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Abstract This paper deals with two-echelon integrated
procurement production model for the manufacturer and the
buyer integrated inventory system. The manufacturer pro-
cures raw material from outside suppliers (not a part of sup-
ply chain) then proceed to convert it as finished product, and
finally delivers to the buyer, who faces imprecise and uncer-
tain, called fuzzy random demand of customers. The manu-
facturer and the buyer work under joint channel, in which a
centralized decision maker makes all decisions to optimize
the joint total relevant cost (JTRC) of entire supply chain.
In this account, in one production cycle of the manufacturer
we determine an optimal multi-ordering policy for the buyer.
To be part of this, we first derive the JTRC in stochastic
framework, and then extend it in fuzzy stochastic environ-
ment. In order to scalarize the fuzzy stochastic JTRC, we use
an evaluation method wherein randomness is estimated by
probabilistic expectation and fuzziness is estimated by pos-
sibilistic mean based on possibility evaluation measure. To
derive the optimal policies for both parties, an algorithm is
proposed. A numerical illustration addresses the situations
of paddy procurement, conversion to rice and fulfillment of
uncertain demand of rice. Furthermore, sensitivity of para-
meters is examined to illustrate the model and algorithm.
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Introduction

Theglobalizationofmarket, information technologies, adver-
tisements etc. directly or indirectly influence the price of
commodities; stimulate rivalry among manufacturers, ven-
dors and retailers; and stimulate humor of customers, also.
As a result, the parameters of inventory system rapidly (ran-
domly or imprecisely or both) change over time. Whereas
changing scenarios elongate complexity of inventory mod-
eling problem. On the other side, it emboldens to use more
appropriate mathematical methods and adequate tools. Con-
sideration of either randomness or fuzziness in the involved
key parameters is not a more pertinent tool to deal with
the real life situations at all. In 1978, Kwakernaak intro-
duced the notion of fuzzy random variable (FRV) that
underlines randomness as well as fuzziness in the percep-
tion of an event. The notion of FRV is further enhanced,
extended and explained with more unambiguity by Gil et
al. (2006), Yoshida et al. (2006) and Shapiro (2009). FRV
is a hybrid type uncertainty, in which statistical uncertainty
as well as linguistic impreciseness both appear simultane-
ously. According to Shapiro (2009), randomness models the
stochastic variability of all possible outcomes of a situa-
tion and describes the inherent variation associated with the
environment under consideration. On the other hand, fuzzi-
ness relates to the unsharp boundaries of the parameters of
the model. In brief, we can realize that FRV as an ideal
instrument for dealing with the real life business transac-
tions.
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A SC (supply chain) is concerned with a network of facil-
ities or key business activities that sequentially performs the
functions of procurement of rawmaterials, conversion of raw
materials into intermediate and finished product, and finally
distribution of finished products to the customers. These ven-
tures of SC are accomplished at different stages by several
individuals (called entities of SC) such as supplier, manufac-
turer, distributor, merchandiser etc. As per requirement, dif-
ferent kind of items are stored at various places. Accordingly,
decisions concerning to shipment time, shipment size etc. are
taken by the administration. The decision making process is
characterized as either centralized or decentralized. The cen-
tralized decision making process assumes a unique decision-
makermanaging thewhole SCwith the objective tominimize
(maximize) the total SC cost (profit), whereas in the decen-
tralized decisionmaking process, there aremultiple decision-
makers whose objectives are conflicting (Mishra and Raghu-
nathan 2004). In the centralized decision making process,
the cooperation among the entities is indispensable in order
to optimize the total cost of whole SC. Numerous of results
have been published on the coordination and cooperation
between the manufacturer and the buyer suggesting the joint
channel-optimal ordering, shipment and lot sizing policies
in the deterministic environment. Goyal (1977) established
a joint economic lot-size (JELS) formula to minimize the
integrated relevant costs for both the vendor and the buyer.
Banerjee (1986) determined the JELS for the single-vendor
and the single-buyer integrated system, wherein the vendor
produces to order for the buyer on a “lot-for-lot” basis. Goyal
(1988) enhanced Banerjee (1986) JELS policy by relaxing
the assumption “lot-for-lot”. The above discussed threemod-
els lay down the foundation of integrated SC, and are the
most cited articles. However, we are intended to develop a
two-echelon integrated procurement production (IPP) that
deals with stochastic and then fuzzy stochastic demand rate.
So, keeping it in mind, in Sect. 2, we provide the detailed
literature review toward the our research objective. Remain-
der of paper arranged as follows: Sect. 3 provides the basics
about FRV and evaluation of its expectation incorporating
the possibilistic mean and probabilistic expectation. We also
establish a result in this section that will be used in cost func-
tion determination in later section. Section 4 provides the
notations and assumptions that are used throughout the arti-
cle. Then, next two sections are devoted to the mathematical
formulation of model for random demand and its extension
in fuzzy random environment, respectively. In Sect. 7, solu-
tion procedure is discussed and an algorithm is proposed
to find the optimal solution. The next section illustrates the
solution procedure with numerical example. Finally, Sect. 9
makes concluding remarks and suggest future scope of this
study.

Literature review

A production–inventory system that incorporates the pro-
curement of raw material, in the literature, it is termed as
IPP. An adequate number of articles addressed IPP cover-
ing variant circumstances in deterministic framework. Lee
(2005) developed an IPP for the single-manufacturer and the
single-buyer by considering conversion factor of rawmaterial
to finished product. In literature, conversion factor is defined
as fraction of raw material that is converted to as finished
product. Hajji et al. (2009) studied the perturbation in sup-
plier and the transformation stagewhich occur due to internal
difficulties or market constraints, and established the replen-
ishment policies for the manufacturer and downstream stage.
Ben-Daya and Al-Nassar (2008) studied a three-stage IPP in
the context of each stage having more than one firm, and
the number of shipment in each stage is integer multiple of
adjacent downstream stage. A single shipment of raw mate-
rial in a scheduling period increases the carrying charge of
raw material. In order to reduces this charge, Ben-Daya et
al. (2013) amended the model of Ben-Daya and Al-Nassar
(2008) by considering rawmaterial shipment times as a deci-
sion variable. Recently, Yu et al. (2012) developed an vendor
managed inventory (VMI) IPP inwhich vendor’s inventory of
rawmaterials continuously decreases due to the deterioration
and its conversion into the finished products. Above discus-
sion indicates that there is an ample scope to deal with IPP
by considering demand factor as stochastic, fuzzy or fuzzy
stochastic. However, we now need a brief review of literature
concentrating to fuzzy and fuzzy stochastic framework.

