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Abstract The experimental nonlinear time series of weld-
ing current contain the arc feature information related to
welding quality. The local mean decomposition (LMD) com-
bining with the support vector machine (SVM) is put forward
to quantitatively estimate the rationality of welding parame-
ters and welding formation quality. The LMD is used to inves-
tigate the time—frequency distribution of arc energy, and the
energy entropy is employed to quantitatively judge the weld-
ing arc characteristics related to welding quality. The col-
lected current signal is decomposed into a number of product
functions (PFs) by LMD. The energy entropy of each PF is
calculated to establish the welding arc energy feature vectors,
which are inputted into support vector machine classifier. The
LMD combining with SVM can quantitatively estimate the
time—frequency energy distribution characteristics of the arc
current signal at different welding parameters and welding
formation quality. Experimental results are provided to con-
firm the effectiveness of this approach to estimate the ratio-
nality of welding parameters and welding formation quality.

Keywords Welding quality - Welding current - LMD -
Energy entropy - SVM - Quantitative estimation

Introduction

The use of modern signal processing methods to extract arc
feature information for analysis and evaluation of the weld-
ing technology, process stability and welding quality is one
of the important way to estimate welding quality (Wu and
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Tung 2008; He et al. 2011; Huang and Kovacevic 2011;
Chokkalingham et al. 2012; He et al. 2013). Because the
process parameters such as welding current, voltage and
welding speed depend on arc energy characteristics in the
welding process, which directly affect the stability of the
welding process and welding formation quality. As early as in
1980, characterization of spot welding behaviour by dynamic
electrical parameter monitoring was researched by Dickin-
son et al. Dickinson et al. (1980). Based on dynamic resis-
tance signal together with the electrode displacement signal,
Yong proposed a new technology for measuring dynamic
resistance and estimating strength in resistance spot weld-
ing (Cho and Rhee 2000). A real-time imaging and detecting
system was introduced to detect weld defects in steel tube,
which could automatically alarm if the defect exceeds the
national standard (Sun et al. 2005). In recent years, the intro-
duction of advanced technology to monitoring and evaluation
of welding process has become research focus, the theory
of stochastic processes was applied to the analysis of gas
metal arc welding data (Absi Alfaro et al. 2006). Weld joint
strength prediction was implemented by neurowavelet packet
analysis based on arc current (Pal et al. 2008). In nonlinear
feature extraction, Sudhanya adopted the adaptive chirplet
transform to detect the weld joint strength using current as
a sensor output during the welding, it provided better time—
frequency resolution, has much more accurate, high sensi-
tivity with respect to faults, and also has better diagnostic
resolution (Chatterjee et al. 2012). In order to obtain more
welding information, the multi-parameter test system was
also appeared in welding monitoring and evaluation (Cullen
etal. 2008; Li 2012). At the same time, nonlinear time series
processing methods have also become an important mean
for analysis of arc stability characteristics in welding process
monitoring and evaluation. This effect was also well studied
and a lot of practical applications could be found (He et al.
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2013; Zhiyong et al. 2013). Based on the experimental non-
linear time series of welding current at different frequency
and duty cycle, He numerically evaluated the arc stability of
Square Wave Alternating Current Submerged Arc Welding
(SW AC SAW) by the largest Lyapunov exponents (He et
al. 2013). Li accurately calculated the maximum Lyapunov
exponent of the welding processes for different parameters
to evaluate stability of the welding process in gas metal arc
welding (GMAW) (Zhiyong et al. 2013).

Because of the uncertainty and nonlinear coupled affect-
ing factors to the welding quality, the collected welding arc
data is the non-stationary arc signal. The time—frequency
analysis method is most powerful tool for non-stationary
signals presently. There are some time—frequency analysis
methods such as window flourier transformation, continuous
wavelet transformation, Wigner—Ville distribution, Hilbert—
Huang transformation and local mean decomposition (LMD)
(Zhang et al. 2013; Flandrin et al. 2013; Hsu et al. 2013;
Smith 2005). Where, LMD is a new self-adapting time—
frequency analysis method, and first proposed by Jonathan S.
Smith, which get better results by applling to the EEG signal
processing and Smith (2005). LMD method cana adaptively
decompose a complex multi-component signal into a num-
ber of instantaneous frequency and a physical meaning Prod-
uct Function (PF) components, each of the PF component is
multiplied by an envelope signal and a pure frequency mod-
ulation signal. It has higher time—frequency resolution and
concentration, which is especially suitable to the analysis of
arc electric signal.

