function value).

The mathematical model

The model completes two objective functions for each of
productivity and ergonomics. The four objective functions
as follow:

• Minimise the balance of labour blockage,
• Minimise the shift time labour cost,
• Minimise the metabolic energy consumption, and
• Maximise the rate of exposure variability

A detailed formulation of these objective functions with
assumptions, input parameters, variables and constraints can
be seen in Al-Zuheri et al. (2013).

In conclusion, following the end-user equations that are
used to describe these objective functions.

• Minimise the balance of labour blockage:

The balance of labour blockage η, is the ratio of in-process
waiting time divided by the overall cycle time:

f1 (x) = η (1)

Min. f1 (x) = Min

(
tkb
I m

Tca(n)

)
(2)

Subject to:

PShi f t =
∑

m∈M

Pm ≥
(

TShi f t

t kb
I m

)
(3)

This constraint ensures that every candidate solution has
production rate equal or greater than to that with traditional
assembly line FWAL.

• Minimise the shift time labour cost:

The cost of shift time labour requires calculation for each
design of WWAL. The cost considered is direct labour cost.
Given the number of workers, their efficiencies, their cost
per hour and the shift time hours, the labour cost in terms of
these variables are:

f2 (x) = CT I =
∑

m∈M

(Cost o f worker per hour shi f t time

× Shi f t time hours) (4)

Mathematically, the objective function is to minimise the
total shift time labour cost:

Min. f2 (x)= Min.(CT I )= Min.

⎛
⎝ ∑

m∈M

∑
j∈J

Cmj × TShi f t

⎞
⎠
(5)

Subject to:

CT I ≤ CT l FW (6)

where Cmj is the cost of worker per shift time hour. CT l FW
is the shift time labour cost for traditional assembly line-
FWAL, and normally in this line the number of workers equal
the number of workstations and the cost of shift time hour is
low.
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Table 4 Operational design variables and their levels for the WWAL design

Design variables Notation Level/code Number of levels Units

1 2 3 4

Variable x1—skill level
of slow walking
workers

γ 70% 80% 90% – 3 –

Variable x2—number of
slower walking
workers

S 2 3 4 5 4 –

Variable x3—walking
speed of workers

vo 0.7 1.4 – – 2 m/s

Variable x4—available
assembling time for
model A

TA 90 240 – – 151 min

Variable x5—the
available assembling
time for model B

TB 90 240 – – 151 min

• Minimise the metabolic energy consumption:

Since inWWAL, theworker needs towork standing up rather
than sitting down also, he or she moves along with the work-
piece. Mathematically then, the Garg’s model (Garg et al.
1978) for the prediction of average metabolic energy expen-
diture requirement to perform the entire assembly tasks in
one cycle time Em (n) in WWAL is as follows:

f3 (x)= Em (n)= Min. f3 (x)= Min.Em (n) (7)
Min.Em (n)

=
[(

Emp ×Tc (n)
)+(∑

k∈K �Ek
Om

) + Min.
(∑

k∈K �Ek
W m

)+Min.(�Ekb
I m)

]
Tca(n)

(8)

Subject to:

Em (n) ≤ 3.2
K cal

min.
(9)

This constraint ensures that in addition to the energy cost
of walking or in-process waiting to work, the metabolic
energy requirement to assemble one product by the worker
in each candidate solution should not exceed the limitation
value of energy consumption 3.2 kcal/min. in a working day
(8 h) (Waters et al. 2011; Zhu et al. 2010).

• Maximise rate of exposure variability

This measure is the ratio of overall walking time between
workstations to the amount of time worker spends to perform
all tasks of assembly job during the work cycle with standing
position.

f4 (x) = ϕ(n) (10)

Max . f4 (x) = Max . (ϕ (n)) = Wc (n)

SC (n) + tkb
I m

(11)

Subject to:

Lw = WC (n) × n × vo

1000
< 4.32km (12)

The OSHA regulations (2009) related to the amount of maxi-
mumwalking distance for assembly line worker cannot have
more than 4.32 km (2.7 miles) at the shift time.

Genetic algorithms

GAs are meta-heuristic stochastic approach for finding the
global optimal solution for a combinatorial optimisation
problem (Liu et al. 2011). They mimic the mechanism of
genetics and natural selection (survival of the fittest) natural
genetics as described by Charles Darwin (Li et al. 2007).
Holland was introduced GAs in the 1960s and 1970s as an
approach to evolve an optimal solution from a population
of initial feasible solutions available for solving an optimisa-
tion problem (Goldberg 2012). TheGAs search for optimal or
near-optimal solutions starts with the generation of a number
of individuals for the initial random population of solutions.
Each individual in the population is a chromosome represent-
ing a solution of the problem. The chromosome is a string
of symbols or (set of genes) can be coded in different forms;
binary, integer, real, etc. With taking into account specified
selection rules, the initial population evolves towards a pop-
ulation expected to include the optimal solution, eventually
accomplished through successive iterations called genera-
tions.

