
J Intell Manuf (2016) 27:417–429
DOI 10.1007/s10845-014-0873-z

A hybrid cuckoo search-genetic algorithm for hole-making
sequence optimization

W. C. E. Lim · G. Kanagaraj · S. G. Ponnambalam

Received: 20 August 2013 / Accepted: 13 January 2014 / Published online: 23 January 2014
© Springer Science+Business Media New York 2014

Abstract Biologically-inspired algorithms are stochastic
search methods that emulate the behavior of natural bio-
logical evolution to produce better solutions and have been
widely used to solve engineering optimization problems. In
this paper, a new hybrid algorithm is proposed based on the
breeding behavior of cuckoos and evolutionary strategies of
genetic algorithm by combining the advantages of genetic
algorithm into the cuckoo search algorithm. The proposed
hybrid cuckoo search-genetic algorithm (CSGA) is used for
the optimization of hole-making operations in which a hole
may require various tools to machine its final size. The main
objective considered here is tominimize the total non-cutting
time of the machining process, including the tool position-
ing time and the tool switching time. The performance of
CSGA is verified through solving a set of benchmark prob-
lems taken from the literature. The amount of improvement
obtained for different problem sizes are reported and com-
pared with those by ant colony optimization, particle swarm
optimization, immune based algorithm and cuckoo search
algorithm. The results of the tests show that CSGA is supe-
rior to the compared algorithms.

Keywords Cuckoo search · Genetic algorithm · Hybrid
algorithm · Hole-making sequence optimization

W. C. E. Lim · S. G. Ponnambalam (B)
Advanced Engineering Platform and School of Engineering,
Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar
Sunway, Selangor, Malaysia
e-mail: sgponnambalam@monash.edu

W. C. E. Lim
e-mail: esmondelwc@gmail.com

G. Kanagaraj
Department of Mechanical Engineering, Thiagarajar College
of Engineering, Madurai 625015, India
e-mail: gkmech@tce.edu

Introduction

Machining round holes with varies sizes in metal stock is
one of the most common operations in the manufacturing
industry. Hole-making operations such as drilling, reaming,
tapping, and punching compose a large portion of machin-
ing processes for many industrial parts such as dies, plastic
injection mold manufacturing and digital T/R modules for
radar, where the machining process of a hole consists of sev-
eral individual operations with different machining tools. In
printed circuit board drilling, only one tool and one operation
is needed to drill each hole. However, with many other indus-
trial parts like a plastic injection mould, it may have many
holes of various diameters, surface finishes, tolerances, and
possibly different depths; in such cases, several tools with
different diameters may be needed to finish one hole. A hole
mayormaynot be completeddependingon thehole diameter,
tool geometry, and surface quality specifications. A relatively
large hole may not be able to be finished with a single tool. A
pilot hole may have to be drilled first using a tool of smaller
diameter and enlarge subsequently using larger tools to its
final size. Where necessary, additional cutting tools may be
needed for reaming or tapping.

In drillingdifferent holes specifications, the commonprac-
tice in the industry is to complete all operations on the holes
that require the current tool before switching to the next tool.
This practice is common because the tool switching time is
often longer than the tool positioning time. The path of each
individual tool is commonly solved as separate travelling
salesman problem (TSP) and the tours are executed one after
another with tool switching between each tour. However, the
repeated movement of the worktable to drill all the holes that
requires the current tool is not optimal. On the other hand, the
movement of the worktable can be minimized by complet-
ing a hole using several tools of different diameters before

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-014-0873-z&domain=pdf

418 J Intell Manuf (2016) 27:417–429

moving to the next hole. This in turn would lead to excessive
tool switches.

According to the research of Merchant (1985), the non-
cutting time take on average 70%of the total time in theman-
ufacturing process. Therefore, efforts in planning the holes
machining sequence in order to shorten the tool positioning
time and the tool switching time in a machining process is of
key issues. This can lead to significant reduction in machin-
ing time and increase the efficiency of hole-making process,
which directly improves productivity of manufacturing sys-
tem. As a result, the problem of finding the best sequence
for the drilling operation has drawn attention of numerous
researchers.

