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Abstract Machine vision is an excellent tool for inspecting
a variety of items such as textiles, fruit, printed circuit boards,
electrical components, labels, integrated circuits, machine
tools, etc. This paper presents an intelligent system that incor-
porates machine vision with artificial intelligent networks
to automatically inspect thermal fuses. An effective inspec-
tion flow is proposed to detect four commonly seen defects,
including black-dot, small-head, bur, and flake during the
production of thermal fuses. Backpropagation neural net-
works and learning vector quantization performance is com-
pared in detecting the bur defect because of its illegibility.
Different numbers of defective samples were screened out
from a production line in a case study company and used to
demonstrate the efficacy of the proposed system. Currently,
the proposed inspection system is operating at the case study
company, replacing four to six human inspectors. The system
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not only ensures the quality of the thermal fuses produced,
but also reduced the cost of manual visual inspection.

Keywords Thermal fuse · Machine vision ·
Backpropagation neural networks · LVQ · Quality control

Introduction

A thermal fuse (TF), also known as a thermal cutoff (TC),
is an important component in both electrical and electronic
devices. Thermal fuses prevent circuits from overheating
or becoming overloaded. While fuses generally allow the
passage of current, they can short circuit to cut power to
appliances as a safety feature. Figure 1 shows two types of
fuses. Electronic fuses (Fig. 1a) perform a cutoff when cur-
rent in the circuit exceeds a pre-specified value, while ther-
mal cutoffs prevent overheating. They are both used in many
electronic devices, such as hair dryers, rice cookers, coffee
makers, etc. Thermal fuses are “one-shot”, non-resettable,
temperature-sensitive devices that provide a failsafe temper-
ature protection in safety-critical circuits. They are mainly
defined by their temperature setting but also by the current
rating, which is the maximum continuous current that can
be applied before it breaks. Currently, experienced human
inspectors are used for quality control of thermal fuses dur-
ing manufacturing. These inspectors are subject to fatigue,
distraction and subjective decision-making regarding quality
variability. Defects are not only tiny, but can be difficult to
detect manually due to the low intensity contrast, thus auto-
matic detection of metallic surface defects could significantly
improve quality control.

Over the past three decades, machine vision has been
widely used in manufacturing to inspect the quality of printed
circuit boards (Lin 2007; Torres et al. 2002; Benedek et al.
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Fig. 1 Two types of fuses. a Electronic fuses. b Thermal fuses

2013) electric components (Lahajnar et al. 2002; Liang et al.
2012), chip alignment, wire bonding for Integrated Circuits
(IC) (Wang et al. 2002; Su et al. 2013), machine tools (Tien
et al. 2004; Zhang et al. 2013a, b), metal parts (Zheng et al.
2002; Wu and Hou 2003; Steiner and Katz 2007; Sun et al.
2010; Scholz-Reiter et al. 2012; Shen et al. 2012; Ghorai
et al. 2013), LCD panels (Gan and Zhao 2013) and semi-
conductor wafers (Chang et al. 2011; Sun et al. 2011; Li
and Tsai 2012). Various techniques used for these inspection
applications have been reviewed by many studies (Chin and
Harlow 1982; Chin 1988; Newman and Jain 1995; Thomas et
al. 1995; Malamas et al. 2003). However, inspecting thermal
fuses for surface defects is both one of the most common
and most difficult problems in the area of machine vision.
Yamashina and Okumura (1996) developed an automated
measurement system for detection of drilling tool malfunc-
tions such as wear and chipping using two CCD cameras.
Tien et al. (2004) developed an automated visual inspection
system that effectively inspected microdrill blades. Li and
Tso (2006) developed an X-ray-based inspection systems for
identification and evaluation of internal defects in casting by
using 2D wavelet transform methods. Lin (2007) proposed
a wavelet characteristic-based approach for the automated
visual inspection of ripple defects in the surface barrier layer
(SBL) chips of ceramic capacitors. Steiner and Katz (2007)
used machine vision to inspect porous flaws on machined
surfaces. Torres et al. (2002) presented several automatic
object searching techniques to locate multiple components
on a PCB in a grey-scale captured image through acceler-
ated species based particle swarm optimization (ASPSO)
and genetic algorithm (GA) approaches. Sun et al. (2010)
applied machine vision to inspect surface defects on electri-
cal contacts. Sun et al. (2011) developed machine a vision-
based post-slice wafer inspection system, which successfully
detects hole, chip, and ellipse defects, and determines the fea-
sibility of regrinding defective wafers. Chang et al. (2011)
developed an automatic inspection system using artificial
neural networks to recognize defective LED dies. Chen et