Within a generation, GAs undertake to select subsets (usu-
ally two) of chromosomes from the current population called
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parents for mating them to produce new chromosome called
children (or offspring). Chromosomes are selected accord-
ing to their fitness relative to the current population. Based
on that, the chromosomes or solutions that are of higher
fitness then, have a greater chance of selection and then
“mating” with another high-fitness chromosome for pro-
ducing new chromosomes. Selected chromosomes are sub-
jected to rules of combination to yield children; genetic
operators—crossover and mutation. The crossover consists
of the exchange of parental genes through passing it on to
the new chromosome. Through applying mutation, further
genetic diversity is introduced into the chromosomes of a
population, and by further mating between parents; a set
of new generation chromosomes is formed. After several of
generations, the algorithm tends to the optimal chromosome,
which globally, has a better fitness in comparison with other
chromosomes.

Design of the GAs structure for the optimisation of the
WWAL design problem

GAs are responsible for inserting the changes of values for
design variables into the mathematical model. For reaching
optimal design of WWAL, the approach works by iteration,
and every result given by the model corresponds a design
solution of WWAL. The chromosome in solution spaces of
WWAL includes a number of genes (design variables), that
describe operational aspect of the system. These variables are
as listed in “Design problem: mixed model assembly system
optimisation problem” section. The WWAL design corre-
sponding to each chromosome is characterised by its fitness,
which is measured by its resultant objective function value
(will be derived later in this section).

Herein, a generation consisting of evolving chromosomes
of the previous population and new chromosomes are made
through reproduction process by means of crossover, muta-
tion, and selection of their parent’s chromosomes. Figure 3
shows optimisation procedure using GAs and mathematical
model. Details are presented on the designed GAs compo-
nents in the forthcoming subsections of this paper.

Chromosome representation

For the problem under consideration in this paper, real coded
value variables are adopted to present chromosomes. Using
real coded variables makes it possible to use large domains
(even unknown domains) for variables. There is also a chance
to increase the efficiency of GAs by exploiting the incremen-
tal nature of the functions with continuous variables. Herein,
each chromosome (solution) of WWAL design comprises a
vector of real design variables, and it is very close to the real
structure of the practical problem. In this regard, considering
the alternative design solution is a, let n the number of design

variables that are allocated to design solution, thewhole chro-
mosome code which represents all design variables, is shown
by the following equation:

xa = [xa(1), xa(2), . . . ., xa(n)], a = 1, . . . . . . .A (13)

where A is the number of available feasible solutions to
the problem. The design variables xn(n = 1, 2, 3, . . . , n)

are operational variables. Also these variables is not uncon-
strained and must be within a level from xmin to xmax .

Generation of the initial population

Initialisation of the population of chromosomes (set of pos-
sible solutions to the problem) may be randomly created, or
created according to heuristic procedures (Zhan and Zhang
2013). Yu and Yin (2010) have been indicated that the per-
formance of the GAs algorithms is not as good from well-
adapted (seeded) population as it is from a random start.
Based on that, in this paper the chromosomes in an ini-
tial population are randomly generated ones. The number
of chromosomes within the population is called population
size Pz.

Fitness evaluation of the chromosomes in the population

Once the initial population is developed, fitness evaluation
for each chromosome is performed. Fitness function is the
key performance index in GAs application and can deter-
mine which of the chromosomes will reproduce and sur-
vive into the next generation. The better performing chro-
mosomes are selected as candidates for evolving them using
the genetic operations. In general, derivation of fitness func-
tion is through the objective functions, and is used in suc-
cessive genetic operations (Garg 2010). Since the objectives
f1 (x) , f2 (x) and f3 (x)must beminimised and f4 (x)must
be maximised (as stated in “Design problem: mixed model
assembly system optimisation problem” section), it is then
required to convert these multiple objectives into a single
overall objective function, called a resultant objective func-
tion. The resultant objective function is considered as afitness
function requiring final optimisation. The desirability func-
tion approach (Derringer and Suich 1980) is used to achieve
the converting frommultiple objectives to single objective in
two stages, as described below.