In this paper, a method based on the PF component energy
entropy and support vector machine (SVM) is presented to
estimate welding quality (the rationality of welding para-
meters, the recognition of welding formation quality). The
collected current signal is adaptively decomposed into phys-
ical meaning PF components. The energy entropy of PFs
are calculated to be the arc feature vectors that are inputted
into support vector machine classifier to evaluate the ratio-
nality of welding parameters and welding formation quality.
Experimental results show that the PF component energy
entropy of arc current signal can characterize quantitatively
the energy variation of arc welding process, and the support
vector machine classifier can effectively achieve recognition
for the rationality of welding parameters and welding forma-
tion quality.

In “Quantitative estimation principle and methods” sec-
tion, we discuss the theory and algorithm for the LMD, and
how the collected current signal decomposed into physical
meaning PF components, the quantitative estimation method
based on the PF component energy entropy and SVM is put
forward. In “Experiment and results” section, the experimen-
tal condition and scheme are designed, and the proposed
method is applied and results are discussed. The conclusions
are summarized in “Conclusions” section.
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Quantitative estimation principle and methods
LMD process

LMD is essentially demodulation process of a multi-compon-
ent signal. LMD adaptively decomposes a complex multi-
component signal into a number of PF' components with a
physical meaning of instantaneous frequency, each of the PF
component is composed of an envelope signal multiplied a
pure frequency modulation signal. The instantaneous ampli-
tude is representative of the amplitude modulation informa-
tion of the PF component. The instantaneous frequency is
representative of the frequency modulation of the PF com-
ponent.

For an arbitrary signal x(t), it can be decomposed into
the sum of P F, component and a monotonic function uy as
follows:

k
x(t) =D PFp(t)+u (1) e

p=1

Figure 1 is an alternate current square wave welding cur-
rent signal x(t) and the denoising results, Fig. 2 is the decom-
position results by LMD.

We can see from Fig. 2, the decomposed component of
PFy, PF,,...PFs correspond to the different frequency
signal, representing the real physical information within the
welding current signal, the monotonic function us is the rule
AC square wave. Each PF represents the distortion compo-
nents of AC square wave current waveform with different
frequencies and amplitude diversification in the time scale,
the original signal characteristics become visible in differ-
ent resolutions. The amplitudes of the PF components vary
greatly. When welding technology specification changes, the
energy distribution of PF component of arc energy signal will
change accordingly, which directly affect arc stability and
weld formation quality. Based on decomposition of LMD,
the distribution of the energy calculated can be used to char-
acterize the welding process state. In order to extract arc
feature, the PF components of energy entropy are selected to
characterize the differences in quality of the welding process.

Hilbert transform for PFs

According to (1), Hilbert transform of every PF is performed,
(2) can be represented as below.

o0

A 1 [ PFi(7)
PFp(t):;/ -t 2)

—00

The analytic signal z; (¢) is constructed by (3)

/\ .
zi(t) = PFy(t) + j PFy(t) = a; (1)’ ® 3)
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Fig. 1 the collected welding current signal x(t) and the denoising
results. a The collected welding current signal x(t). b Welding current
signal x(t) after denoising
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Fig. 2 The LMD decomposition result of x(t)

where the amplitude function g; (¢) and phase function ¢; (t)
are represented as (4) and (5)

ai(t) = \/ PF2(t) + PF(1) @)

A
PFy(t)

PF,(1) )

¢i(t) = arctan

The instantaneous frequency f;(¢) can be further repre-
sented as follows.

o LT dei(r)
filt) = o) =5 x =4

In this way, the x(¢) can be represented as

(6

n n
x(t) = RP Y aj(ne!® = RP > ai(n)el @41 (7)
i=1 i=1
where RP is real part. (7) is defined as Hilbert spectrum and
can be represented as

N
H(@.1)=RP Y ai(t)el ] 0 8)
I=1
(8) describes the accurate changing law of time and frequency
of signal amplitude in the whole frequency ranges. The signal
amplitude can be depicted by contour line of time—frequency
plane, can also be expressed as function of time and instan-
taneous frequency in the three dimensions space.