al. (2012) presented an automatic damage detection system
for ceramic machined surfaces using image processing tech-
niques, pattern recognition, and machine vision. Liang et al.
(2012) proposed a two-step segmentation method to detect
defects with the Gabor filter, using the unsupervised and fast
segmentation features of the Fuzzy C-Means algorithm to
detect most OLED defects. Su et al. (2013) proposed an ultra-
sonic inspection for flip chip solder joints. The image of the
flip chip was acquired from a scanning acoustic microscope
and segmented; a backpropagation network was then used to
classify and recognized the geometric features extracted from
the image. Scholz-Reiter et al. 2012 proposed an inline sur-
face inspection technique based on texture analysis and sta-
tistical image processing methods for cold-form micro-parts.
Shen et al. 2012 developed a machine vision system to detect
various types of defects on bearing covers, such as defor-
mations, rust, and scratches. Li and Tsai (2012) proposed
wavelet-based method that uses the wavelet coefficients in
individual decomposition levels as features and the difference
of the coefficient values between two consecutive resolution
levels as the weights to detect local defects in a crystal grain
background, and generates a discriminant measure to iden-
tify different defects in multicrystalline solar wafers. Gan and
Zhao (2013) proposed a machine vision inspection method
using a modified local binary fitting model to detect bright-
ness levels defects in LCD panels, along with size and shape
inconsistencies. Ghorai et al. (2013) developed an automated
visual inspection system for an integrated steel plant to cap-
ture surface images using different wavelet feature sets at dif-
ferent decomposition levels derived from 32× 32 contiguous
pixel blocks of steel surface images. Benedek et al. (2013)
introduced an automated Bayesian visual inspection frame-
work for printed circuit board assemblies which can simul-
taneously deal with various shaped circuit elements (CEs)
on multiple scales. Tolba (2011) introduced a novel hybrid
approach for defect detection and localization in homoge-
neous flat surface products based on statistical decision the-
ory, multi-scale and multi-directional analysis and a neural
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Case  

Lead wire 

Fig. 2 WIP of thermal fuses

network implementation of the optimal Bayesian classifier.
Xie et al. (2014) proposed a localized defect image model
(LDIM) for defect inspection combining features of manual
inspection and a local defect merit function to quantify the
cost of defective pixels. However, the issue of thermal fuse
surface defect detection has not been previously discussed in
the literature.

This paper presents an intelligent automated visual inspec-
tion system that effectively detects defective thermal fuses
using artificial neural networks and machine vision. The
remainder of this paper is organized as follows. Second
section describes thermal fuse defect types. Third section
presents the proposed machine vision-based inspection sys-
tem. Fourth section demonstrates the experimental validation
process, and conclusions are drawn in the last section.

Thermal fuse defects

In general, two types of thermal fuses, axial and radial, are
typically used in various forms and sizes, depending on work-
ing requirements (Prijic et al. 2008). One commonly-used
type of thermal cutoff is based on inserting a conductive
bridge into the winding or heater circuit. This bridge con-
sists of a metal strip joined to the leads by soldering sheets
made from a thermally sensitive alloy. This study focuses on
the work-in-process of thermal fuses produced by the case
study company. Such fuses are composed of a case and a lead
wire (Fig. 2), and defects mainly occur while inserting the
lead wire into the case.

Figure 3 shows the top-view image of a defect-free thermal
fuse, which can be separated into three parts: the outer ring
(case wall), the white ring (case base), and the inner circle
(lead head). Figure 4a–d depicts common defects, includ-
ing small-head, burs, black dots, and flakes, respectively.

The causes and description of these concerned defects are
explained below:

(1) Bur (Fig. 4a): this defect is a deckle edge, which occurs
on the wall of the fuse case. It is mainly caused by the
use of abnormal materials for the lead or worn out punch
heads. As in the image, the bur defect usually appears in
the outer-ring area as a small grey dot. Even an experi-
enced inspector may have difficulty identifying this type
of defect.