Stage 1—defining individual desirability functions for
objective functions: as a result from computational exper-
iments, assuming that there are a different alternative
solution for the candidate problem, each objective (pro-
ductivity or ergonomics) have desirability at a solution.
Accordingly ηa, Ca, Ea and ϕa denote, respectively the
η(n), CT I , Em (n) and ϕ(n) objectives values for solutions
(a = 1, . . . ., A). In this paper, the target is for three objec-
tives to be minimised and one objective to be maximised
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Fig. 3 A schematic diagram of
the integrated GAs and the
mathematical for conducting the
design problem
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(for the one-sided case), as in the case when the objective is
productivity measure (balance of labour blockage), the indi-
vidual desirability da for ηa is defined as follows:

da(ηa) =

⎧⎪⎨
⎪⎩
1, ηa ≤ Ln(

ηa−Lη

Uη−ηa

)W1
Lη ≤ ηa ≤ Uη a = 1, . . . . . . , A

0, ηa ≥ Un

(14)

For second productivity objective (shift time labour cost),
Ca :

da(Ca) =

⎧⎪⎨
⎪⎩
1, Ca ≤ LC(

Ca−LC
UC −Ca

)W2
LC ≤ Ca ≤ UC a = 1, . . . . . . , A

0, Ca ≥ UC

(15)

For ergonomics objective (average metabolic energy
expenditure), Ea :

da(Ea) =⎧⎪⎨
⎪⎩
1, Ea ≤ L E(

Ea−L E
UE −Ea

)W3
L E ≤ Ea ≤ UE a = 1, . . . . . . , A

0, Ea ≥ UE

(16)

For second ergonomic objective (rate of exposure
variability),ϕa :

da(ϕa) =

⎧⎪⎨
⎪⎩
1, ϕa ≤ Lϕ(

ϕa−Lϕ

Uϕ−ϕa

)W4
Lϕ ≤ ϕa ≤ Uϕ a = 1, . . . . . . , A

0, ϕa ≥ Uϕ

(17)

whereUη(Lη), UC (LC ), UE (L E ) andUϕ(Lϕ) are the upper
(lower) limits of the four objective functions, respectively.
The w1, w2, w3 and w4 indicates the weight. In the design
problem of this paper, the assigned weights imply that bal-
ance of labour blockage ηa and average metabolic energy
expenditure Ea are twice as important compared with other

objectives important Ca and ϕa , the shift time labour cost
and rate of exposure variability.

Stage 2—calculation of the overall desirability: an overall
desirability function Da can be obtained by using the geomet-
ric mean of the individual desirability da for each measure.
It reflects the composite desirable grade of the ath alternative
solution desirability with respect to the objective functions.

Da =
(

v∏
v=1

drv
a,v

)1/
∑

rv

a = 1, . . . . . . .A (18)

where: da,v = the vth objective function of alternative solu-
tion (a); and

rv = the relative importance that is assigned subjectively
and, respectively to each objective function. In problem
design of this paper, v = 4 and for more simple form of
the equation, the expressions for the individual desirabil-
ity of each objective function : da (ηa) = η̂a, da (Ca) =
Ĉa, da (Ea) = Êa , and da (ϕa) = ϕ̂a . Accordingly, the
overall desirability functions as in the following:

Da =
(
η̂a × Ĉa × Êa × ϕ̂a

)1/4
a = 1, . . . . . . .A (19)

In GAs of this paper, the resultant objective function (the
overall (or total) desirability, Da given in formula 19, is
adapted as a fitness function. Then, the goal ofWWALdesign
optimisation problem is to find the levels of design variables
that maximise the overall desirability Da , in the design level
of interest, that is;

Max .(Da) = Max .

[(
η̂a × Ĉa × Êa × ϕ̂a

)1/4]
a = 1, . . . . . . .A (20)

Subject to:

xmin ≤ x ≤ xmax (21)

where, formula 21 can be stated as the primary or initial
design levels. xmin, xmax are the minimum and maximum
design levels of operational variables, respectively. This con-
straint of optimising design of WWAL is the last constraints
to be met in a set of feasible solutions before consider one of
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them as superior choice that meets the previous four objec-
tives.

Selection strategy

Since the best chromosomes (solutions) in the current gener-
ation are used to reproduce the next generation, this requires
establishing a strategy to select those chromosomes. When
implementing GAs, there are two selection strategies in
choosing the chromosomes for reproduction of new chromo-
somes; elitist and non-elitist. Elitist strategy is used herein to
avoid losing best solutions in population by saving a number
of them and later copying it into the next generation for the
process of evolution.

Genetic operators

Several types of operators are known currently. Please note
however, that these operators are beyond the scope of this
paper. Following is a brief background about the rule of each
operator in evolving process of GAs, along with the types of
operators selected for this paper.