Many works have been reported for minimizing the pro-
ductive time by optimizing the cutting parameters (Kola-
han and Liang 2000; Dereli et al. 2001), type of tool paths
to be involved (Yao and Gupta 2004), tool selection and
tool sequencing (Zhang and Ge 2009), however, very lim-
ited number of researchers have considered non-productive
time. Literatures on drilling route optimization problem can
be traced back to the year 1996 where Kolahan and Liang
(1996) presented a case studywith variable holes sizes. Kola-
han and Liang (1996) also applied tabu search approach to
minimize the cost in hole making processes by optimizing
tool travel scheduling, tool switch scheduling, tool selection,
and machining speed specification. The algorithmwas tested
for the job size of 50, 100, 150, and 200 nodes with stopping
limit of 600s and showed good results especially for the large
size jobs.

Ghaiebi and Solimanpur (2007) dealt with the optimiza-
tion of hole-making operations in conditions where a hole
may need several tools to get completed. The objective was
to minimize the summation of tool airtime and tool switch
time. The objective was affected by the sequence through
which each operation of each hole was done. The problem
was formulated as a 0–1 non-linear mathematical model. An
ant algorithmwasdeveloped to solve the proposedmathemat-
ical model. An illustrative example showed the application of
the algorithm to optimize the sequence of hole-making opera-
tions in a typical industrial part. The author’s assumptionwas
that a hole is made in multiple passes each of which need a
particular tool and the machining process can be started from
any point. A minimum path search algorithm using genetic
algorithm (GA) was developed by Oysu and Bingul (2007)
for the tool-path optimization. The algorithm successfully
optimized the number of retraction points together with total
airtime.

Most of the researcher’s formulated hole-making prob-
lem is similar to that of travelling salesman problem (TSP) in
which each city (hole) in a tour (sequence of operations)must
be visited only once. Liu et al. (2013) formulated the mathe-
matical model for process planning problem by considering
the selection of machining resources, operations sequence

optimization and the manufacturing constraints, mapping
them to a weighted graph and converted it to a constraint-
based travelling salesman problem. The operation sets for
each manufacturing features are mapped to city groups, the
costs for machining processes (including machine cost and
tool cost) are converted to the weights of the cities; the costs
for preparing processes (including machine changing, tool
changing and set-up changing) are converted to the ’distance’
between cities. Solving the TSPmeans finding the route with
minimal total cost, which is known to be an NP-hard prob-
lem (Nguyen et al. 2007). The time required for the optimal
analysis to derive the shortest path of a TSP using an analytic
method increases exponentially as the problem complexity
increases. However, this problem is more complicated than
TSP as, unlike the classical TSP, multiple visits of a hole
may be needed for holes to be machined with several differ-
ent tools. In addition to that, a hole needs to be drilled with
different tools in a specific order and the switching time for
a tool to another tool depends on the current tool and the tool
of interest. For this reason, heuristics and metaheuristics are
often used in more recent studies.

Biologically-inspired algorithms are one of the main cate-
gories of metaheuristic algorithms. The power and beauty of
these algorithms comes from the ability to emulate the best
features in nature, namely by selecting the fittest in biological
systems through natural selection over millions of years of
evolution via two important characteristics: the selection of
the fittest, and the adaptation to the environment. Statistically,
these characteristics can be classified as intensification and
diversification (Blum and Roli 2003; Gazi and Passino 2004;
Yang 2010a). Intensification intends to improve the exist-
ing solutions in a local region by exploiting the current good
solutions, while diversification makes sure that the algorithm
can explore the search space more efficiently, often via ran-
domization (Yang and Deb 2010). A good trade-off between
diversification and intensification will often lead to a more
efficient algorithm (Yang 2010a).