Consideration of deterministic constant demand is not
very appreciable in the realistic volatile market scenarios, on
the other hand, usage of probability theory needs a great deal
with past data records. But, it may happen that the historical
data record is not available at all (specially newly start busi-
ness), and if it is available, then the exact estimation of forth-
coming demand can not be taken as granted. Fuzzy set theory
that relaxes the essentiality of complete information (but it
is essential for use of probability theory) as well as provides
a flexibility (in the parameters), is a panacea to tackle the
real life situations. It also provides a framework to deal with
dynamical systems wherein impreciseness or ill-known data
such as demand is about d units per unit time, holding cost is
about Rs. h and so on. In recent years, the implementation of
fuzzy sets theory and techniques in supply chain inventory
management (SCIM) lodge a great interest among the practi-
tioners. Mahata et al. (2005) extended Banerjee (1986) JELS
policy in fuzzy environment by incorporating the buyer’s
order quantity as a fuzzy variable. Mahata and Goswami
(2007) addressed a trade credit financing for the retailer and
customers,wherein annual demand and cost parameters were
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Fig. 1 Graphical representation
of manufacturer–buyer
coordination

considered as fuzzy numbers. Pan and Yang (2008) extended
Yang and Pan (2004) integrated model for the single-vendor
and the single buyer by assuming fuzzy production rate and
fuzzy expected annual demand. Supplier selection in a sup-
ply chain is crucial because supplier play a key role in regard
of competitive advantage (Kubat and Yuce 2012). Kubat and
Yuce (2012), Pang and Bai (2013) design supply chains in
which fuzziness is inherent in supplier selection that are
examined by fuzzy analytic hierarchy or fuzzy performance
evaluation. Yang and Liu (2013) address a supply chain net-
work design (SCND) for fuzzy demand and transportation
cost, and accordingly construct a fuzzy mathematical pro-
gramming to demonstrate the situation. Bandyopadhyay and
Bhattacharya (2013) developed a bi-objective supply chain,
first objective is to minimize the total cost and second objec-
tive is to minimize the bullwhip effect, whereas order quan-
tity is taken as fuzzy number. Ayag et al. (2013) determined
the supply chain management strategies for dairy industry,
wherein fuzzy quality function deployment (QFD) is used to
maximize the customer satisfaction. Arikan (2013) studied
a multiple sourcing supplier selection problem, wherein the
retailer faced fuzzy demand rate.

In the real life situations, key parameters of a business
activities are not linguistically imprecise, only, but it may
have a randomfluctuation, also.Aswe discussed at the begin-
ning of the article, FRV is a hybrid type uncertainty that com-
prises fuzziness as well as randomness in itself, is used as a
pioneer tool in recent trend of inventory modeling problem.
Chang et al. (2006) and Dutta et al. (2007) extended the con-
tinuous review inventory system in fuzzy random environ-
ment. Chang et al. (2006) enhanced the normally distributed
lead time demand as a FRV and annual expected demand as a
fuzzy number, while Dutta et al. (2007) considered lead time
demand as a fuzzy variable and annual demand as a discrete
FRV. Lin (2008) and Dey and Chakraborty (2009) extended
the periodic review inventory system in fuzzy random frame-
work. Dey and Chakraborty (2011) further extended the con-
tinuous review inventory system by considering demand rate
as a continuous FRV. Wang (2011) discussed a continuous
review inventory system for imperfect quality items in fuzzy
random environment, and used the concept of fuzzy ran-
dom renewal process in determination of desired cost func-

tion. Recently, Kumar and Goswami (2013) developed a
production–inventory model by considering machine shift-
ing hazard in fuzzy random environment, in which shifting
time is considered as a FRV. While an adequate number
of research papers have incorporated hybrid uncertainty in
inventory modeling problem, but unfortunately this advan-
tage is not carrying out in SC modeling. However, authors
such as Xu et al. (2008), Gumus and Guneri (2009) and Xu
et al. (2011) developed some SC models in mixed environ-
ment of randomness and fuzziness. Xu et al. (2008) consid-
ered normally distributed demand rate with fuzzy parameter
and shipping cost between the entities of network as FRVs.
Gumus and Guneri (2009) considered demand, lead time and
expediting cost as FRVs, and in this context artificial neural
networks and neuro-fuzzy integration have been explained.
Xu et al. (2011) considered demand and cost parameters as
FRVs and themodel is interpretedwith genetic algorithm.Hu
et al. (2010) established the vendor-buyer coordination for
single-period in the centralized decision making process by
incorporating the buyer fulfills fuzzy random demand of cus-
tomers. Recently, Nagar et al. (2014) addressed an integrated
SC inmulti-objective framework by considering demand rate
as scenario dependent FRV.

This paper models an IPP for the single-manufacturer and
the single-buyer integrated inventory system in fuzzy random
framework. The entire schema of supply chain is delineated
in Fig. 1. Themanufacturer purchases rawmaterial from out-
side supplier. Through the production processes rawmaterial
is converted into finished product, and then finally delivers
to the buyer who fulfills customers demand. As an evidence
of literature review and the best of our knowledge, no SCIM
model have been developed in fuzzy random environment
under these circumstances. According to Lee (2005), the
proportion of raw material and finished product is defined as
conversion factor. Inmany enterprise such as steel industries,
food processing and packaging etc., the conversion factor is
always less than one. As an instance, we consider a manufac-
turer purchases paddy (raw material) from outside supplier
(or local farmers), and through the production process con-
verts its into rice (finished product). As we know a fraction
of material called scrap is obtained during the process. Due
to space constraint (limited space), scraps are instantly with-
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drawn from the warehouse. The “lot-for-lot” policy would
not optimize the SCIM problem, especially when manufac-
turer’s setup cost is significantly higher than the buyer’s
ordering cost (Banerjee 1986). In this context, the model
determines the raw material lot size in such of a way that
the finished product is an integer multiple of buyer’s order
quantity. The centralized integrated-inventory management
resulted lower mean total cost than that of planning sep-
arately for both integrating manufacturer’s production and
buyer’s ordering, and integrating manufacturer’s raw mater-
ial procurement and its production (Lee 2005, and referances
therein). Thus, we assume that the model works under the
centralized decision making process to determine the opti-
mal policy. The objective of this IPP is to minimize the joint
expected total costs of setup (including ordering costs of
raw material), carrying of raw and finished items, buyer’s
ordering, holding and backordering costs. We first discuss
the model in random framework, then further extend it in
fuzzy random environment.

Preliminaries

Triangular fuzzy number

A triangular fuzzy number ã = (a1, a2, a3) where a1 �
a2 � a3, is identified as a fuzzy subset on real line R, whose
membership function μã satisfies the following properties
(Kaufmann and Gupta 1991):

1. ã is normal, i.e., there exist x ∈ R such that μã(x) = 1.
2. μã is a continuous mapping from R to [0, 1] which is

defined as

μã(x) =
⎧
⎨

⎩

L(x) = x−a1
a2−a1

, a1 � x � a2;
R(x) = a3−x

a3−a2
, a2 � x � a3;

0, otherwise,
(3.1)

where L(x) is strictly increasing on [a1, a2] called left
spread function of ã, and R(x) is strictly decreasing on
[a2, a3] called right spread function.