Selection process:Darwin’s evolutionary theoryof the sur-
vival of the fittest is applied in the parent selection process for
chromosomes in GAs applications. Based on this law, chro-
mosomes with high fitness function values are selected for
genetic operations using stochastic selection process (Gold-
berg 2012).Many types of selection techniques are suggested
with which to select the best chromosomes to be copied
into the next generation (Martinec and Bundzel 2013). The
biased roulette wheel technique is the most popular from
these techniques. This paper applies the roulette wheel tech-
nique because it is easy to implement and mimics nature
more faithfully and consequently is much more appealing
(Tang and Tseng 2012).

Crossover: crossover or recombination is the processmost
widely used by which a chromosome pair recombines to
generate a new chromosome pair (offspring). As the name
implies, this process involves swapping some parts (genes)
between the pair selected chromosomes. The crossover oper-
ators have a very big chance of reproducing the parent chro-
mosomes’ desirable features, and consequently expect to
improve the solution quality of the problem undertaken.
Probabilistic recombination is commonly used to improve or
repair the offspring, rather than using complex or intelligent
heuristics for this purpose (Kucukkoc and Yaman 2013). In
this regards, the recombination process is not applied to every
pair of chromosomes selected for recombination.Theprocess
is controlled by a crossover probability (Pc) (Javadian et al.
2011). This probability indicates the number of chromosome
pairs that will be involved in the crossover operation. Typi-
cally, the probability for crossover ranges from 0.6 to 0.95.

MutationCrossover

Fitness
function

70% 2 100 105 0.7

90% 5 240  

80% 3 

70% 2

90% 4 150 

90% 5 240    

90 95 0.7

100 105 0.7

70% 2 90 95 0.7

80% 3 100 105 0.7

90% 4 150 175 0.7

90% 5 240 200 1.4 

Initial population Selection

175 0.7

200 1.4

80% 3 

70% 2

90% 4 150 

90% 5 240  

90 95 0.7

100 105 0.7

200 1.4

175 0.7 175 0.7

90% 4 150 200 1.4

80% 3 90 95 0.7

Fig. 4 Evolving process by GAs operators for optimisation WWAL
problem in this paper

From several types of crossover, single-point crossover tech-
nique is used in this paper.

Mutation: mutation is another genetic operator is applied
to single chromosome for creating a modified mutant—new
offspring being added to the population. In mutation oper-
ation, one or more gene values of the created chromosome,
randomly chosen for replacement to create another offspring.
With this new offspring, the GAs may be able to reach a
more optimal solution than was previously possible using
crossover operator. For real-coded genetic algorithm, like the
one used in this thesis, uniform mutation is applied. In real
coded GAs, uniform mutation operation replaces a gene to
a real number within a fixed solutions space if a gene of a
chromosome is mutated. This type of mutation is preferable
in research because it can configure the searching solutions
spaces with generations (Abdul-Rahman et al. 2011). Like
crossover operator, mutation can be done based on heuristics
or on probability (Pm) (Gen and Lin 2013; Kucukkoc and
Yaman 2013). Typically, this probability ranges from 0.001
to 0.01. A simplified scheme of GAs for chromosomes rep-
resenting and operators is given in Fig. 4.

Mechanism of constraints handling

Before evaluating all design objectives as outcomes of mod-
elling process it is not known if any design solution is fea-
sible or not, especially if any conflict exists. With the math-
ematical model of the overall desirability function (formula
15) if any value of da for anyone from the objective func-
tions (ηa, Ca, Ea and ϕa) = 0, then the overall desirability
function, Da = 0. Hence, the exploration of GAs to reach
an optimal solution can not include infeasible solutions that
involve measure values falling outside of the acceptable lim-
its (e.g. da = 0). This mechanism is beneficial to the optimi-
sation process as it ensures the optimal solutions will gener-
ally locate on the boundaries between feasible and infeasible
solutions. The general form of this mechanism in this paper
as follow:

Da(i) =
{

Da(i), if a(i)feasible;
0, otherwise; (22)
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Stopping criteria

Usually, GAs are stopped if the quality of the solution to the
problem on hand is not improved significantly per genera-
tion. Thus, the designer of the algorithms has to decide the
stopping criteria. Because if the algorithms are let to run for
too long, time and computational power are wasted and they
will also revisit all the solutions it has previously searched
out. The proposed stopping criteria are as follows:

• Stop the algorithmic search process if it reaches the
acceptable design solution for WWAL. Usually, when
the GAs search continues with negligible improvement
in solution quality for a number of generations, it has
either found a good answer or has become trapped in the
local optima.

• The GAs search should be stopped when no significant
variations are appreciated in the average of fitness func-
tion values for a certain number of generations.