Various bio-inspired optimization algorithms have been
presented in literature. Among the most popular algorithms
are genetic algorithms (Goldberg 1989), tabu search (Glover
1986), particle swarm optimization (Eberhart and Kennedy
1995), ant colony optimization (Dorigo and Di Caro 1999),
differential evolution (Storn and Price 1995), cuckoo search
(Yang and Deb 2009), hunting search (Oftadeh et al. 2010),
and bat algorithm (Yang 2010b). The cuckoo search (CS)
developed by Yang and Deb (2009) is based on the obligate
brood-parasitic behavior of some cuckoo species in com-
bination with the Lévy flight behavior of some birds and
fruit flies. The preliminary studies on the CS appears to be
very promising and could outperform existing algorithms in
solving optimization problems (Gandomi et al. 2012). CS
algorithm was successfully applied for solving manufactur-
ing optimization problems (Yildiz 2013) and for optimization

123

J Intell Manuf (2016) 27:417–429 419

of sequence in printed circuit board holes drilling problems
(Lim et al. 2012).

In recent years, bio-inspired algorithms and its variants
have been applied widely to solve many combinatorial opti-
mization problems (Yang et al. 2013). For example, Gandomi
et al. (2013) presented a chaos-enhanced accelerated parti-
cle swarm optimization algorithm to solve three engineering
problems. Sayadi et al. (2012) presented discrete firefly algo-
rithm (DFA) to solve the manufacturing cell formation opti-
mization problem. Li et al. (2003) applied a tabu-enhanced
genetic algorithm approach for assembly process planning
problem. Ho and Ji (2004) presented a hybrid genetic algo-
rithm to optimize the sequence of component placements
on a printed circuit board. Prakash et al. (2008) proposed an
adaptive hierarchical ant colony optimization to solve the tra-
ditional machine loading problem in flexible manufacturing
systems. Arnaout (2013) introduced a three-stage ant colony
optimization algorithm for location allocation problem with
an unknown number of facilities. Li et al. (2012) investigated
two-tool parallel drilling process plan optimization problem
using two phase GA. In the first phase, the GA is used to
determine the optimal process parameters satisfying all con-
straints such as drill feed, spindle speed, thrust force, torque,
power and tool life, and the minimum machining time is the
optimization criteria. In the second phase, the GA is used
to determine the operation completion time and machining
sequence. The minimum operation completion time is the
optimization criteria in this phase. Yang and Deb (2013) pre-
sented multi-objective cuckoo search algorithm for design
optimization problems.

For many continuous optimization problems, cuckoo
search can find the desired solutions very efficiently. How-
ever, sometimes, some difficulty may arise, which is true for
all nature-inspired algorithmswhen the appropriate solutions
could not be found for some other optimization problems.
This is consistent with the so-called No Free Lunch theorem
(Wolpert and Macready 1997). To circumvent this theorem,
hybridization has been applied to optimization algorithms
for solving a given set of problems. These hybridized algo-
rithms are the combination of components from two or three
algorithms which performs more efficiently than their parent
algorithms.

In line with this, cuckoo search has been hybridized
with other optimization algorithms, machine learning tech-
niques, heuristics, etc. Hybridization can take place in
almost every component of the cuckoo search (Fister et
al. 2014). For example, initialization procedure, evaluation
function, moving function and others have all been tried by
many researches. A hybrid CS/GA algorithm was devel-
oped to solve global optimization problems (Ghodrati and
Lotfi 2012) and reliability-redundancy optimization prob-
lems (Kanagaraj et al. 2013), hybrid CS/PSO was developed
for solving global optimization problems (Ghodrati and Lotfi

2012), a hybrid cuckoo search via Lévy flights for the per-
mutation flow shop scheduling problems (Li and Yin 2013)
and fuzzy assisted hybrid cuckoo search algorithm for multi-
objective scheduling problems (Chandrasekaran and Simon
2012) have been applied and showed promising results. It
is also found that genetic algorithms can be hybridized with
many algorithms such as particle swarm optimization; more
specifically, may involve the use of generic operators to
modify some components of another algorithm (Yang and
Koziel 2011). In this paper a hybrid of cuckoo search and
genetic algorithm (CSGA) is proposed to find the optimal
sequence of hole-making process. The performance of the
hybrid CSGA is demonstratedwith small and large size prob-
lem instances which can significantly reduce the non-cutting
time of hole-making process.