3. ã is a convex fuzzy subset on R.
4. Support of ã, suppã = cl{x ∈ R : μã(x) > 0} where cl

represents the closure of the set, is compact.

Theα-cut of ã, aα = [a−
α , a+

α ] = [a1+(a2−a1)α, a3−(a3−
a2)α] where α ∈ [0, 1], is a closed interval on R, a−

α is left
anda+

α is right endpoints ofaα .Without loss of generality,we
consider all imprecise key parameters as a triangular fuzzy
number throughout this article.

Possibilistic mean value of a fuzzy number

Yoshida et al. (2006) enhanced Carlsson and Fuller’s (2001)
interval-valued possibilistic mean value of a fuzzy number

in the fuzzy measure framework. The fuzzy measure evalu-
ates a confidence degree that the fuzzy number takes in an
interval. Let ã be a fuzzy number with compact support and
the closed interval aα = [a−

α , a+
α ] is its α-cut, then possibil-

ity evaluation measure induced from the fuzzy number ã is
defined as

MP
ã (aα) = sup

x∈aα

μã(x). (3.2)

The mean value of a fuzzy number ã with respect to possibil-
ity evaluation measure MP

ã is defined (Yoshida et al. 2006)
as

M(ã) =
∫ 1
0 MP

ã (λa−
α + (1 − λ)a+

α )dα
∫ 1
0 MP

ã dα
, (3.3)

where λa−
α + (1 − λ)a+

α is called λ-weighting function. If
λ = 1/2, then Eq. (3.3) becomes Carlsson and Fullér (2001)
possibilistic mean value. We now propose a proposition that
stated as below.

Proposition 3.1 If ã is a triangular fuzzy number with com-
pact support, and k ∈ R, then

M(kã) = kM(ã) (3.4)

and M(k + ã) = k + M(ã). (3.5)

Proof Let us denote b̃ = kã. The α-cut of ã is aα =
[a−

α , a+
α ], this implies bα = [ka−

α , ka+
α ]. By using the exten-

sion principle, Kaufmann and Gupta (1991) have proved

μb̃(x) = μã(x/k). (3.6)

According to possibility evaluation measure (Yoshida et al.
2006), we have,

MP
b̃

(bα)= sup
x∈bα

μb̃(x) = sup
x∈bα

μã(x/k)

= sup
t∈aα

μã(t)=MP
ã (aα). (3.7)

Hence,

M(b̃) =
∫ 1
0 MP

b̃
(bα)[λb−

α + (1 − λ)b+
α ]dα

∫ 1
0 MP

b̃
(bα)dα

= k
∫ 1
0 MP

ã (aα)[λa−
α + (1 − λ)a+

α ]dα
∫ 1
0 MP

ã (aα)dα
= kM(ã).

Now, let us denote c̃ = ã + k. The α-cut of c̃ is cα =
[c−

α , c+
α ] = [a−

α +k, a+
α +k] andμc̃(x) = μã(x−k). Hence,

MP
c̃ (cα) = sup

x∈cα
μc̃(x)

= sup
x∈cα

μã(x − k) = sup
t∈aα

μã(t) = MP
ã (aα). (3.8)
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Now,

M(c̃) =
∫ 1
0 MP

c̃ (cα)[λc−
α + (1 − λ)c+

α ]dα
∫ 1
0 MP

c̃ (cα)dα

=
∫ 1
0 MP

ã (aα)[λ(a−
α + k) + (1 − λ)(a+

α + k)]dα
∫ 1
0 MP

ã (aα)dα

= M(ã) + k.

Hence, the proof is complete. ��

Fuzzy random variable

Kwakernaak (1978) introduced the notations of FRV. Later,
various authors such as Gil et al. (2006), Yoshida et al.
(2006) and Shapiro (2009) enhancedKwakernaak (1978) and
explainedwithmore intelligibly. Roughly one can say, a FRV
is an imprecise perception on the outcomes in the real-valued
random variable. However, the mathematical (axiomatic)
definition which is presented in simplest way by Gil et al.
(2006) and is based on Kwakernaak (1978) view is discussed
here.

Let K(Rn) denotes the class of non-empty compact sub-
sets of n-dimensional Euclidean space R

n , and let Kc(R
n)

be subclass of convex set inK(Rn). Further, letF(Rn) is the
class of fuzzy values whose membership function is upper
semi-continuous functions in [0, 1]Rn

, i.e.,

F(Rn)=
{
ã : μã : R

n → [0, 1], aα ∈ K(Rn),∀α ∈ [0, 1]
}
.

(3.9)

Now consider a case for one-dimension, Fc(R) = {ã : μã :
R → [0, 1], aα ∈ Kc(R),∀α ∈ [0, 1]}. i.e., Fc(R) is the
class of upper semi-continuous convex function in [0, 1]with
compact supp ã. Further, let us assume that (�,B, P) be a
probability space, where B is the σ -algebra of the subsets of
sample space� and P is the probability measure. Amapping
X̃ : � → Fc(R), is called a FRV if for all α ∈ [0, 1], the
two real-valued mappings X−

α : � → R and X+
α : � → R

are real-valued random variables (Gil et al. 2006). For every
ω ∈ �, X̃α(ω) = (X̃(ω))α , and X−

α (ω) = inf(X̃(ω))α ,

X+
α (ω) = sup(X̃(ω))α . The expectation Ẽ X of a FRV X̃ is

a unique fuzzy number that can be represented (see decom-
position principle, Kaufmann and Gupta 1991), as Ẽ X =
⋃

α∈[0,1]
[
EX−

α , EX+
α

] =⋃α∈[0,1]
[
E[X−

α ], E[X+
α ]].