Energy entropy for Hilbert spectrum

In order to quantify the welding arc energy Characteristics at
different welding parameters, the energy entropy is intro-
duced to be calculated based on the Hilbert spectrum of
the welding current signal. The method of energy entropy
introduced into time—frequency analysis is to divide time—
frequency plane into N equal area blocks, and each block
energy is supposed as W;(i = 1,2, ..., N), the total energy
of the time—frequency plane is A. Each block energy is nor-
malized by ¢; = Wi/A, thus >N | ¢; = 1, which corre-
sponds with initial normalization condition of information
entropy calculation. Based on the formula of information
entropy, the formula of time—frequency entropy s(g) based
on PF Hilbert transformation can be written as (9),

N
s(q) =~ qilng; ©)
i=1
According to the basic property of information entropy,
the distribution of ¢; is more uniform, the calculated value
of energy entropy s(g) is smaller. the distribution of is less
uniform, the calculated value of energy entropy is larger.
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Fig. 3 Hilbert spectrum of welding current signal x(t) demodulated by
LMD

Figure 3 shows the joint distribution of the time and fre-
quency after Hilbert transform for the welding current sig-
nal x(t) demodulated by LMD. We can see from Fig. 3,
that the main frequency components is basically around
50Hz, accompanying other frequency components fluctuat-
ing around the main frequency over time, which meets the
variation of instantaneous frequency and amplitude of the
50Hz AC square wave submerged arc welding current signal.
It accurately reflects the variation rule of signal’s frequency,
amplitude with high time—frequency resolution and concen-
tration.

The welding quality classifier based on support vector
machine

Support vector machine classifier (Ekici 2012; Caydas and
Ekici 2012; Brezak et al. 2012; Manupati et al. 2013)

Two types of linearly separable sample are set as (x;, y;),
i=1,....1,x; € R,y € {+1,—1},1 is the number of
samples, n is inputting dimension. General form of the linear
discriminated function is f(x) = wx + b, the equation of
classification plane is:

wx +b=0 (10)

where w = [w1, w2, ..
b are constants.

Since SVM is binary classifiers, the multivariate classifier
must be established by the binary SVM. In order to distin-
guish welding formation state between normal, undercut and
hump, only two classifiers should be designed. In SVMI,
f(x) = +1 is defined by undercut, f(x) = —1 indicates a
normal or hump, so the undercut can be separated by SVM1.
In SVM2, f(x) = +1 is defined by normal, f(x) = —1

., wy,] is a hyperplane weight vector,
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Fig. 4 The block diagram of welding quality classifier based on sup-
port vector machine

indicates the hump, so the hump can be separated by SVM2.
In classification test, the testing data sample of feature vec-
tors are inputted into SVM1, if f(x) = +1, welding forma-
tion state is recognized as undercut, otherwise the rests are
inputted into the SVM2 automatically, if f(x) = +1, weld-
ing formation state is recognized as normal, if f(x) = —1,
welding formation state is recognized as hump.

Taken the calculated PF component energy entropy of arc
current signal as the characteristic parameters, the three com-
mon welding seam forms of normal, undercut and hump as
the status identification of welding quality, the welding qual-
ity classifier based on support vector machine is shown in
Fig. 4.

The selection of kernel function (Keerthi and Lin 2003,
Chapelle and Vapnik 2002)

The data sample of welding process is nonlinear. For non-
linear classification issues, if the optimal classifier surface
in the original space can not be satisfied with the results,
we can make the mapping of the original sample space to
high dimensional linear separable feature space F by nonlin-
ear mapping ¢ : R" — F,x — ¢(x), thus the classified
samples are changed into {¢(x1), ¢(x2),...,P(x,)}. It is
difficult to solve non-linear mapping in the general case, but
the ingenious solution can be introduced to this problem by
the kernel function. The optimal hyperplane in the feature
space is constructed by:

[0 =D @i ($(xi), $()) +b =D a;yik(xi, x) +b
i=1 i=1

(1)

By choosing the different kernel function, different sup-
port vector machine classifier can be constructed.