The remainder of this paper is organized as follows. A
brief description of hole making problem is presented in
“Hole-making sequence optimization problem” section. The
proposed hybrid CSGA developed in this study is described
in “Proposed cuckoo search-genetic algorithm” section. The
verification of the algorithm detail is given in “Algorithm
verification” section. The details of computational experi-
ments used to test the performance of CSGA are discussed
in “Computational experience” section. Finally, the results
from the study are summarized in the last section.

Hole-making sequence optimization problem

When drilling a group of holes on a workpiece using a
computer numberical control (CNC) drilling machine, the
machine table is driven back and forth in the x − y directions
so that each hole is to be drilled in its designed position.
Many times, several cutting tool is needed to machine a hole
to the specific size and tolerance; this means that there is also
a need for the turret lathe to be rotated back and forth. The
optimum drilling sequence can minimize the total table and
turret lathe movements, thus shorten the no-cutting time and
lengthen working life of the table’s driving system as well as
the turret lathe.

The drilling operation can be divided into three parts: the
drilling of the holes, the positioning of the worktable, and the
switching of the cutting tool. The total operation time for the
drilling process is simply the sum of the machining time, the
positioning time, and the tool switching time. Since machin-
ing time is decided by the CNC program, hence minimizing
the positioning time and the tool switching time reduces the
total operation time for the drilling process. This can only be
achieved by optimizing the sequence of drilling.

The distance between two holes are often considered to
be rectilinear or Euclidean. The rectilinear distance between
two points, say i and j of coordinates (xi , yi) and (x j , y j),
respectively, can be calculated with the following equation:

123

420 J Intell Manuf (2016) 27:417–429

d R
i j = |xi − x j | + |yi − y j | (1)

The movement of the worktable in the x and y direc-
tions are realized using stepper motors (Onwubolu and Clerc
2004). By considering this machine characteristics, the prob-
lem to be solved here is to find a sequence in which the holes
are to be drilled such that the worktable positioning time
is minimized. The time needed for the worktable to posi-
tion itself depends strongly on the machine characteristics.
In practice, usually, this travelling time cannot be computed
exactly. Travelling consists of three phases: accelerating the
worktable, running at full speed, slowing down to a com-
plete stop. For small distances, full speed may not be reached
and we may have anomalies in the sense that a farther posi-
tion can be reached faster than a nearer position. Even if a
timing function is available it may be not accurate and it
will be so complicated that its evaluation takes too long for
large problem instances (where we cannot store a distance
matrix). Therefore one has to be satisfied with making rea-
sonable approximations on the true movement time. In this
paper, the gears are taken to rotate at the constant speed at all
times. The formula to calculate the positioning time for the
worktable to move from point i to point j is as follows:

t(i, j) =
∑ |xi − x j |

vx
+

∑ |yi − y j |
vy

(2)

where vx and vy are the linear velocities of the worktable in
the x and y directions, respectively. To further simplify the
problem, both vx and vy are taken to be the same, vx = vy

= v

t(i, j) = 1

v

(∑
|xi − x j | +

∑
|yi − y j |

)
(3)

Hence, minimizing of the positioning time is simply min-
imizing the total distance travelled by the worktable, which
is represented by the Eq. 1.

However, in optimizing the sequence of drilling, not only
the distance travelled by the worktable should be consid-
ered; the tool switching time should also be considered. The
sequence of drilling should be chosen such that a balance
between the positioning time and the tool switching time can
be achieved, whereby the total operation time is minimized.