A FRV is a bearer of two types of uncertainties, one is
randomness which can be interpreted through probability
distribution function and other one is fuzziness that can be
described through membership function (or possibility dis-
tribution function). In order to use FRV in decision making
problem, its scalarization must be required. Yoshida et al.
(2006) proposed an evaluation method where randomness is

estimated by probabilistic expectation and fuzziness is esti-
mated by possibilistic mean value. If X̃ is a FRV, then the
mean value of X̃ is

E[M(X̃)] = E

⎡

⎣

∫ 1
0 MP

X̃
(X−

α + X+
α )dα

2
∫ 1
0 MP

X̃
dα

⎤

⎦ . (3.10)

Notations and assumptions

Notations

D expected demand per unit time for the buyer
β conversion factor of rawmaterial to finished product, 0 <

β < 1
P production rate per unit time of the manufacturer
Av ordering cost of raw material per order
Sv the manufacturer’s set-up cost per set-up
h f holding cost per unit per unit time of finished item for the

manufacturer
hr holding cost per unit per unit time of raw material for the

manufacturer (hr < h f )

A the buyer’s ordering cost per order
hb holding cost per unit per unit time for the buyer
cb unit shortage cost for the buyer
Q the buyer’s order quantity (decision variable)
Qv the manufacturer’s order quantity of raw material (deci-

sion variable)
r reorder level in the buyer’s inventory system (decision
variable)

τ production run time
T cycle length of one production period
L constant lead time
m number of shipments in which the finished product is

dispatched to the buyer in one production cycle (discrete
decision variable)

X lead time demandwhich has normal distribution function
withmean DL = DL and standard deviation σL = σ

√
L

S = Av + Sv . X̃(ω) = (
X (ω) − 	1, X (ω), X (ω) + 	2

)
,

where X ∼ N (DL , σ 2
L) (normally distributed with mean DL

and variance σ 2
L ), fuzzy random demand during lead time.

D̃ = (D−	3, D, D+	4), fuzzy expected demand per unit
time. x+ = max{x, 0}.

Assumptions

1. There are the single-manufacturer and the single-buyer
who deals with a single product.

2. The buyer orders a lot of size mQ, and the manufacturer
produces this quantity in one set-up and replenished to
the buyer in m shipment each of size Q. That is, in one
production cycle T , the manufacturer incurs one set-up
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(including raw material ordering) cost S, while the buyer
have to pay m times ordering cost.

3. The manufacturer receives a lot of raw material of size
Qv , and through the production process converts its into
finished product. The consumption rate of raw material
is P . The conversion factor β, of raw material to finished
product is less than one. Hence, production rate βP is
less than consumption rate of raw material P .

4. Machine produces finished product with the rate βP up
to time τ . A fraction (1 − β) of P , called scraps are
obtained and thrown out instantly from the stocks.

5. To avoid the shortages during the production up time, a
restriction is employed as βP > D + 	4.

6. The buyer’s inventory level is continuously reviewed, and
an order is placed when it reaches to a certain level r ,
called reorder level.

7. Shortages are allowed in the buyer’s inventory system
and it is completely backlogged.

8. Demand rate per unit time follows normal distribution
with mean D and variance σ 2. Lead time demand is con-
volution of L and demand rate. Thus, lead time demand,
X is normally distributed with mean DL = DL and vari-
ance σ 2

L = σ 2L .
9. The time horizon is infinite.

10. Transportation cost from the vendor to the buyer is con-
stant over time. Hence, transportation cost per unit time
is ignored.

Model formulation

An IPP for the single-manufacturer single-buyer integrated
system ismathematically derived here in random framework.
The objective of this SC is to determine the optimal order
quantity for both parties, reorder level for the buyer’s inven-
tory system and number of shipments to the buyer in order to
keep the JTRC as low as possible. The manufacturer’s inven-
tory levels of both rawandfinished items, delivery schemes to
the both parties, and the buyer’s inventory level and reorder-
ing strategy are delineated in Fig. 2. The upper portion of
Fig. 2 shows the manufacturer’s inventory levels of both type
items with respect to time, whereas the lower portion shows
the buyer’s inventory level and reordering strategies. In each
cycle T , the manufacturer procures once a lot of raw mate-
rial of size Qv , and instantly starts the production process
that is continued up to production up time τ . During this
τ , inventory of raw material is continuously depleted with
the consumption rate P , and is reached at zero level at the
end of the period. But, a fraction 1 − β, (0 < β < 1)
called scrap fraction is obtained during production process.
Hence, inventory of finished item is raised with the rate βP .
The production and demand satisfaction are synchronized.
Whenever buyer’s inventory level reaches at reorder level r ,
he/she places an order to the manufacturer, which is arrived

Fig. 2 The manufacturer’s and the buyer’s inventory position

after lead time L . Thus, the manufacturer ships a batch of fin-
ished product of size Q to the buyer at every expected time
interval Q/D. In one production cycle, themanufacturer pro-
duces mQ quantity that delivers to the buyer in m shipment.
During the production downtime, themanufacturer’s finished
product inventory is flat if there is no replenishment, and is
depleted by a quantity Q if a replenishment occurs. At the
end of cycle T , the manufacturer’s inventory reaches at zero
level. After that the cycle repeats itself continuously.

The manufacturer’s expected total cost

As we discussed above, the manufacturer’s produced quan-
tity βQv is replenished to the buyer in m shipments each of
size Q. Hence, βQv = mQ, this implies

Qv = mQ

β
. (5.1)

The inventory of raw material Qv is consumed with the rate
P . Thus, the consumption time of Qv or equivalently, the
production runtime is

τ = Qv

P
. (5.2)

Keeping consistency in production process as well as to
heighten the customers service level, the manufacturer is
carrying the inventory of raw material as well as finished
product. The behavior of inventory level of both types of
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good opposes each other as shown in Fig. 2. Inventory of raw
material continuously decreases whereas finished product’s
is raw-tooth pattern. Thus, the holding cost of raw material
and finished product (see Ouyang et al. 2004, 2007) is

Hv = hr
1

2
Qvτ + h f mQ2

2D

[
m
(
1 − D

βP

)
− 1 + 2D

βP

]

= hr
m2Q2

2Pβ2 + h f mQ2

2D

[
m
(
1− D

βP

)
−1+ 2D

βP

]
. (5.3)

The manufacturer’s expected cycle length is mQ/D. The
expected total cost comprises with the sum of set-up cost,
holding cost of raw material and finished product. So, the
expected total cost per unit time is

ETCv(Q,m)

= D

mQ

[
S + hrm2Q2

2Pβ2 + h f mQ2

2D

[
m
(
1 − D

βP

)
− 1 + 2D

βP

]]

= SD

mQ
+ hrmQD

2Pβ2 + h f Q

2

[
m
(
1 − D

βP

)
− 1 + 2D

βP

]
. (5.4)

The expected total cost for the buyer

As described in Fig. 2, the buyer orders a quantity Q when-
ever inventory reaches to a critical level r , called reorder
level. But, due to the order preparation, order transit, trans-
portation etc., he/ she receives this quantity after elapsed
time L . The buyer’s expected cycle length is Q

D . The expected

ordering cost per unit time is AQ
D . The expected net-inventory

just before and after the arrival of order are r − DL and
Q + r − DL , respectively. Hence, the buyer’s expected net-
inventory over the cycle is Q

2 +r −DL . Shortages will occur
when lead time demand, x > r . The expected shortages in
the buyer’s cycle is E(X − r)+ = ∫∞

r (x − r) f (x)dx . Thus

the expected shortages per unit time is Q
D E(X − r)+. The

expected total cost per unit time for the buyer comprises with
ordering cost, holding cost and backordering cost as

ETCb(Q, r)= AD

Q
+hb

(Q

2
+r−DL

)
+ cbD

Q
E(X−r)+.