(2) Black dot (Fig. 4b): this defect is mainly caused by the
intrusion of dirt or dust during the assembly of the case
and lead, appearing here as a black dot around the inner
circle area.

(3) Small-head (Fig. 4c): this defect occurs at the punch-
ing stage of the manufacturing process when insufficient
force is used to punch the lead into the wall, resulting in
a smaller head area than normal. The standard radius of
the fuse head is between 2.11 and 2.76 mm, depending
on the fuse specification.

(4) Flake (Fig. 4d): this type of defect is caused by the chip-
off of the case wall during the electroplating process. A
flake usually is shown as a block in the white-ring area,
and is much larger than a bur.

These defects are manually screened by experienced
human inspectors, but human error can result in many defec-
tive thermal fuses passing inspection, negatively impacting
corporate revenues and reputation. Therefore, this study aims
to develop a machine vision-based inspection system to auto-
matically identify defects (including small-head, bur, flake,
and black-dot) in thermal fuses, thus increasing screening
accuracy and reducing manufacturing costs.

Proposed machine vision-based inspection system

A pilot study showed that small-head and black-dot defects
can be detected by a similar sequence of inspection flow,
while the bur and flake defects require different inspection
algorithms due to their distinctive features. The proposed
inspection flow is shown in Fig. 5 and the details of the
inspection flow are described in the following subsections.

Image acquisition and segmentation

A thermal fuse is first inserted into the system and a digital
image is captured. A threshold technique is used to segment
the fuse from its background based on an image histogram
representing the distribution of fuse images. Figure 6a, b
shows an example that applies the Otsu threshold method
(1979) to separate the fuse object and background. After
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Fig. 3 Top view of fuse. a Fuse
image. b Fuse image separation

thresholding, the fuse object can be identified with some tol-
erable noise.

Fuse locating and separation

The fuse is differentiated from noise using blob analysis
which assigns pixels in an isolated blob to a single index,
thus distinguishing different objects. The features of each
blob (e.g., area, gravity, location, object width and object
height) can be calculated to screen out noise. This study used
fast connected component labeling (FCCL) to label the fuse
object in the image (see He et al. 2009 for a description of
FCCL). After locating the fuse, the double-thresholding tech-
nique is used to separate the fuse object into three parts: the
outer ring, white ring, and inner circle.

Small-head and black-dot inspection

The characteristics of small-head and black-dot defects are
similar in that they can be detected using the same algo-
rithm. After locating and separating the inspected fuse, the
white ring and inner circle can be segmented and the radius
of the inner circle can be easily measured through a circle
fitting algorithm as shown in Fig. 7. Meanwhile, the black

dot, which always occurs at the margin between inner circle
and white ring, can be detected by thresholding the white
ring area with a pre-defined intensity value. An example of
black dot detection is illustrated in Fig. 8.

Flake detection

The flake is a severe defect which can cause a thermal fuse
to malfunction. The flake defects appear in the white ring
area as shown in Fig. 9a. The inspection process first sepa-
rates the white ring area from the base area through image
thresholding with a proper threshold value. A boundary fol-
lowing procedure can be then used to trace the contour of the
white ring area. If the length of the contour is greater than a
pre-specified value L , the fuse is determined to have a flake
defect. An example is shown in Fig. 9 a–c to demonstrate the
effectiveness of the process.

Bur detection

A bur is a tiny defect that appears as a small indistinct dot
in the outer ring area. This defect can barely be seen by
a human inspector using a magnifier. Several segmentation
methods, such as global/local thresholding, and morphologi-
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Fig. 4 Defects of thermal fuse. a Bur, b black-dot, c small-head, d flake

cal operations have failed to consistently identify this defect.
Therefore, two artificial neural networks (ANNs), backprop-
agation neural networks (BPN) (Zhang et al. 2013a, b) and
learning Vector Quantization Networks (LVQ), are adopted
to solve this problem and compared (Basheer and Hajmeer
2000).