Mathematical formulation

The mathematical model of this hole-making sequence opti-
mization problem is beingmodeled by Ghaiebi and Soliman-
pur (2007). Suppose the operation j of hole i is done in order
k. If so, the variable xk

i j will be equal to 1. Now, if process-
ing of operation j ′ of hole i ′ takes place in order k + 1,
the variable xk+1

i ′ j ′ will be equal to 1. By these assumptions,
the tool has to move from hole i to hole i ′. Therefore, the
corresponding positioning time can be mathematically mod-

eled as aii ′ xk
i j xk+1

i ′ j ′ . The total positioning time taking all the
movements into consideration can be determined by

I∑

i=1

ni∑

j=1

I∑

i ′=1

ni ′∑

j ′=1

N−1∑

k=1
i ′ �=i

aii ′ x
k
i j xk+1

i ′ j ′ (4)

where I is the total number of holes, N is the total number
of operations, and ni is the number of operations for holes i .

Let us then assume that the tool required for doing oper-
ation j of hole i is different from the one needed for doing
operation j ′ of hole i ′. If so, the parameter δ(Ti j , Ti ′ j ′) will
be equal to 1, where Ti j is the tool required for operation j
of hole i . If the time required to switch from the tool used
for making operation j of hole i into the tool required for the
operation j ′ of hole i ′ is denoted by si j,i ′ j ′ , this time can be
mathematically modeled as si j,i ′ j ′δ(Ti j , Ti ′ j ′)xk

i j xk+1
i ′ j ′ . The

total tool switching time can then be calculated by

I∑

i=1

ni∑

j=1

I∑

i ′=1

ni ′∑

j ′=1

N−1∑

k=1

si j,i ′ j ′δ(Ti j , Ti ′ j ′)xk
i j xk+1

i ′ j ′ (5)

Consequently, the objective function of the proposed zero-
one mathematical programming model is expressed as fol-
lows:

Minimize:

I∑

i=1

ni∑

j=1

I∑

i ′=1

ni ′∑

j ′=1

N−1∑

k=1
i ′ �=i

aii ′ x
k
i j xk+1

i ′ j ′

+
I∑

i=1

ni∑

j=1

I∑

i ′=1

ni ′∑

j ′=1

N−1∑

k=1

si j,i ′ j ′δ(Ti j , Ti ′ j ′)xk
i j xk+1

i ′ j ′ (6)

Subject to:

N∑

k=1

xk
i j = 1, i = 1, 2, . . . , I, j = 1, 2, . . . , ni (7)

I∑

i=1

ni∑

j=1

xk
i j = 1, k = 1, 2, . . . , N (8)

xi jk ≤
N∑

k′=k+1

xk′
i, j+1, = 1, i = 1, 2, . . . , I,

i = 1, 2, . . . , ni − 1 (9)

xk
i j ∈ {0, 1} ∀i, j, k (10)

Constraints 7 ensure that each operation of each hole is
assigned to only one position in the sequence. Similarly, Con-
straints 8 guarantee that only one operation is assigned to
each position of the sequence. Constraints 9 represent the

123

J Intell Manuf (2016) 27:417–429 421

precedence of operations of each hole. Lastly, Constraints 10
confine the decision variables into zero-one values.

Proposed cuckoo search-genetic algorithm

Yang and Deb (2009) developed the CS optimization algo-
rithm which was inspired by the obligate brood parasitism
of some cuckoo species by laying their eggs in the nests of
other host birds (often other species). Sometimes the host
birds engage in direct conflict with the intruding cuckoos.
If a host bird discovers that the eggs do not belong to it, it
will either kick these alien eggs out from the nest or simply
abandon its nest and build a new nest elsewhere.

The algorithm of the original CS is then governed by three
rules (Yang and Deb 2009):

1. Each cuckoo lays one egg at a time and selects a nest
randomly.

2. The best nest with the highest quality egg can pass onto
the new generations.

3. The number of host nests is fixed, and the egg laid by a
cuckoo can be discovered by the host bird with a proba-
bility pa .