(5.5)

Joint total relevant cost

The centralized decision making process demands coordi-
nation and cooperation between the parties. Coordination
and cooperation amplify effectiveness and efficacious of SC
which is desirable to tackle the difficulties such as short prod-
uct life cycle, intense competition and heightened attention
to customers. On the other side, it confers more financial
benefits to the entire SC. Thus, we consider the situation in
which both the manufacturer and the buyer belong to the sin-
gle decision-maker system in which central planner make all
decisions to minimize the total expected cost. In this policy

the joint expected total cost per unit time for themanufacturer
and the buyer is

JT RC(Q, r,m) = ETCb(Q, r)+ETCv(Q,m)

= AD

Q
+hb

(Q

2
+r − DL

)

+ cbD

Q
E(X − r)++ SD

mQ
+ hrmQD

2Pβ2

+ h f Q

2

[
m
(
1− D

βP

)
− 1+ 2D

βP

]
. (5.6)

Model in mixed environment of fuzziness and
randomness

There are mainly two sources of uncertainty that perturb
the inventory control system and influence decision mak-
ing process of SC, one is randomness (that taken as account
in the previous section) and another one is fuzziness. This
twofold uncertainty is often intrinsic in key parameters of
business activities. To capture this feature, we now incorpo-
rate fuzziness in the model discussed in the previous sec-
tion. Demand is the vitality of inventory management and
SC, because of this, inventory is kept and inventory control
problem exists. Demand may be internal or extraneous as the
manufacturer faces in thismodel. Thus, a veritable realization
of demand is desirable (especially when we talk about long-
term strategic businesses) to maximize the profit. In real-life
business transaction, it is very difficult for decision mak-
ers to find out the exact value of the demand (or expected
demand). Usually, decision makers collect demand infor-
mation from the experts’ opinion or previous data records.
Experts’ experiencesmay conclude some imprecise informa-
tion like ‘the demand is about D’, and this imprecise realiza-
tion may vary randomly (by expert to expert or experience
to experience). However, the description of demand rate as
a FRV is more reliable compared to either random or fuzzy
(see Chang et al. 2006). In this section, we first incorpo-
rate fuzziness in random lead time demand, and then discuss
fuzzy expected demand rate. Let us denote that lead time
demand as, X̃(ω) = (X (ω)−	1, X (ω), X (ω)+	2), where
X ∼ N (DL , σ 2), and 0 � 	1,	2 � DL . The fuzzy ran-
dom lead time demand steers JTRC as a FRV. As discussed
in preliminaries section, we use possibilistic mean to esti-
mate the fuzziness and probabilistic expectation to estimate
the randomness of fuzzy random JTRC. If E[M(X̃)] denotes
the fuzzy expected value of X̃ and J̃ T RCL(Q, r,m) denotes
the joint fuzzy expected total cost per unit time, then from
Eq. (5.6), we have,

J̃ T RCL (Q, r,m) = AD

Q
+ hb

(Q

2
+ r − E[M(X̃)]

)

+ cbD

Q
E[M((X̃ − r)+)] + SD

mQ
+ hrmQD

2Pβ2

+ h f Q

2

[
m
(
1 − D

βP

)
− 1 + 2D

βP

]
. (6.1)
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For each ω ∈ �, the α-cut of X̃(ω) = (x − 	1, x, x + 	2)

is Xα = [x − 	1 + 	1α, x + 	2 − 	2α]. The membership
function μX̃ of X̃ is

μX̃ (t) =

⎧
⎪⎨

⎪⎩

t−x+	1
	1

, x − 	1 � t � x;
x+	2−t

	2
, x � t � x + 	2;

0, otherwise.

(6.2)

Since, MP
X̃
(Xα) = supt∈Xα

μX̃ (t) = 1. Hence,

M(X̃) =

∫ 1

0
MP

X̃
(Xα)

( X−
α + X+

α

2

)
dα

∫ 1

0
MP

X̃
(Xα)dα

= x + 	2 − 	1

4
. (6.3)

∴ E[M(X̃)] = E

[

x+ 	2−	1

4

]

=DL+ 	2−	1

4
. (6.4)

Evaluation of E[M((X̃ − r)+)]

Due to fuzzy random demand rate, shortage occurrence in
the buyer’s inventory system during lead time is a random
phenomenonwhich inherits fuzziness also, and it will happen
when X̃ > r . If shortage occurs, then shortage quantity (X̃ −
r)+ is a FRV. Let us denote Ỹ = (X̃ − r)+, where X̃ − r =
(x − 	1 − r, x − r, x + 	2 − r). Since, x is a variable,
so, for fixed r, 	1 and 	2, there are four possible cases (i)
x ∈ [r + 	1,∞), (ii) x ∈ [r, r + 	1], (iii) x ∈ [r − 	2, r ]
and (iv) x ∈ (−∞, r − 	2] as delineated in Fig. 3.

Case i. When x ∈ [r + 	1,∞), then the membership
function μỸ of Ỹ is shown in Fig. 3a, and is defined as

μỸ (y) =

⎧
⎪⎨

⎪⎩

y−(x−	1−r)
	1

, x − 	1 − r � y � x − r;
(x+	2−r)−y

	2
, x − r � y � x + 	2 − r;

0, otherwise.

(6.5)

The α-cut of Ỹ for this case is Yα = [Y−
α ,Y+

α ] = [x −
	1 − r + 	1α, x + 	2 − r − 	2α], 0 � α � 1. Hence,
MP

Ỹ
(Yα) = supy∈Yα

μỸ (y) = 1, and

M(Ỹ ) =

∫ 1

0

(Y−
α + Y+

α

2

)
MP

Ỹ
(Yα)dα

∫ 1
0 MP

Ỹ
(Yα)dα

= 1

2

1∫

0

(x−	1−r+	1α+x+	2−r−	2α)dα

= x − r + 	2 − 	1

4
. (6.6)

Case ii. When x ∈ [r, r + 	1], then Fig. 3b shows the
membership function μỸ of Ỹ by smooth line of triangle,
and is obtained as

μỸ (y) =

⎧
⎪⎨

⎪⎩

y−(x−	1−r)
	1

, 0 � y � x − r;
(x+	2−r)−y

	2
, x − r � y � x + 	2 − r;

0, otherwise.