(a) Backpropagation neural networks (BPN):
In general, a BPN includes: (1) an input layer with nodes
representing input variables to the problem, (2) an output
layer with nodes representing the dependent variables,
and (3) one or more hidden layers containing nodes to
help capture the nonlinearity in the data. Its architecture is
shown in Fig. 10. The neurons between layers can be fully
or partially interconnected between layers with weight
(wi j ). The data are first fed forward from the input layer,
through hidden layer, to output layer without feedback.
Then, based on the feedforward error-backpropagation
learning algorithm, the BPN searches the error surface
using the theory of gradient descent for point(s) with
minimum error.

(b) Learning Vector Quantization (LVQ) is also a supervised
learning neural network. This network consists of three
layers: the input layer, which receives the input signals;
the hidden layer, which is a competitive layer; and the out-
put layer, which is a linear mapping layer. As a supervised
method, LVQ uses known target output classifications
for each input feature. LVQ adopts a winner-takes-all
Hebbian learning-based approach, memorizing the input
features into one node called the winner. The winner
node represents the most similar characteristics of the
input vectors. To classify the data correctly, the weights
of the connections to this winner node are updated in
each epoch. Figure 11 shows the architecture of the LVQ
neural network (see Kumar 2004 for a detailed descrip-
tion of LVQ networks.

Network learning for both BPN and LVQ requires the
extraction of representative input features of defects. After
consulting with the case study firm’s product engineer, we
found the appearance of burs is highly correlated to its back-
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Fig. 5 Inspection flow for thermal fuses

Fig. 6 Image pre-process of thermal fuse. a Original Image. b Histogram analysis

Fig. 7 Small-head defect detection. a Original small-head image. b Inner circle locating. c Blob analysis. d Circle fitting

ground (outer ring). Therefore, we first segmented possible
burs in the outer ring area by a thresholding operation. If
the intensity of any blob exceeds a pre-defined threshold, we
considered it a bur candidate and calculate its features in its

15-degree wedge area. Figure 12 expresses the bur wedge
area in an outer ring. Four parameters for the given wedge
(the mean, variance, range, and entropy) are calculated as
follows:
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Fig. 8 Black-dot defect detection. a Black-dot image. b Locating and separation. c Black-dot detection

Fig. 9 Flake detection. a Flake defect image. b Thresholding. c Boundary following

Fig. 10 Architecture of BPN

Mean : μ =
n∑

i=1

zi p(zi ) (1)

Variance : σ 2 = 1

n − 1

n∑

i=1

(zi − X̄)2 (2)

Range : R = Max(zi ) − Min(zi ) (3)

Entropy : e = −
n∑

i=0

p(zi ) log2 p(zi ) (4)

Fig. 11 LVQ neural network

where zi is the pixel intensity in the wedge area, p(zi ) is
the probability of zi occurring in the wedge area, and n is
the number of pixels in the area. Among these four parame-
ters, the mean (μ) represents the average intensity of a given
wedge; the variance (σ2) represents intensity dispersion; the
range (R) depicts the extreme (maximum and minimum) con-
ditions of intensity; and the entropy (e) expresses the disor-
der or randomness in the area. The intensity of a bur defect
is slightly brighter than its neighboring pixels, so a wedge
with a bur defect will have a higher average intensity. The
variance (σ2) and the range (R) of the sampled wedge may
also be greater than in a normal wedge area, while entropy
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Fig. 12 Bur wedges at the outer ring

(e) may vary for different defective cases. These four fea-
tures are then fed into the both BPN and LVQ networks for
learning.

Implementation

The proposed inspection process was implemented in C++ on
a PC with a Pentium IV processor (2.4 GHz) and 4 Gigabytes
Memory running Microsoft Windows XP. Different numbers
of samples were screened out by experienced human inspec-
tors in advance for system validation.

System configuration

Figure 13 illustrates the configuration of the proposed auto-
mated visual inspection system. It consists of a charged-
couple device (CCD) camera, a frame grabber, a PC, a sorter,
and transporting (feeder), screening and sensing devices.
When a thermal fuse was first sorted and fed into the system,
the proximity sensor is triggered and a transistor–transistor
logic (TTL) signal is sent to activate the CCD camera to
acquire a digital image. The inspection algorithm was then
initiated to detect defects in the fuses. If any defect was found,
a signal is sent to the controller to screen out the defective
fuse by a designed mechanism.