Application of developed GAs to the WWAL design

As described in the preceding sections, the developed GAs
are aimed to find WWAL design solution that is supposed to
be optimal in terms of setting design objectives from a range
of alternatives conducted by using proposed mathematical
model in “The mathematical model” section. As illustrated
before, finding optimal design of WWAL involves determi-
nation of the best combination of decision variables so as
to optimise objective functions. By integrating the mathe-
matical model with developed GAs, optimal design solution
can be obtained. In application of GAs, the candidate design
solutions would be the array < n1, n2, . . . ., nk > in one line
and number of columns equals number of design variables.
Each column indicates a value to design variable.

Based on this general description, following, in Fig. 5, the
basic pseudo-code of real genetic algorithms to maximise
“Da”, as an approach to solve the WWAL design problem in
this paper.

Setting GAs parameters for the WWAL optimisation design

When applying GAs, one needs careful settings for the val-
ues of the basic parameters, such as crossover rate, muta-
tion rate, population size, selection strategy, max genera-
tion…etc. Since the performance of a GAs is greatly depen-
dent on setting the values of these parameters. In this regard,
selecting appropriate parameters might enable the algorithm
to find optimal solutions in a short time while local opti-
mum solutions may prevail and survive throughout the algo-
rithm run with improper parameter settings (Jäntschi 2010).
Because of this, the question may be raised as to which of

of the basic parameters and their level-setting values signifi-
cantly influence the performance of GAs.

Factorial experimental design

Computational experiments are commonly used to determine
which of the basic operators is most significant when com-
pared with the others, and what its value is Mosadegh et al.
(2012). Therefore, in this subsection, factorial experiments
are conducted in order to obtain the parametric levels that
will be set when implementing the GAs. Using a full facto-
rial experiment extracts the maximum amount of unbiased
information regarding the parameters affecting performance
of GAs and also their interactions (Jebari et al. 2013). The
experiments are conducted to investigate the effects of the
population size N , maximum number of generation Gmax ,
crossover probability Pc, mutation probability Pm . Rather
than Gmax , the level of each parameter was adopted from
previous studies. Table 5 includes the number of levels and
the settings of each parameter. The selection process is used
a roulette wheel with elitist strategy and setting size of two.
The experiment with these five parameters and three repli-
cates are conducted giving a total of 48 runs.

The settings of these parameters are based on character-
istics of fitness function. In other words, the best parameter
valuesmust be expected to have great improvement on fitness
function statistics (maximum fitness function).

The results and analysis of experimenting GAs parameters

Factorial experiments are conducted for the GAs basic para-
meter combinations on the design problem in this paper (pre-
sented in “Design problem: mixed model assembly system
optimisation problem” section) with Table 6 showing results
of these experiments. The result is the fitness function of opti-
mal solution of operational design of the research problem.

Analysis of variance (ANOVA) is used to investigate
the effects of the GAs parameters and their interactions on
searching performance in terms of finding the best fitness
function value. Table 7 shows these effects when GAs are
applied on the design problem in this paper. P value (or sig-
nificant probability) from ANOVA elements is used as an
informal measure about their significant effects. If the value
of “P” less than 0.05 this statistically indicates that the para-
meter is significant.

From Table 7, Pm and Gmax have significant effect on the
performance of GAs as their P-values are below 0.05. This
given conclusion from the above analysis of ANOVA applied
to the experiments of the GAs parameters in the design prob-
lem of this paper can only serve as guidelines. Reasonable
conclusions may need more levels of parameters for experi-
menting on the problemat hand and on the basis of the experi-
mental observation an appropriate value should be selected. It
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Fig. 5 The pseudo-code of GAs for maximisation of Da

Table 5 The levels of basic
parameters for GAs Parameters Number of levels Setting

Crossover probability Pc 2 0.6, 0.90

Mutation probability Pm 2 0.005, 0.01

Population size N 2 40, 50

Maximum number of generations Gmax 2 100, 300

is therefore advisable to run further experiments with differ-
ent settings of each parameter and compare the performance
of the GAs. This procedure aims to improve the stability
of the algorithm and avoid setting parameters randomly so
as to achieve the goal of quantifying parameter settings and
significantly advance the performance of the algorithm.

Further experimentation and analysis with GAs parameters

For further experimentation analysis and consequently select-
ing the best values of Pc, Pm andpopulation size N a compar-
ison of the effect of changing the values of these parameters
on GAs performance is conducted. Except for the changing
parameter all other parameters are fixed during experimen-
tation. In this context, in order to compare with the result of

each case, basic parameters were assigned so that the size
of entity population is 40, the crossover probability is 0.8,
and the mutation probability is 0.005. That is, when there is
a change in N value from 40 to 200 to reproduce chromo-
somes, the Pc is fixed to 0.8 and the Pm is fixed to 0.005.
Also when there is a change in the Pc value then the N and
the Pm values are fixed.