(6.7)

The α-cut of Ỹ for this case is

Yα =
{
[0, x+	2 − r − 	2α] , 0 � α � r+	1−x

	1
� 1;

[x−	1−r+	1α, x+	2 − r − 	2α] , 0 � r+	1−x
	1

� α � 1.

(6.8)

So, MP
Ỹ

(Yα) = supy∈Yα
μỸ (y) = 1. Hence,

M(Ỹ ) = 1

2

r+	1−x
	1∫

0

(x + 	2 − r − 	2α)dα

+1

2

1∫

r+	1−x
	1

[x − 	1 − r + 	1α + x + 	2 − r − 	2α]dα

= 1

2

(
x + 	2

2
− r
)

− (x − 	1 − r)2

4	1
. (6.9)

Case iii. When x ∈ [r − 	2, r ], then the membership
function μỸ of Ỹ is shown by the smooth line of triangle in
Fig. 3c, and is defined as

μỸ (y) =
{

x+	2−r−y
	2

, 0 � y � x + 	2 − r;
0, otherwise.

(6.10)

The α-cut of Ỹ for this case is

Yα =
{

[0, 0], 0 � x−r+	2
	2

� α � 1;
[0, x + 	2 − r − 	2α] , 0 � α � x−r+	2

	2
� 1.

(6.11)

MP
Ỹ

(Yα) = supy∈Yα
μỸ (y) = x−r+	2

	2
. Hence,

M(Ỹ ) =

∫ 1

0

(Y−
α + Y+

α

2

)
MP

Ỹ
(Yα)dα

∫ 1

0
MP

Ỹ
(Yα)dα

=

∫ x−r+	2
	2

0

(0+x+	2 − r − 	2α

2

) x − r+	2

	2
dα

∫ x−r+	2
	2

0

x − r+	2

	2
dα

= x − r + 	2

4
. (6.12)

Case iv. When x ∈ (−∞, r − 	2], then as shown in
Fig. 3d, membership value μỸ of Ỹ is equal to zero. So, for
this case M(Ỹ ) = 0.

In the above discussed four cases, for ω ∈ �, we have
found possibilistic mean value of Ỹ (ω) according to location
of r . We now combine all cases to find the expected value of
possibilistic mean M(Ỹ ). We have from the Eqs. (6.6), (6.9)
and (6.12),
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Fig. 3 Fuzzy shortage quantity:
a when x ∈ [r + 	1,∞), b
when x ∈ [r, r + 	1], c when
x ∈ [r − 	2, r ] and d when
x ∈ (−∞, r − 	2]

a b

c d

E[M((X̃ − r)+)] =
∞∫

r+	1

(
x − r + 	2 − 	1

4

)
f (x)dx

+
r+	1∫

r

[1

2

(
x + 	2

2
− r
)

− (x − 	1 − r)2

4	1

]
f (x)dx

+
r∫

r−	2

x − r + 	2

4
f (x)dx

=
∞∫

r

(
x − r + 	2 − 	1

4

)
f (x)dx

− 1

4	1

r+	1∫

r

(x − r)2 f (x)dx

+1

4

r∫

r−	2

(x − r + 	2) f (x)dx (6.13)

= −
(

r − DL − 	2 − 	1

4

)

+ (r − DL + 	1)
2 + σ 2

L + 	1(r − DL)

4	1


(r − DL

σL

)

− 1

4	1
[(r − DL)2 + σ 2

L ]

(r − DL + 	1

σL

)

+
(
r − DL − 	2

4

)



(r − DL − 	2

σL

)

+ σL

(
r − DL + 3	1

4	1

)

φ
(r − DL

σL

)

− σL

(
r − DL − 	1

4	1

)

φ
(r − DL + 	1

σL

)

+ σL

4
φ
(r − DL − 	2

σL

)
= G(r) (say), (6.14)

whereφ(z) = 1√
2π

e− 1
2 z

2
and
(z) = 1√

2π

∫ z
−∞ e− 1

2 t
2
dt are

standard normal distribution and cumulative normal distrib-
ution functions, respectively. Equation (6.14) is a function of
the decision variable r , for simplicity, we denote this quan-
tity by G(r). Hence, the defuzzified value of Eq. (6.1) can be
rewritten as

JT RCL(Q, r,m) =
[
1

Q

(

A + cbG(r) + S

m

)

+ hrmQ

2β2P
− h f Q(m−2)

2βP

]

D

+ hb

(
Q

2
+r−DL− 	2−	1

4

)

+ h f Q(m−1)

2
. (6.15)

Fuzzy expected demand rate

In the earlier discussed contiguity, instead a precise average
demand per unit time, we consider here this is a triangular
fuzzy number as D̃ = (D−	3, D, D+	4), where 	3 and
	4 are decided by decision makers, but it must be restricted
as 0 � 	3 � D and 	4 � 0. From Eq. (6.15), the fuzzy
JTRC can be written as

J̃ T RC(Q, r,m)

=
[
1

Q

(

A+cbG(r)+ S

m

)

+ hrmQ

2β2P
− h f Q(m−2)

2βP

]

D̃

+ hb

(
Q

2
+r−DL− 	2−	1

4

)

+ h f Q(m−1)

2
. (6.16)
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Now, we use the Proposition 3.1 to find the possibilistic
mean of above fuzzy cost function. Let us denote this as
J RTC(Q, r,m), then

JT RC(Q, r,m)

=
[ 1

Q

(

A + cbG(r) + S

m

)

+ hrmQ

2β2P
− h f Q(m − 2)

2βP

]
M(D̃)

+ hb

(
Q

2
+ r − DL − 	2 − 	1

4

)

+ h f Q(m − 1)

2
. (6.17)

D̃ is a normal fuzzy number with compact support and α-cut
of D̃ is Dα = [D−

α , D+
α ] = [D−	3+	3α, D+	4−	4α],

so, it must be MP
D̃
(Dα) = 1. Hence, M(D̃) = ∫ 1

0
1
2 (D

−
α +

D+
α )dα = D + 	4−	3

4 . For sake of simpler notation, Eq.
(6.17) can be rewritten as

JT RC(Q, r,m) = H(m)Q

2
+ hb(r − γ ) + 1

Q

(
A + cbG(r) + S

m

)
�

(6.18)

where

� = D + 	4 − 	3

4
, γ = DL + 	2 − 	1

4

and H(m) = hb + h f (m − 1) +
( hrm

β2P
− h f (m − 2)

βP

)
�. (6.19)

Solution procedure

Proposition 7.1 Forfixed values of r andm, JT RC(Q, r,m)

is convex over Q, and

Q(r,m) =
√

2
(
A + cbG(r) + S

m

)
�/H(m). (7.1)

Proof It can be easily proved. ��

Now, we substitute the value of Q(r,m) in Eq. (6.18), this
gives

JT RC(r,m) =
√

2
(
A + cbG(r) + S

m

)
�H(m)+hb(r−γ ).