Inspection of small-head defects

The system was first calibrated by comparing 30 measure-
ments with the result of the Nikon MM-800 optical mea-
suring machine. The average radii measurements from the

proposed system and Nikon MM-800 were 2.0861 and
2.066 mm, respectively, with standard deviations 0.397 and
0.380 mm. The radii measured by the proposed system were
slightly larger than those measured by the Nikon MM-800.
Therefore, the deviance was corrected by adding an off-set to
the measured value. Another 30 small-head defective sam-
ples were then screened out by experienced QC inspectors,
and then fed into the designed inspection system. Figure 14
shows five example small-head fuses with their inspection
results. The specification was 2.435±0.125 mm, as provided
by the manufacturer. These 30 samples were measured both
by the proposed inspection and the Nikon MM-800 for val-
idation. The measurement results are presented in Table 1.
Several pieces were screened out by incorrect human judg-
ment, including samples #11, #12, #13, #15, #24, #25, #26,
#27, #30.

Flake detection

Thirty defective flake samples and 30 good samples were first
collected for validation. Through trial-and-error, the thresh-
old value to segment the white ring area was set at 200.
After analyzing the normal and defective contours of white
ring areas, we found the contours of a normal fuse were
around 1,000 to 1,300 pixels, so the cut-off point was set
at 1,600. Under this setup, another 30 samples were col-
lected and tested. The proposed inspection process success-
fully detected all flake samples without false-positives for
the good samples. Figure 15 shows five defective samples
to demonstrate the inspection result. Figure 15a shows five
defective flake samples, and Fig. 15b shows the result of
boundary following, with contour lengths of 2004, 1989,
2008, 1904, and 2014 respectively. Figure 15c shows their
inspection results, with the flakes marked in red.

Bur detection

For bur detection, two sets of experiments were conducted
for validation and comparison. Off-line data collection and
network training were done for both BPN and LVQ. A total of
640 samples of bur defective wedge images (50 % good and
50 % defective) were collected. Among these, 384 samples
(60 %) were used for training and 128 samples (20 %) were
used for the testing, while the remaining 128 samples were
used for final validation.

BPN network experiment

When using a BPN for pattern recognition, parameters
including learning rate, momentum, types of transfer func-
tion, and structure of networks (number of hidden layers and
number of nodes in the hidden layers) must be determined in
advance. In this study, the nonlinear sigmoid or tansig trans-
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Fig. 13 System configuration

Fig. 14 Five small-head examples and their inspection results

fer function was used in the hidden and output layers. The
number of input nodes was four, determined by the dimen-
sion of features and the number of output nodes was two,
either (1, 0) or (0, 1), where 1 represents the occurrence of
a bur defect. The number of hidden layers was set to either
one or two layers for simplicity. The number of nodes in the
hidden layers was first set as

No. of hidden nodes = Input nodes + output nodes

2
. (5)

Neurons were then added or deleted based on learning per-
formance. However, the learning rate, momentum and final

architecture of the networks were determined by a simple
experiment of design. During the experiment, the network
was stopped at 1,000 epochs or when SSE reached 0.05.
Table 2 demonstrates part of experimental training results
for best detection results with accuracy as high as 98.43 %,
showing the BPN with structure (4-20-1), learning rate equal
to 0.01, and stopping epochs set as 800.

LVQ network experiment

The same training and testing patterns were also used to
train the LVQ networks. The key to the learning process
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Table 1 Small-head
measurement results

a Misjudged by human inspector

Sample no. Proposed system Nikon MM-800 Sample no. Proposed system Nikon MM-800

1 1.552 1.542 16 2.242 2.241

2 1.540 1.538 17 2.242 2.237

3 1.541 1.540 18 2.258 2.255

4 1.564 1.551 19 2.242 2.239

5 1.538 1.529 20 1.541 1.538

6 2.271 2.260 21 2.279 2.255

7 2.721 2.269 22 2.267 2.261

8 1.585 1.577 23 2.222 2.218

9 1.564 1.560 24 2.441a 2.434a

10 1.543 1.541 25 2.418a 2.412a

11 2.426a 2.423a 26 2.418a 2.409a

12 2.434a 2.430a 27 2.417a 2.415a

13 2.433a 2.428a 28 1.543 1.538

14 2.250 2.247 29 2.261 2.257

15 2.414a 2.408a 30 2.461a 2.399a

Fig. 15 Five flake examples and their inspection results. a Original five flake images. b Flake image after boundary following. c Flake image with
detection