However, several behaviors of cuckoo birdswere not taken
into account in the original CS implementation. Firstly, the
original CS failed to consider the mating of cuckoo birds.
Secondly, the evolution of cuckoo birds to improve adapta-
tion was also not considered. To reduce eggs discrimination
by the host birds, cuckoo birds evolve to lay eggs that mimics
the eggs of certain species of host birds (Davies et al. 1989).
In some cases, the young cuckoo can evenmimic the begging
call of the young hosts. Studies have also shown that when
there is a lack of suitable nests, parasitized nests can be par-
asitized the second time by another cuckoo. Since only one
cuckoo is ever reared per nest, it pays for the second cuckoo
to remove the first cuckoo’s egg because the earlier laid egg
is likely to hatch first (Davies and Brooke 1988). All these
behaviors serve as an inspiration in the hybridizing of CS
with GA. In the original CS (for continuous space), Lévy
flights and random walks are used to generate new solutions.
In solving combinatorial problems (discrete integers solu-
tion), the GA operators take the place of both Lévy flights
and the randomwalks. More specifically, the crossover oper-
ator takes the place of the Lévy flights, and the mutation
operator takes the place of the random walk.

The proposed hybridized CSGA as shown in Fig. 1 can be
summarized as follows:

1. Cuckoos mate with one another and chromosomal
crossover occurs between them.

Fig. 1 Pseudocode of cuckoo search-genetic algorithm

2. Cuckoos lay eggs in other host birds’ nests and compete
with each other. Only the best eggs will survive.

3. Cuckoos evolve by mutation to lay eggs that mimic the
host’s.

4. Low quality eggs are rejected by host birds.

Solution representation

In this hybrid CSGA, each cuckoo bird represents a solu-
tion in the current generation, and cuckoo eggs represent
the newly generated solutions in that generation (either by
crossover or mutation). The solution is represented through
a vector of integers in which each integer in the solution vec-
tor corresponds to a hole to be machined. Each point i to be
machined is numbered with a unique number beginning from
1with an increment of 1 until all the points are numbered. i is
repeated for ni times in the solution and therefore the length
of the solution depends on the total number of operations
needed to complete the hole-making process. For k number
of holes that requires ni number of operation for each hole i ,
the solution is:

x = (x1, . . . , xN) (11)

where each element in x represents the hole to be machined
and

N =
k∑

i=1

ni (12)

Let us consider a simple 3 holes problem, numbered as
1, 2 and 3, as shown in Fig. 2. Hole 1 requires one oper-
ation, hole 2 requires two operations, and hole 3 requires
three operations to complete the hole-making process. Using
Eqs. 11 and 12, the length of the solution is 6. Suppose in the
simple 3 holes problem illustrated, the 3 holes are needed to
be finished with the following cutting tool in the following
order:

• Hole 1 - Twist drill bit
• Hole 2 - Center drill bit → Twist drill bit
• Hole 3 - Center drill bit → Twist drill bit → Reamer

123

422 J Intell Manuf (2016) 27:417–429

Fig. 2 A simple three holes problem

Fig. 3 Solution interpretation

A solution sequence or vector of 3-2-1-2-3-3wouldmeans
that the first operation for hole 3, hole 2, and hole 1 is done
one after another using the corresponding cutting tool. The
second operation for hole 2 is then followed after, and then
last two operations of hole 3 with the corresponding cutting
tool. The meaning of the solution summarized in Fig. 3.

Due to the constrains of the order of cutting tools, for the
solution sequence or vector 3-2-1-2-3-3, it is understood that
the “3” that appears first means that the hole will be drilled
with a center drill bit. It follows that the second appearing
“3” refers to the drilling of hole 3 using a twist drill bit
and the third with a reamer. This rule also applies to all other
holes. Thus, in the representation of solution, there is no need
to specify the cutting tool used in the operation.

Initial population

The initial population is generated randomly. One possible
way is to first generate a valid solution vector by listing the
hole number from the first hole to the last hole. Where a hole
needs more than one operations, the hole number repeatedly
listed according to the number of operations required. As for
the simple example shown inFig. 2, the solution vectorwould
be 1-2-2-3-3-3. After the valid solution vector is generated,
the initial population can be easily generated by randomizing
the order of the elements in the vector.