(7.2)

JT RC(r,m) is a function of a continuous variable r and a
discrete variable m. An elaborative method in order to deter-
mination of r for a fixedm is discussed now. For this, we first
find the derivatives of JT RC(r,m) with respect to r .

d JT RC(r,m)

dr
= cbG

′
(r)

√
�H(m)

√

2
(
A + cbG(r) + S

m

) + hb (7.3)

and

d2 JT RC(r,m)

dr2
= cbG

′′
(r)

√
�H(m)

√

2
(
A + cbG(r) + S

m

)

− cb
√

�H(m)G
′2
(r)

[
2
(
A + cbG(r) + S

m

)]3/2 (7.4)

where

G
′ = dG(r)

dr
= −1 + 2(r − DL) + 3	1

4	1


(r − DL

σL

)

− r − DL

2	1


(r − DL + 	1

σL

)

+ 1

4


(r − DL − 	2

σL

)

+ 	2
1 + 2σ 2

L

4	1σL
φ
(r − DL

σL

)

− 	2
1 + 2σ 2

L

4	1σL
φ
(r − DL + 	1

σL

)
(7.5)

and

G
′′ = d2G(r)

dr2
= 1

2	1


(r − DL

σL

)

− 1

2	1


(r − DL + 	1

σL

)

+3σ 2
L − 	1(r − DL)

4σ 3
L

φ
(r − DL

σL

)

+	1(r − DL) + 2σ 2
L + 	2

1

4σ 3
L

φ
(r − DL + 	1

σL

)

+ 1

4σL
φ
(r − DL − 	2

σL

)
. (7.6)

The necessary condition, to obtain the value of r is d JT RC
dr =

0. This implies G
′ = − hb

√

2
(
A+cbG(r)+S/m

)

cb
√

�H(m)
. Moreover,

the sufficient condition for optimality of r from Eq. (7.4)
becomes as

d2 JT RC(r,m)

dr2
= �H(m)cbG

′′
(r) − h2b√

2�H(m)
√
A + cbG(r) + S/m

> 0.

(7.7)

� is the possibilistic mean value of fuzzy expected
demand, so, it must be � > 0. H(m) can be written as
hb+h f (m−1)

(
1−�/βP

)+(hrm/β2P+h f /βP
)
�. Now,

� = D + (	4 − 	3)/4 = D + 	4 − (3	4 + 	3)/4 < D +
	4 < βP (due to assumption 5). This implies �/βP < 1.
Hence, H(m) > 0. Also, G(r) = E[M((X̃ − r)+)] > 0.
Thus the denominator of Eq. (7.7) is positive. Therefore,
d2 JT RC/dr2 > 0 if and only if �H(m)cbG

′′
(r) > h2b.
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Furthermore, since m is a decision variable which must
be a positive integer. Hence for a given r , optimum m that
minimizes JTRC must satisfy the following conditions.

JT RC(r,m) � JT RC(r,m − 1) and JT RC(r,m)

� JT RC(r,m + 1).

(7.8)

JT RC(r,m) � JT RC(r,m − 1) implies

m(m − 1) �
S
[
hb − h f + 2h f �

βP

]

[A + cbG(r)]
[
h f +

(
hr

β2P
− h f

βP

)
�
] (7.9)

and JT RC(r,m) � JT RC(r,m + 1) implies

S
[
hb − h f + 2h f �

βP

]

[A + cbG(r)]
[
h f +

(
hr

β2P
− h f

βP

)
�
] � m(m + 1). (7.10)

Combining the relations (7.9) and (7.10), the optimality
condition for m becomes as

m(m−1) �
S
[
hb − h f + 2h f �

βP

]

[A+cbG(r)]
[
h f +

(
hr

β2P
− h f

βP

)
�
] � m(m+1).

(7.11)

Let us denote

F(r) =
S
[
hb − h f + 2h f �

βP

]

[A + cbG(r)]
[
h f +

(
hr

β2P
− h f

βP

)
�
] . (7.12)

It is now necessary to summarize the above discussion
systematically in order to access the global optimal policy,
for this purpose we develop an algorithm. In general, the
decision maker would not wish a negative safety stock. So,
one can start with r1 = DL + (	2 − 	1)/4, accordingly to
find m1 such that the relation (7.11) holds, and can access
the optimal solution in the following way.

Algorithm

Step 1. Set i = 1, r1 = DL + (	2 − 	1)/4 and correspond-
ing m1. Then correspondingly find Q1(r1,m1) and
JT RC(Q1, r1,m1).

Step 2. Set i = i + 1, and find ri from the equation

cbG
′
(r)
√

�H(mi−1)/

√

2
(
A + cbG(r) + S/mi−1

)+
hb = 0 by using Mathematica software. Check
whether ri > DL + (	2 − 	1)/4, if yes, go to step
3, otherwise go to step 6.

Step 3. Evaluate mi in such a way that the relation mi (mi −
1) � F(ri ) � mi (mi +1)must be satisfied, and then
evaluate the correspondingly Qi (ri ,mi ).

Step 4. If �H(mi )cbG
′′
(ri ) � h2b, then go to step 6. Other-

wise compute JT RC(Qi , ri ,mi ).
Step 5. If JT RC(Qi , ri ,mi ) ≈ JT RC(Qi−1, ri−1,mi−1),

then Q∗ = Qi , r∗ = ri , m∗ = mi and JT RC∗ =
JT RC(Qi , ri ,mi ). Otherwise goto step 2.

Step 6. r∗ = ri−1, m∗ = mi−1, Q∗ = Q(ri−1,mi−1) and
JT RC∗ = JT RC(Qi−1, ri−1,mi−1), where super-
script ∗ denotes optimal solution.

Remark 7.1 If we consider no fuzziness in the random
demand, i.e., 	3 = 	4 = 0, 	1 = 	2 = 	 → 0, no
carrying charge for raw material, i.e., hr = 0 and con-
version factor β = 1, then Eq. (6.19) reduce as: � =
D, γ = DL , H(m) = hb + h f

(
m(1− D/P)−1+2D/P

)

and G(r) = ∫∞
r (x − r) f (x)dx . The order quantity (7.1)

becomes
√

2
[
A + cbG(r) + S/m

]
D/H(m). This is Ouyang

et al. (2004) order quantity. Thus, our model is a generaliza-
tion of earlier models.