The Gmax is not considered in further experimentation as
the effect of this parameter on GAs performance was well
known from previous studies—if it is large it will enhance
the opportunities of obtaining the optimum solution but will
augment the cost of operation and the computational time is
not limited. The assumption is that the simulation model of
GAs is run for 300 generations whilst taking into account the
constraints of the design problem, also the dependent vari-
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Table 6 Computational results
for combinations of GAs basic
parameters

Experiment no. GAs parameters Fitness function

Pc Pm N Gmax

1 0.6 0.005 50 100 0.656382

2 0.6 0.01 40 100 0.635648

3 0.6 0.005 40 300 0.640247

4 0.6 0.005 40 100 0.616175

5 0.9 0.01 50 300 0.65348

6 0.6 0.01 50 100 0.661875

7 0.6 0.01 50 300 0.649159

8 0.6 0.01 40 300 0.632918

9 0.9 0.005 40 300 0.660785

10 0.6 0.01 40 100 0.651889

11 0.9 0.005 40 100 0.657718

12 0.9 0.005 40 300 0.644749

13 0.9 0.01 50 100 0.605704

14 0.9 0.005 50 100 0.65348

15 0.9 0.01 40 100 0.605704

16 0.6 0.005 50 100 0.660785

17 0.6 0.005 40 300 0.551074

18 0.9 0.005 50 100 0.544543

19 0.6 0.005 50 300 0.660785

20 0.9 0.005 40 100 0.644749

21 0.6 0.005 40 100 0.642614

22 0.6 0.01 40 300 0.635648

23 0.9 0.005 50 300 0.657718

24 0.9 0.01 40 300 0.656382

25 0.9 0.01 40 300 0.616175

26 0.6 0.005 50 300 0.649159

27 0.9 0.01 50 300 0.651889

28 0.6 0.005 50 100 0.551074

29 0.9 0.005 50 300 0.561576

30 0.6 0.01 50 300 0.661875

31 0.6 0.005 50 300 0.551074

32 0.9 0.01 40 300 0.65348

33 0.9 0.01 50 100 0.616175

34 0.9 0.01 50 100 0.649159

35 0.9 0.01 40 100 0.661875

36 0.9 0.01 50 300 0.661875

37 0.6 0.01 50 100 0.626139

38 0.9 0.01 40 100 0.630947

39 0.6 0.01 50 300 0.568407

40 0.9 0.005 40 300 0.649159

41 0.6 0.01 40 300 0.635648

42 0.6 0.005 40 100 0.65348

43 0.6 0.005 40 300 0.65348

44 0.6 0.01 40 100 0.626139

45 0.9 0.005 40 100 0.65348
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Table 6 continued Experiment no. GAs parameters Fitness function

Pc Pm N Gmax

46 0.6 0.01 50 100 0.644749

47 0.9 0.005 50 300 0.657718

48 0.9 0.005 50 100 0.647301

Table 7 ANOVA table of factorial experiments of basic parameters on design problem

Parameters Sum of squares Df Mean square F value P value Significance

Pc 1.268 × 10−8 1 1.268 × 10−8 1.829 × 10−3 0.9661 –

Pm 2.984 × 10−5 1 2.984 × 10−5 4.31 0.0450 ∗
N 5.316 × 10−6 1 5.316 × 10−6 0.77 0.3868 –

Gmax 5.601 × 10−5 1 5.601 × 10−5 8.08 0.0072 ∗
Pc × Pm 6.576 × 10−9 1 6.576 × 10−9 9.488 × 10−4 0.9756 –

Pc × N 9.967 × 10−6 1 9.967 × 10−6 1.44 0.2381 –

Pc × Gmax 5.420 × 10−7 1 5.420 × 10−7 0.078 0.7813 –

Pm × N 1.003 × 10−6 1 1.003 × 10−6 0.14 0.7058 –

Pm × Gmax 2.136 × 10−5 1 2.136 × 10−5 3.08 0.0874 –

N × Gmax 1.104 × 10−7 1 1.104 × 10−7 0.016 0.9002 –

*The parameter has an effect

able in these experiments is the maximum fitness function
value. In consideration of the variation in the fitness function
value that may be caused by changes to the initial popula-
tion, three replications of GAs run are executed and it was
decided that the GAs run showing the best performance (in
terms of convergence speed and fitness function value) can
be selected as an optimal GAs with respect to the values of
experimented basic parameter. The goal is to select the GAs
parameters in which peak fitness values are more likely to be
found and also the convergence to an optimal solution occurs
in a short time period.