Crossover operator

Before carrying out the crossover operator, the order of the
solutions are randomized to allow cuckoos to mate with a
more diversify population. Then the parent cuckoo birds are
split into pairs. Two cuckoo eggs are reproduced from the
two parent cuckoos.

The two-point crossover technique was adopted. Two
points, i and j , are randomly selected for each pair of parents.
Everything between the two points is swapped between the
two parents, generating two eggs. Using the 3 holes problem
as an example again, when i = 4, j = 6:

Parents:

3 2 1 2 3 3 2 3 3 3 2 1

Children:

3 2 1 3 2 3 2 3 3 2 3 1

However, most of the time the crossover requires some
repair work to be done. In the reparation work, the excess
genes are first identified. From the valid solution vector gen-
erated in “Initial population” section the number of occur-
rences for each hole number can be determined. The chil-
dren’s genes are compared with the valid solution vector.
All the hole numbers in the children solution vector that has
a number of occurrence that exceeds that of the same hole
number in valid solution vector is identified. These excess
genes are randomly removed from the chromosome until
the number of occurrences of all hole numbers in the chil-
dren solution vector do not exceed the number of occur-
rence of the same hole number. These excess genes are
deleted from the chromosome that are apart of the swapped
genes.

The children chromosomes are once again compared with
the valid solution vector. This time, all the hole numbers in
the children solution vector that has a number of occurrence
that is less than that of the same hole number in valid solu-
tion vector is identified. These missing genes are added to
the chromosomes in a random order right after the swapped
genes until the number of occurrences of all hole numbers
are matched. The illustration of the reparation work is as
follows:

Parents:

3 2 1 2 3 3 3 3 3 2 2 1

Children:

3 2 1 2 2 3 3 3 3 2 3 1

Reparation:
Step 1: Randomly remove excess genes

3 1 2 2 3 3 3 2 3 1

123

J Intell Manuf (2016) 27:417–429 423

Step 2: Insert missing genes

3 1 2 2 3 3 3 3 2 3 2 1

Mutation operator

In the mutation operation, each cuckoo egg mutates on its
own. To allow small variations in the solution, a simple 2-
opt moves proposed by Croes (1958) is used:

3 2 1 2 3 3 → 3 2 3 2 1 3

Rotation strategy

After each generation, the genes of all the cuckoo birds are
rotated randomly. This rotation strategy serves as a simple
way to diversify the search without introducing significant
additional computational cost.

3 2 1 2 3 3 → 3 3 3 2 1 2

Elitism

Each time after the crossover, mutation, and rotation strategy,
a form of elitism is performed to ensure that the best solutions
are selected andmaintained in the population. This procedure
is summarized with the following equation:

xi,t+1 =
{

yi if F(yi) > F(xi,t)

xi,t otherwise
i = 1, 2, . . . , N (13)

where y is the newly obtained solution, x is the current solu-
tion, and t is the generation number.

Algorithm verification

To verify the performance of CSGA, the algorithm will be
used to solve the example part in Fig. 4 proposed by Ghaiebi
and Solimanpur (2007). The position and size of various
holes are indicated in Fig. 5. The x and y coordinates for
the holes are taken from Ghaiebi and Solimanpur (2007). In

Fig. 4 Solid model of example part

Fig. 5 Position of the holes on the example part

Table 1 Cutting tool diameter

Cutting tool Drill Reamer

1 2 3 4 5 6

Diameter 10 15.8 20 30 40 16

Table 2 Tool switching times in minutes

Predecessor tool Successor tool

1 2 3 4 5 6

1 0.0 0.6 0.2 0.4 0.4 0.9

2 0.6 0.0 0.8 1.2 0.4 0.8

3 0.2 0.8 0.0 0.6 1.4 1.2

4 0.4 1.2 0.6 0.0 0.4 0.7

5 0.4 0.4 1.3 0.5 0.0 0.8

6 0.5 0.5 1.2 0.2 0.8 0.0

Table 3 Sequence of cutting tools needed to machine the holes

Hole R8 R10 R20

Required tools 1-2-6 1-3 1-3-4-5

this problem, there are a total of 5 drill bits with different
sizes and 1 reamer used. The tool and its respective diameter
is shown in Table 1. Depending on the what the current tool
is, the time needed to switch to a certain tool varies and they
are asymmetrical. The switching time for the tool is given in
Table 2.