Kernel function has good local area to facilitate the exten-
sion of to the unknown target classification. Different sup-
port vector machine can be established by choosing kernel
function. In the commonly used kernel function, the linear
and gaussian kernel functions have been widely used. The
gaussian kernel function is most widely used with good learn-
ing ability, has a wide domain of convergence, is the ideal
classification function, the gaussian kernel function is as fol-
lows:
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where o is kernel parameter.

K(xi,xj) = exp(—

The principle and method of quantitative estimation for
welding quality

The principle and method of quantitative estimation for weld-
ing quality is shown in Fig. 5, the quantitative estimation
method steps are as follows:

(1) Welding experiments are done by the given welding
process parameters under orthogonal experimental pro-
gram, and conduct welding arc current signal data acqui-
sition, the welding current is sampled real time for 10s at
a sample rate of 25 kHz. From the total samples, 10,000
data points are extracted randomly to be the training and
testing samples.

Decompose welding arc current signal data into N PF
components by LMD, each PF component corresponds to
adatasample {x,},p=1,2,...,n,t=1,2,..., N, and the

2)

new time series are obtained by energy normalized{x;, 1,
=1, 2,.... The object of data normalized is to eliminate the
original sampled signal amplitude affecting characterized
parameter extraction of the system state.

Divide each of the data samples { } into m-segment acood-
ing to the length of data, calculating the total energy E;
of each piece of data, and the energy E1, E», ..., E,, of
each PF component are obtained.

Based on the formula of energy entropy (9), each PF
component is written as Eq. (13),

3)
4)

m
Sp(@) == qilng;

i=1

(13)

where g; = E;/E represents the proportion of the energy
of the i segment data in the total energy E = >/ | E; in
each PF component. According to the basic property of
information entropy, the more uniform is the distribution,
the smaller is the value of energy entropy, while the less

Welding

Walking machine
platform
Current
Welding SENSors
torch Data
Workpiece acquisition

Fig. 6 The experimental platform

uniform is the distribution, and the larger is the value of
energy entropy.

The energy eigenvector matrix of each arc current data
samples can be constructed as an n-dimensional 7 =
[S1, S>..., S,], which are inputted into support vector
machine as a feature vector.

The arc energy eigenvectors T are inputted into support
vector machine for training to be welding molding quality
classifier.

Within the scope of the setting process parameters, weld-
ing experiments are done, arc current signal data are col-
lected as the testing sample form the feature vector 7 in
accordance with step (2), (3), (4), (5), then input feature
vector T into the SVM classifier to identify the rational-
ity of welding process, arc stability and welding molding
quality.

®)

(6)

)

Experiment and results
The experimental condition

With objects of experiments and analysis to the AC square
wave submerged arc welding, welding arc current and volt-
age signal are collected by the current sensors, Ethernet data
acquisition, industrial control computer, and the experimen-
tal platform is shown in Fig. 6. The collected welding current,
voltage signal are transported to industrial control computer
by cable transmission. The collected signal are analyzed and
processed by Matlab.

@ Springer
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Table 1 The testing program

and welding results Sequence Current (A) Voltage (V) Frequency Duty cycle Welding Welding
number (Hz) speed molding situ-
(m/min) ation

1 400 36 50 0.3 0.6 Normal

2 400 38 80 0.5 1.0 Undercut

3 400 40 100 0.8 1.4 Hump

4 500 36 80 0.5 0.6 Normal

5 500 38 100 0.8 1.0 Undercut

6 500 40 50 0.3 1.4 Hump

7 600 36 50 0.8 1.0 Undercut

8 600 38 80 0.3 1.4 Hump

9 600 40 100 0.5 0.6 Normal

10 400 36 100 0.5 1.4 Hump

11 400 38 50 0.8 0.6 Normal
12 400 40 80 0.3 1.0 Undercut

13 500 36 100 0.3 1.0 Undercut

14 500 38 50 0.5 1.4 Hump

15 500 40 80 0.8 0.6 Normal

16 600 36 80 0.8 1.4 Hump

17 600 38 100 0.3 0.6 Normal

18 600 40 50 0.5 1.0 Undercut

hump

normal

undercut

Fig. 7 Actual pictures for between normal, undercut, and hump

Experiments are done by alternating current square wave
submerged arc welding machine MZE1000. The material of
work piece is low carbon steel Q235 with slab thickness of
20 mm, the welding wire trademark is HO8A with diameter
of 4.0mm, and welding flux is HJ431.