Experimentation of crossover operator:the crossover prob-
abilities used in this experimentation are 0.5, 0.6, 0.8, 0.9,
and 1.0 and test individually. The algorithm has been run
for each crossover probability Pc with the other parameters
fixed. The results summarised in Fig. 6 give a figure that com-
pares only the average of best fitness function value found in
a generation.

As Fig. 6 shows, when Pc is 0.5, the optimisation model
converges to fitness a function value of 0.644749, from gen-
eration 112. In case a Pc is 0.6 the model converges to value,
0.644749, after generation 56. The model converges to fit-
ness value 0.661875, after generation 45, when a Pc is 0.8.
The model converges to fitness value 0.65348, after genera-
tion 145 when Pc is 0.9 and the model converges to fitness
value 0.616175, after 229 generations when Pc is 1.0. The
experimental result, clearly indicates that when a Pc is 0.8
then the fastest model converges to highest fitness values of
the Pc values, 0.661875.
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Fig. 6 Comparison of crossover probability value on converging to
best fitness function value

Experimentation of mutation operator: according to the
results in Fig. 7, in case a Pm is 0.005, the model converges
to fitness value 0.6402472, after 43 generations while other
values of Pm ; 0.007, 0.008, and 0.009 converged the optimi-
sationmodel to the low values of fitness function, 0.6110067,
0.6329181, and 0.5445833 with more generations; 97, 84,
and 48, respectively. At Pm is 0.01 the model converged to
fitness values 0.621217 after 32 generations. Hence, Pm at
0.005 has the highest performance.

Experimentation of population size: the tested popula-
tion size in experimentation is 40, 50, 60, 80 and 200.
Results in are summarised in Fig. 8 which shows the
value of fitness function value per each generation after
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Fig. 8 Comparison of the effect of population size on converging to
best fitness function value

optimising the mathematical model of the design problem
during generation 300. Results show that convergence to
better solutions happens sooner than with bigger popula-
tion sizes. The population size of 60 reached best fitness
value of 0.661875 at generation 179. On the other hand,
the fitness value to population size of 50, 80 reached to
0.644749 and 0.640247 during generation 136 and 221,
respectively.

Summary of experimentation

Examining the effects of GAs parameters values on the per-
formance of the algorithm to find the best parameter combi-
nation for the design problem of this paper tends to conclude
the best combination of parameters are the following:

• Crossover probability is 0.8;
• Mutation probability is 0.005;
• Population size is 60; and
• Maximum number of generations is 300.
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Fig. 9 The optimisation process for maximizing fitness function for
operational design solutions of mixed model WWAL during 300 gen-
erations

Table 8 The optimal operational design solution of mixed model
WWAL found by GAs search

Operational design variables value Performance measures

x1 x2 x3 x4 x5 y1 y2 y3 y4

80% 1 0.7 128 158 0.229 706 2.87 0.141

The above selected parameter values for optimising the oper-
ational design of mixed model WWAL; are consistent with
the results obtained from De Jong’s (1975) study for off-line
setting of GAs parameters. In that study, DeJong selected
low values for crossover probability and mutation probabil-
ity, 0.6 and 0.001, while the selected population size was 50
and selection strategy was elitist.

The results and analysis of design optimisation problem

The developed GAs in this paper is executed using the best
parameter values gained from the experiments to solve the
problem of optimising operational design for mixed model
WWAL presented in “Design problem: mixed model assem-
bly system optimisation problem” section. Figure 9 shows
the convergence to best function value of optimising prob-
lem, 0.640247. It also shows the change in combinations for
the design variables obtained through the operational design
variables levels, which not changed the fitness function val-
ues among the solutions composing the last 258 generations.
Therefore, the final optimal design variable combinations
that simultaneously satisfy the requirements placed (i.e. opti-
misation objectives) on each one of the measures and opera-
tional design variables (i.e. multiple-objective optimisation)
is determined. The final optimal operational design variable
combinations of WWAL are presented in Table 8.
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Assembly line design assessment

Although optimised operational design for mixed model
WWAL are generally reliable as shown in Table 5, it has
the following drawbacks:

• Low efficiency due to high of balance of labour blockage.
The value of this design objective was 0.111 indicated
the optimised operational design generates blockage and
starvation in the previous and successive workstations (5,
6) causing a reduction in theworker productivity and con-
sequently in line throughput. This is because the worker
productivity depends on the overall cycle time for assem-
bling the product and as usual the line efficiency varies
considerably with the cycle time.