Illustrative example

This study aims to consider a situation where farmers are
bringing items say paddy to near by a rice mill where its
are converted into rice. 20% husk is obtained during conver-

Table 1 Iterative procedure

i r m Q JT RC Qv

1 80 3 167.48 2,521.67

2 103.01 4 132.86 2,497.17

3 106.96 4 132.86 2,497.17 664∗

Table 2 Sensitivity of ordering and holding costs

hr Sv i r m Q JT RC Qv

0 0 1 80 3 171.68 2,076.73

2 102.62 4 138.12 2,048.13

3 106.35 5 116.51 2,045.10

4 108.90 5 116.51 2,045.10 728∗

2 1,500 1 80 6 169.05 4,274.80

2 102.91 8 130.89 4,250.66

3 107.19 9 117.83 4,250.16

4 108.74 9 117.83 4,250.16 1,325∗

3 100 1 80 3 159.26 2,641.25

2 103.97 4 125.90 2,623.43

3 107.77 4 125.90 2,623.43 630∗
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Table 3 Sensitivity of spreads
of fuzzy random demand 	1 	2 	3 	4 i r m Q JT RC Qv

24 8 300 100 1 76 3 162.77 2,396.21

2 92.17 4 128.82 2,371.57

3 94.19 4 128.82 2,371.57 644∗

24 24 300 300 1 80 3 167.48 2,521.67

2 103.08 4 132.86 2,497.17

3 106.61 4 132.86 2,497.17 664∗

24 40 300 500 1 84 3 170.78 2,650.69

2 121.07 4 135.70 2,621.15

3 124.58 4 135.70 2,621.15 678∗

8 24 100 300 1 84 3 170.39 2,573.28

2 106.73 4 135.52 2,542.77

3 109.56 5 113.31 2,540.67

4 111.61 5 113.31 2,540.67 708∗

40 24 500 300 1 76 3 166.03 2,461.18

2 93.44 4 130.83 2,446.73

3 101.44 4 130.83 2,446.73 654∗

sion process. The manufacturer who accomplishes conver-
sion process keeps stocks of paddy as well as rice. Such a
situation has been taken into account and accordingly follow-
ing essential parameters are given: D = 1, 000 bags/year,
P = 3, 200 bags/year, σ = 7 bags/week, where each
bag contains 100Kg. All cost parameters are taken in INR.
A = 25 per order, Av = 400 per order, hb = 5/bag/unit time,
h f = 4/bag/unit time, hr = 2/bag/unit time, cb = 7/bag,
Sv = 100 per setup, L = 4 week, 	3 = 300, 	4 = 300.
Thus, S = 500, the expected demand during lead time,
DL = DL

50 = 80 and standard deviation of lead time demand,

σL = σ
√
L = 14, 	1 = 	3L

50 = 24, 	2 = 	4L
50 = 24.

Since 20% husk is obtained during conversion process, this
implies conversion factor is β = 0.8. As discussed in Algo-
rithm, we start with r1 = 80 ⇒ m1 = 3, the output of
each iteration is shown in Table 1. The optimal policy is:
m∗ = 4, r∗ = 106.96, Q∗ = 132.86 and the joint total
expected cost is 2497.17. The manufacturer order quantity
of raw material is, Q∗

v = m∗Q∗
β

= 664.
Sensitivity of rawmaterial procurement andholding costs:

When hr = 0 = Sv , i.e., no procurement and holding charges
for raw material are included (such as Lee 2005) in SC,
then Table 2 yields r∗ = 108.90, m∗ = 5, Q∗ = 116.51,
JT RC∗ = 2045.10 and Q∗

v = 728. A little difference in
our optimal policy and Lee (2005) optimal policy is noticed.
It is because of we have considered fuzzy random demand
rate wherein shortage is not prohibited, whereas Lee (2005)
has taken deterministic and constant demand wherein short-
age is prohibited. When procurement cost increases from
100 to 1,500, then r∗ = 108.74, Q∗ = 117.83, m∗ =
9, JT RC∗ = 4, 250.16 and Q∗

v = 1, 325. Increment in

procurement cost increases procurement quantity and num-
ber of shipment to the buyer, consequently, JT RC∗ also
increases. Finally, when holding cost increases from 2 to
3, then r∗ = 107.75, m∗ = 4, Q∗ = 125.9, JT RC∗ =
2623.43 and Q∗

v = 630. Thus, the manufacturer’s procure-
ment and carrying costs highly influences the entire SC, and
the buyer’s ordering as well as reordering policy also has
significant impact.

Sensitivity of spreads of fuzzy demand: How the spreads
	1,	2,	3 and 	4 of fuzzy demand influence the optimal
policy is tested here. When 	1, 	3 are fixed and 	2, 	4

increase, then buyer’s reorder level significantly increases,
buyer’s order quantity and JTRC increase also, whereas ship-
ment times to the buyer’s remains constant as shown in
Table 3.When	2, 	4 are fixed and	1, 	3 increase, then r∗
and JT RC∗ decrease, shipment times to the buyer changes,
also. Demand uncertainty highly influences reorder level, it
varies from 94.19 to 124.58 as Table 3 delineates. Moreover,
we can say that left spread of demand in more sensitive com-
pare to right spread. Hence, fuzzy random demand mark a
significant efficacy in the optimal policy.

Conclusion

This article addressed a two-echelon IPP for themanufacturer
–buyer integrated inventory system, who work under the
centralized decision making process. This study adorn with
advantage to integrate the concepts of raw material procure-
ment, its maintenance and stochastic customers’ demand,
together, wherein shortage is not prohibited. Furthermore,

123



J Intell Manuf (2016) 27:875–888 887

this two-echelon SC extends customers’ demand as a fuzzy
random variable. Contextually, fuzzy expectation based on
probabilistic expectation and possibility evaluation measure
coalesce to mathematically interpret the proposed model. A
new methodology have been proposed to evaluate the fuzzy
expected shortage quantity during stock out period. We have
established a multi-ordering policy for the buyer in the man-
ufacturer’s one production cycle in such a way that JTRC for
both parties is minimum. An efficient and effective solution
procedure is discussed to derive the order quantity, reorder
level, number of shipment to the buyer and order quantity
of raw material which minimizes the JTRC. The proposed
model and algorithm are illustrated with numerical exam-
ple. The sensitivity for changing parameters are carried out
and discussed, also. A significant changes in the optimal pol-
icy for changing parameters are pointed out. This model is
distinct from the existing models, one can easily notice this
through the numerical analysis as discussed in Sect. 8. In
many manufacturing systems such as chemical industries,
steel industries, food processing and packaging etc., the con-
version factor of raw material to finished item is plausible.
Thus the proposed SCIM model can be applied in such type
of enterprises.

JIT (Just-in-time) delivery system focuses immediate con-
sumption of required item, and it is widely accepted by
Japanese Companies. JIT require to reduce the lead-time
yield to immediate use of item. In this account, this model
can be further extended in the direction of lead-time reduc-
tion. One more possible extension of this SC, to incorporate
lead time as a FRV.
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