Results and discussion

In order to ensure the integrity of information of experimen-
tal samples with the reasonable number of experiments, the
orthogonal design experiment is introduced. Five factors and
three levels of orthogonal experiment are designed, the cur-
rents are set by 400, 500, 600 A, the voltages are set by 36,
38 and 40V. The frequency of current waveform are set by
50, 80 and 100Hz, The duty cycle of current waveform are
set by 0.3, 0.5 and 0.8. Welding speed are set by 0.6, 1.0 and
1.4 m/min.

@ Springer

Alternating current square wave submerged arc welding
experiments are done by the given welding process para-
meters, and conduct arc current signal data acquisition, the
testing program and results are shown in Table 1. The weld-
ing molding situation of the experiments are normal (weld-
ing seam surface is neat and smooth), undercut (welding
seam surface is corner, irregular and depression) and hump
(welding seam surface is obvious rugged, uncontinuous and
depression). The actual pictures for between normal, under-
cut, and hump is shown in Fig. 7.

PF component eigenvectors are constructed after decom-
posing collected arc current signal by LMD in each exper-
iment. Figure 8a, (b), (c) are the LMD decomposed results
of the collected arc current signal of experiments sequence
number 1, 7 and 14, respectively. Table 2 lists the calcu-
lated PF component eigenvectorsm of the experiments 1, 7
and 14. As can be seen from the Table 2, corresponding to
different welding parameters and welding molding, PF com-
ponent energy entropy values after the decomposition of the
LMD are vary, which illustrate the energy entropy of the PF
components can quantitatively estimate the time—frequency
energy distribution characteristics of the welding arc current
signal at different welding parameters and welding formation
quality, so it can be inputted into support vector machine as
a feature vector.

The training samples used to identify the welding process
and welding quality are feature vectors of corresponding cal-
culated PF components with regard to welding parameters
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Fig. 8 Arc current signal of experiment sequence number. 1, 7, 14 and
the LMD decomposition results. a Arc current signal of experiment
sequence number 1 and the LMD decomposition result. b Arc current
signal of experiment sequence number 7 and the LMD decomposition
result. ¢ Arc current signal of experiment sequence number 14 and the
LMD decomposition result

and welding formation. The training samples from Table 1
are inputted to the two support vector machine classifier of
welding quality.

At the same time, the testing experimental program is

designed to test the performance of classification. The bound-
aries of each welding parameters for testing experimental
program depend on the upper and lower values of welding
parameters in experiment, the boundaries of each welding
parameters are as following: the boundary of currents is 400—
600 A, the boundary of voltages is 36—40V, the boundary of
frequency of current waveform is 50 A—100 Hz, the boundary
of duty cycle of current waveform is 0.3-0.8, the boundary
of welding speed is 0.6—1.4 m/min. The calculated eigenvec-
tors at each testing experimental program are used to verify
support vector machines for welding quality pattern recog-
nition. The recognition results are shown in Table 3. As can
be seen from Table 3, the proposed support vector machine
has a high correct recognition rate by 94.4 % to the testing
sample, which illustrate the proposed welding quality test-
ing methods are effective based on the energy entropy of PF
component and SVM.

Conclusions

Based on local mean decomposition and support vector
machine, we have presented an quantitative estimation tech-
nique for welding quality, whic have been applied to esti-
mate welding quality in alternating current square wave sub-
merged arc welding, and also obtained the following conclu-
sions:

6]

2

The LMD combining with energy entropy can quanti-
tatively estimate the time—frequency energy distribution
characteristics of the welding arc current signal related
to the rationality of welding parameters and welding for-
mation quality.Welding arc current signal is adaptively
decomposied by LMD, and a number of real physical
significance PF component are obtained, and the energy
entropy of each PF component also are calculated, eigen-
vectors constructed by energy entropy of each PF com-
ponents can be used as arc characteristics information of
the arc stability and welding formation quality.