was to determine the learning rate and the number of hidden
neurons, which is usually much larger than the number used
in BPN. Table 3 shows different setups (i.e., different num-
bers of hidden neurons and learning rates) of LVQ networks,

and their corresponding results. During the learning process,
the training epoch was set at two levels: 200 or 300. The
LVQ network with the structure 4-160-2 and a learning rate
of 0.1 obtained the best detecting performance, with recog-
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Table 2 BP setting and results

a Network structure with best
performance

Network structure Transfer function Learning rate Number of epoch MSE Results (%)

4-15-1 tansig 0.01 7 0.149 52.34

4-18-1 tansig 0.01 12 0.231 71.88

4-19-1 tansig 0.01 8 0.148 98.04

4-20-1 a tansig 0.01 17 0.144 98.43

4-23-1 tansig 0.01 12 0.149 92.96

4-25-1 tansig 0.01 13 0.014 94.43

4-16-1 logsig 0.01 14 0.142 55.46

4-18-1 logsig 0.01 10 0.145 91.40

4-20-1 logsig 0.01 7 0.139 75.78

4-22-1 logsig 0.01 9 0.14 53.91

4-10-10-1 tansig–tansig 0.01 3 0.505 51.56

4-14-14-1 tansig–tansig 0.01 8 0.143 96.09

4-15-15-1 tansig–tansig 0.01 11 0.155 97.65

4-16-16-1 tansig–tansig 0.01 11 0.136 64.06

4-15-15-1 tansig–logsig 0.01 11 0.140 92.18

4-16-16-1 tansig–logsig 0.01 19 0.149 94.53

4-17-17-1 tansig–logsig 0.01 11 0.144 96.09

4-18-18-1 tansig–logsig 0.01 9 0.138 81.25

4-15-15-1 logsig–tansig 0.01 8 0.142 53.12

4-17-17-1 logsig–tansig 0.01 11 0.146 80.46

4-18-18-1 logsig–tansig 0.01 9 0.140 85.15

4-19-19-1 logsig–tansig 0.01 10 0.159 53.23

Table 3 LVQ setting and results
Output layer neurons Learning rate Epoch Results

50 0.01 200 Train:83.33 % Test:81.11 %

50 0.01 300 Train:78.89 % Test:.78.88 %

100 0.01 200 Train:81.11 % Test:81.11 %

100 0.01 300 Train:88.89 % Test:88.89 %

150 0.01 200 Train:86.67 % Test:86.66 %

150 0.01 300 Train:89.99 % Test:90.00 %

160 0.01 200 Train:86.67 % Test:87.78 %

160 0.01 300 Train:.87.77 % Test:91.11 %

160 0.01 350 Train:911.11 % Test:89.99 %

170 0.01 200 Train:822.22 % Test:83.33 %

160 0.05 300 Train:87.78 % Test:88.89 %

160 0.1 200 Train:93.33 % Test:92.22 %

160 0.1 150 Train:91.11 % Test:92.22 %

nition rates for the training and tested samples of 93.33 and
92.22 %, respectively. The learning process of best LVQ is
shown in Fig. 16.

Finally, the last 128 samples were used to validate these
two networks. A comparative result between BPN and LVQ
is illustrated in Table 4, which shows the BPN has the better
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Fig. 16 Learning process of LVQ with 4-160-2 structure

Table 4 Comparative results between BPN and LVQ

Methods LVQ BPN

Correctness rate 91.27 % 98.50 %
Time cost 0.297 s 0.318 s

classification rate (98.43 %) though it requires a little more
computation time.