• High expenditure energy cost. Since the expenditure in
one walk cycle was 3.28 kcal, the current design of the
system where a worker carries out the assembly tasks by
standing, carrying, walking and waiting during blockage
in an 8 hr.workday,was found to almost exceed the physi-
ological capacity of worker to maintain suitable physical
fitness and work ability. In WWAL operational design,
the worker’s metabolic response to the amount of work
assigned was affected by two variables;

– Walking distance: as expected, walking distance had the
greatest effect on walking time; and

– Behavioural factors of workers, in particular walking
speed.

Therefore, implementing aWWALapproach needs “some
time” involving due consideration of both productivity and
ergonomics in the early design stage of manufacturing sys-
tems. Manual assembly systems can be designed using dif-
ferent structural designs. In general, different structural sys-
tem designs have a profound impact on the performance of
the system itself in terms of ergonomics and productivity.
Structural system designs are determined by different vari-
ables; (1) the arrangement of theworkstations (layout) (2) the
number of workstations (3) the movement distance between
workstations (Hu et al. 2011). Also, the structural design of
the system should assure safety of movement especially in
dynamic systems like WWAL where workers slipping while
performing their job is a commonly reported due to floor-
ing surface problems. These variables, therefore, should be
considered satisfactorily in order to ensure that an assem-
bly system is appropriately designed for WWAL approach
implementation requirements.

The mathematical model developed in Al-Zuheri et al.
(2013) and the optimisation approach developed in this paper,
may allow prediction of those structural designs that max-
imise the flexibility in the system when future changes in
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Fig. 10 Comparison of running a GAs using the modified desirability
function (GAsmodifiedDF) and running GAs using Derriger and Suich
desirability function (GAs D-S DF) only

product demand are required together with maximised per-
formance and reduced costs by considering both productivity
and ergonomics together.

Comparison of GAs performances using the modified
desirability function versus using Derriger and Suich
desirability function

To illustrate the effectiveness of using themodified desirabil-
ity function, Fig. 10 illustrates a comparison of running the
GAs on illustrative example problem using this desirability
function and Derriger and Suich desirability function.

After 45 generations, the GAs with modified desirability
function converged to near the global optimal design solu-
tion with value of fitness was 0.640247. While the Derriger
and Suich optimal design solution in searching GAs had the
fitness value of 0.551074 and converted to it after 12 genera-
tions, after that, the local search failed to increase the fitness
value. The design solutions which found by GAs search with
the type of Derriger and Suich desirability function is listed
as follows.

x1 = 70%, x2 = 2, x3 = 0.7, x4 = 121,

x5 = 152, y1 = 0.227, y2 = 637, y3 = 2.923, y4 = 0.149.

Since the Derriger and Suich desirability function cannot
evaluate the relative fitness of infeasible chromosomes the
GAs cannot determine which parents are better for repro-
duction. Evidence of this is that the GAs ran with the Der-
riger and Suich desirability function trapped in local optimal
as shown in Fig. 9. While the GAs that ran with the modi-
fied desirability function converged to a value near the global
optimal in same number of generations 300. This is because
GAs searching in this case is able to consider even infeasible
solutions that as possible consist of feasible regions.
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Conclusions

This paper has described the development of the optimisa-
tion design approach of manual assembly line with walk-
ing worker. As GAs were selected in this paper as the
appropriate optimisation approach for solving the WWAL
design problem, the fundamental structure of GAs was
outlined. It included chromosome representation, genera-
tion of initial population, fitness function, selection strat-
egy, genetic operators (e.g. selection, crossover and muta-
tion operators), handling of constraints and stopping cri-
teria. Real number coded chromosome representation was
adopted as the internal object representation for the solu-
tions search in the GAs of this paper. The algorithm
is designed to implement the developed GAs for find-
ing a WWAL design depending on the given input para-
meters and design variables to make this task flexible
and systematic as possible. Setting basic parameters val-
ues for developed GAs for best performance was based
on a premature convergence of fitness function to opti-
mal solution. Furthermore, the development process of
GAs also included introducing a penalty function as a
scheme to handling the constraints of optimisation in
algorithm.

For demonstrating the effectiveness of an algorithm devel-
oped to handle the WWAL optimisation design problem,
GAs were run to find an optimal operational design for
the designed problem; mixed model manual assembly line
intended to be run with walking workers.

Since the solution design (chromosome representation)
in any GAs is quite problem domain dependant, hence the
developed GAs procedure here cannot be used to effectively
solve different optimisation problems elsewhere. Based on
the above this paper successfully introduces a unique GAs.
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