Based on the arc eigenvectors constructed by the energy
entropy of PF components, the pattern recognition of
welding molding type has been achieved by support vec-
tor machine. The proposed method can effectively quan-
titative estimate the rationality of the welding parameters
and weld formation quality, and has a high correct recog-
nition rate by 94.4 % to the testing sample, which illus-
trate the proposed welding quality testing methods are
effective based on the energy entropy of PF component
and SVM.
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Table 2 The feature vectors of

three weld molding type Sequence number Welding molding situation Eigenvectors
Si AY) S$3 Sa Ss
Normal 2.9984 2.4598 2.5138 2.4282 3.3693
7 Undercut 3.9235 3.3980 3.7201 3.8564 3.8680
14 Hump 4.4189 4.8995 4.8009 4.2463 3.0882
Table 3 The testing classification results of SVM
Sequence  Welding para- Welding  SVM classi- Classification The rate of
number meters molding  fier results correct classi-
situation fication
Current Voltage Frequency Dutycycle Welding SVM1 SVM2
(A) V) (Hz) speed classi- classi-
(m/min) fication fication
results results
1 410 36 50 0.3 0.6 Normal —1 +1 Normal 94.4 %
2 420 38 80 0.5 0.8 Undercut  +1 Undercut
3 430 36 50 0.3 0.6 Normal -1 +1 Normal
4 440 38 60 0.4 0.8 Normal +1 Undercut
5 450 36 70 0.5 1.0 Undercut  +1 Undercut
6 460 38 80 0.5 1.0 Undercut  +1 Undercut
7 470 40 80 0.6 1.2 Hump —1 —1 Hump
8 480 38 90 0.7 0.8 Undercut  +1 Undercut
9 490 40 100 0.8 1.4 Hump -1 -1 Hump
10 500 36 50 0.6 0.6 Normal —1 +1 Normal
11 510 38 80 0.7 0.8 Normal —1 +1 Normal
12 520 40 100 0.8 1.4 Hump -1 vl Hump
13 530 36 60 0.7 1.2 Undercut  +1 Undercut
14 540 38 70 0.6 0.8 Normal —1 +1 Normal
15 550 38 80 0.5 1.0 Undercut  +1 Undercut
16 560 40 90 0.4 0.8 Normal —1 +1 Normal
17 570 36 100 0.3 1.4 Undercut  +1 Undercut
18 580 36 50 0.3 0.6 Normal —1 +1 Normal
Acknowledgments This work is supported by National Natural Sci- Chatterjee, S., Chatterjee, R., Pal, S., Pal, K., & Pal, S. K. (2012).

ence Foundation of China (51005073) and Hunan Provincial Natural
Science Foundation of China (11JJ2027) are gratefully acknowledged.

References

Absi Alfaro, S. C., Carvalho, G. C., & da Cunhab, F. R. (2006). A statis-
tical approach for monitoring stochastic welding processes. Journal
of Materials Processing Technology, 175(2006), 4—14.

Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear
estimation using an analytic fuzzy classifier and support vector
machines. Journal of Intelligent Manufacturing, 23(2012), 797-809.

Caydas, U., & Ekici, S. (2012). Support vector machines models for
surface roughness prediction in CNC turning of AISI 304 austenitic
stainless steel. Journal of Intelligent Manufacturing, 23(2012),
639-650.

Chapelle, O., & Vapnik, V. (2002). Choosing multiple parameters for
support vector machines. Machine Learning, 46(2002), 131-159.

@ Springer

Adaptive chirplet transform for sensitive and accurate monitoring of
pulsed gas metal arc welding process. The International Journal of
Advanced Manufacturing Technology, 60(2012), 111-125.

Cho, Y., & Rhee, S. (2000). New technology for measuring dynamic
resistance and estimating strength in resistance spot welding. Mea-
surement Science and Technology, 11(2000), 1173-1178.

Chokkalingham, S., Chandrasekhar, N., & Vasudevan, M. (2012). Pre-
dicting the depth of penetration and weld bead width from the infra
red thermal image of the weld pool using artificial neural network
modeling. Journal of Intelligent Manufacturing, 23(2012), 1995—
2001.

Cullen, J. D., Athi, N., Al-Jader, M., Johnson, P., Al-Shamma’a, A. 1.,
& Shaw, A. (2008). Multisensor fusion for on line monitoring of
the quality of spot welding in automotive industry. Measurement,
41(2008), 412-423.