Discussion and conclusions

The proposed system was physically implemented and is
currently running in the case study company as shown in
Fig. 17a. The graphic user interface is shown in Fig. 17b. All
the settings were aimed at eliminating the type II error in elec-
trical appliances for safety considerations. For the small-head
inspection, the proposed method replaced unscientific human
guessing with a precise measurement. Following simple cal-
ibration, the small-head measurement reached an accuracy
equal to that of an industrial optical measuring machine.
Whereas a human inspector would subjectively guess the
size of the lead head, the proposed algorithm provided an
accurate objective measurement. The system detected flake
defect with 100 % accuracy. Two supervised ANNs (BPN
and LVQ) were trained to classify the bur defect. Though
slightly slower, BPN provided better detection performance
than LVQ, and was thus selected for bur defect inspection in
the deployed system.

This study presents a machine vision-based inspection
system using artificial neural networks to detect four major
defects (small-head, bur, flake, and black-dot) in the man-
ufacture of thermal fuses. An implemented inspection flow
was shown to reliably identify these defects. The study makes
the following major contributions: (1) four features were suc-
cessfully extracted and applied to two artificial neural net-
works for the machine vision-based inspection system; (2)

Fig. 17 The implemented system. a Inspection system in case study
company. b System GUI

the proposed system not only reduces costs associated with
human inspectors but also increases inspection reliability and
speed.

References

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fun-
damentals, computing, design, and application. Journal of Microbi-
ological Methods, 43, 3–31.

Benedek, C., Krammer, O., Janóczki, M., & Jakab, L. (2013). Solder
paste scooping detection by multilevel visual inspection of printed
circuit boards. IEEE Transactions on Industrial Electronics, 60(6),
2318–2331.

Chang, C. Y., Li, C. H., Chang, Y. C., & Jeng, M. (2011). Wafer defect
inspection by neural analysis of region features. Journal of Intelligent
Manufacturing, 22(6), 953–964.

Chen, S., Lin, B., Han, X., & Liang, X. (2012). Automated inspection of
engineering ceramic grinding surface damage based on image recog-
nition. International Journal of Advanced Manufacturing Technol-
ogy, 66, 431–443.

123



J Intell Manuf (2016) 27:639–651 651

Chin, R. T., & Harlow, C. A. (1982). Automated visual inspection: A
survey. IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, 4(6), 557–573.

Chin, R. T. (1988). Automated visual inspection: 1981 to 1987. Com-
puter Vision, Graphics, and Image Processing, 41(3), 346–381.

Gan, Y., & Zhao, Q. (2013). An effective defect inspection method for
LCD using active contour model. IEEE Transactions on Instrumen-
tation and Measurement, 62(9), 2438–2445.

Ghorai, S., Mukherjee, A., Gangadaran, M., & Dutta, P. K. (2013).
Automatic defect detection on hot-rolled flat steel products. IEEE
Transactions on Instrumentation andMeasurement, 62(3), 612–621.

He, L., Chao, Y., Suzuki, K., & Wu, K. (2009). Fast connected-
component labeling. Pattern Recognition, 42(9), 1977–1987.

Kumar, S. (2004).Neural networks—A classroom approach. New York:
Tata McGrawHill Publishing.

Lahajnar, F., Bernard, R., Pernus, F., & Kovacic, S. (2002). Machine
vision system for inspecting electric plates. Computer in Industry,
47(1), 113–122.

Li, W. C., & Tsai, D. M. (2012). Wavelet-based defect detection in solar
wafer images with inhomogeneous texture. Pattern Recognition, 45,
742–756.

Li, X., & Tso, S. K. (2006). Improving automatic detection of defects
in castings by applying wavelet technique. IEEE Transactions on
Industrial Electronics, 53(6), 1927–1934.

Liang, Y., Gao, J., Jian, C., & Chen, X. (2012). Online visual inspection
system for OLED defects. Applied Mechanics and Materials, 241–
244, 3153–3158.

Lin, H. D. (2007). Automated visual inspection of ripple defects using
wavelet characteristic based multivariate statistical approach. Image
and Vision Computing, 25(11), 1785–1801.

Malamas, E. N., Petrakis, E. G. M., Zervakis, M., Petit, L., & Legat, J.
D. (2003). A survey on industrial vision systems, applications and
tools. Image and Vision Computing, 21(2), 171–188.

Newman, T. S., & Jain, A. K. (1995). A survey of automated visual
inspection. Computer Vision and Image Understanding, 61(2), 231–
262.

Otsu, N. (1979). A threshold selection method from gray-level his-
tograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1),
62–66.