Dickinson, D. W., Franklin, J. E., & Stanya, A. (1980). Characterization
of spot welding behavior by dynamic electrical parameter monitor-
ing. Welding Journal, 59(1980), 170s—176s.



J Intell Manuf (2016) 27:525-533

533

Ekici, S. (2012). Support vector machines for classification and locat-
ing faults on transmission lines. Applied Soft Computing, 12(2012),
1650-1658.

Flandrin, P., Amin, M., McLaughlin, S., & Torresani, B. (2013). Time—
frequency analysis and applications. IEEE Signal Processing Mag-
azine, 30(2013), 19-150.

He, K., Zhang, Z., Xiao, S., & Li, X. (2013). Feature extraction of
AC square wave SAW arc characteristics using improved Hilbert—
Huang transformation and energy entropy. Measurement, 46(2013),
1385-1392.

He, K. F, Li, Q., & Chen, J. (2013). An arc stability evaluation approach
for SW AC SAW based on Lyapunov exponent of welding current.
Measurement, 46(1), 272-278.

He, K. F,, Wu, J. G., & Wang, G. B. (2011). Time—frequency entropy
analysis of alternating current square wave current signal in sub-
merged arc welding. Journal of Computers, 6(2011), 2092-2097.

Hsu, W., Chiou, D., Chen, C., Liu, M., Chiang, W., & Huang, P. (2013).
Sensitivity of initial damage detection for steel structures using the
Hilbert—Huang transforms method. Journal of Vibration and Control,
19(2013), 857-878.

Huang, W., & Kovacevic, R. (2011). A neural network and multiple
regression method for the characterization of the depth of weld pen-

etration in laser welding based on acoustic signatures. Journal of

Intelligent Manufacturing, 22(2011), 131-143.

Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vec-
tor machines with Gaussian kernel. Neural Computation, 15(2003),
1667-1689.

Li, R. X. (2012). Quality monitoring of resistance spot welding based
on process parameters. Energy Procedia, 14(2012), 925-930.

Manupati, V. K., Rohit Anand, J. J., Thakkar, Lyes Benyoucef, Gar-
sia, Fausto P., & Tiwari, M. K. (2013). Adaptive production con-
trol system for a flexible manufacturing cell using support vector
machine-based approach. The International Journal of Advanced
Manufacturing Technology, 67(2013), 969-981.

Pal, S, Pal, S. K., & Samantaray, A. K. (2008). Neurowavelet packet
analysis based on current signature for weld joint strength prediction
in pulsed metal inert gas welding process. Science and Technology
of Welding and Joining, 13(2008), 638—645.

Smith, J. S. (2005). The localmean decomposition and its application to
EEG perception date. Journal of the Royal Society Interface, 2(2005),
443-454.

Sun, Y., Bai, P., Sun, H-y, & Zhou, P. (2005). Real-time automatic detec-
tion of weld defects in steel pipe. NDT & E International, 38(2005),
522-528.

Wu, C., & Tung, P. (2008). Application of genetic algorithm to exter-
nal noise cancellation and compensation in automatic arc welding
system. Journal of Intelligent Manufacturing, 19(2008), 249-256.

Zhang, Z., Wang, Y., & Wang, K. (2013). Fault diagnosis and prognosis
using wavelet packet decomposition, Fourier transform and artifi-
cial neural network. Journal of Intelligent Manufacturing, 24(2013),
1213-1227.

Zhiyong, L., Qiang, Z., Yan, L., & Xiaocheng, Y. (2013). An analysis
of gas metal arc welding using the Lyapunov exponent. Materials
and Manufacturing Processes, 28(2013), 213-219.

@ Springer



	A quantitative estimation technique for welding quality using local mean decomposition and support vector machine
	Abstract 
	Introduction
	Quantitative estimation principle and methods
	LMD process
	Hilbert transform for PFs
	Energy entropy for Hilbert spectrum
	The welding quality classifier based on support vector machine
	Support vector machine classifier r20,r21,r22,r23
	The selection of kernel function r24,r25

	The principle and method of quantitative estimation for welding quality

	Experiment and results
	The experimental condition
	Results and discussion

	Conclusions
	Acknowledgments
	References