Prijic, A., Prijic, Z., Pesic, B., Pantic, D., Ristic, S., Macic, D., et al.
(2008). Design and optimization of S-type thermal cutoffs. IEEE
Transactions on Components and Packaging Technologies, 31(4),
904–912.

Scholz-Reiter, B., Weimer, D., & Thamer, H. (2012). Automated surface
inspection of cold-formed micro-parts.CIRPAnnals:Manufacturing
Technology, 61, 531–534.

Shen, H., Li, S., Gu, D., & Chang, Hongxing. (2012). Bearing defect
inspection based on machine vision. Measurement, 45, 719–733.

Steiner, D., & Katz, R. (2007). Measurement techniques for the inspec-
tion of porosity flaws on machined surfaces. Journal of Computing
and Information Science in Engineering, 7, 85–94.

Su, L., Zha, Z., Lu, X., Shi, T. L., & Liao, G. G. (2013). Using BP net-
work for ultrasonic inspection of flip chip solder joints. Mechanical
Systems and Signal Processing, 34, 183–190.

Sun, T. H., Tang, C. H., & Tien, F. C. (2011). Measuring the roundness
of silicon wafers using the HJ-PSO algorithm. IEEE Transactions
on Semiconductor Manufacturing, 24, 80–88.

Sun, T. H., Tseng, C. C., & Chen, M. S. (2010). Electric contacts inspec-
tion using machine vision. Image and Vision Computing, 28(6), 890–
901.

Thomas, A. D. H., Rodd, M. G., Hold, J. D., & Neill, C. J. (1995).
Real-time industrial visual inspection: A review. Real-Time Image,
1(2), 139–158.

Tien, F. C., Yeh, C. H., & Hsieh, K. H. (2004). Automated visual inspec-
tion for microdrills in printed circuit board production. International
Journal of Production Research, 15, 2477–2495.

Tolba, A. S. (2011). Fast defect detection in homogeneous flat surface
products. Expert Systems with Applications, 38, 12339–12347.

Torres, F., Jiménez, L. M., Candelas, F. A., Azorín, J. M., & Agulló,
R. J. (2002). Automatic inspection for phase-shift reflection defects
in aluminum web production. Journal of Intelligent Manufacturing,
13(3), 151–156.

Wang, M. J., Wu, W. Y., & Hsu, C. C. (2002). Automated post bonding
inspection by using machine vision techniques. International Jour-
nal of Production Research, 40(12), 2835–2848.

Wu, W. Y., & Hou, C. C. (2003). Automated metal surface inspection
through machine vision. Imaging Science Journal, 51(2), 79–88.

Xie, Y., Ye, Y., Zhang, J., Liu, L., & Liu, L. (2014). A physics-based
defects model and inspection algorithm for automatic visual inspec-
tion. Optics and Lasers in Engineering, 52, 218–223.

Yamashina, H., & Okumura, S. (1996). A machine vision system for
measuring wear and chipping of drilling tools. Journal of Intelligent
Manufacturing, 7(4), 319–327.

Zhang, X., Tsang, W.-M., Yamazaki, K., & Mori, M. (2013a). A study
on automatic on-machine inspection system for 3D modeling and
measurement of cutting tools. Journal of Intelligent Manufacturing,
24(1), 71–86.

Zhang, Z., Wang, Y., & Wang, K. (2013b). Fault diagnosis and prog-
nosis using wavelet packet decomposition, Fourier transform and
artificial neural network. Journal of Intelligent Manufacturing, 24,
1213–1227.

Zheng, H., Kong, L. X., & Nahavandi, S. (2002). Automatic inspec-
tion of metallic surface defects using genetic algorithms. Journal of
Materials Processing Technology, 125–126, 427–433.

123


	Automated thermal fuse inspection using machine vision and artificial neural networks
	Abstract 
	Introduction
	Thermal fuse defects
	Proposed machine vision-based inspection system
	Image acquisition and segmentation
	Fuse locating and separation
	Small-head and black-dot inspection
	Flake detection
	Bur detection

	Implementation
	System configuration
	Inspection of small-head defects
	Flake detection
	Bur detection
	BPN network experiment
	LVQ network experiment


	Discussion and conclusions
	References