Since each hole is of different size, each hole has to be
drilled several times with different set of cutting tools. To
solve this problem, the tool required and the sequence of the
passes for each holes are shown in Table 3. In this problem, it
is taken that the speed of the worktable to be v = 1m min−1

and that tool 1 is currently in use in the spindle. The initial
position of the cutting tool is at the coordinate (0, 0) at the
bottom-left corner of the workpiece.

123

424 J Intell Manuf (2016) 27:417–429

Table 4 Statistical results of CSGA and CS for the example part

Algorithm Best Mean Worst SD Time (s)

CS 6.26 6.564 7.42 0.5216 84.55

CSGA 6.10 6.216 6.46 0.0964 49.44

In solving this problem, the number of cuckoos is set to
100 and the generation number is set to 1000. The CS by Lim
et al. (2012) was also applied to compare the performance of
CSGA and CS. The algorithms were made to run 25 times
and the statistical results for CSGA and CS are summarized
in Table 4.

The numerical results and the solutions obtained by ACO
(Ghaiebi and Solimanpur 2007), PSO (Hsieh et al. 2011a), IA
Hsieh et al. 2011b, CS and CSGA is shown in Table 5, where
the column ‘Algo’ indicates the algorithm used to solve the
problem, the column ‘Obj’ denotes the objective function
value associatedwith the solution,which is the total operation
time, the column ‘PT’ and ‘ST’ shows the positioning time
and the switching time, respectively, and the ‘Sequence of
operation’ shows the solution found by the respective algo-
rithms in the format of (hole, tool). The 5 solutions obtained
by CSGA and CS in Table 5 are the best 5 solutions in the
25 runs.

As pointed out by Hsieh et al. (2011b), the objective func-
tion value of the solution provided by Ghaiebi and Soliman-

Table 5 Sequence of cutting tools needed to machine the holes

Algo Obj PT ST Sequence of operations

ACO 8.80 4.58 4.30 (5,1)(9,1)(12,1)(8,1)(7,1)(11,1)(10,1)(6,1)(2,1)(1,1)(5,3)(8,3)(11,2)(12,2)(9,2)(10,2)(6,3)(7,3)

(3,1)(4,1)(4,3)(3,3)(2,3)(1,3)(1,4)(2,4)(3,4)(4,4)(12,6)(9,6)(10,6)(11,6)(3,5)(4,5)(1,5)(2,5)

PSO 7.42 4.02 3.40 (9,1)(2,1)(6,1)(10,1)(3,1)(8,1)(4,1)(12,1)(11,1)(7,1)(7,3)(6,3)(5,1)(1,1)(2,3)(1,3)(5,3)(8,3)

(4,3)(3,3)(3,4)(4,4)(4,5)(3,5)(11,2)(12,2)(9,2)(10,2)(10,6)(9,6)(12,6)(11,6)(2,4)(1,4)(1,5)(2,5)

7.44 4.64 2.80 (1,1)(5,1)(2,1)(6,1)(2,3)(1,3)(10,1)(9,1)(4,1)(8,1)(12,1)(11,1)(7,1)(3,1)(7,3)(6,3)(5,3)(8,3)

(4,3)(3,3)(3,4)(4,4)(1,4)(2,4)(2,5)(3,5)(4,5)(1,5)(9,2)(10,2)(11,2)(12,2)(11,6)(12,6)(9,6)(10,6)

7.52 4.52 3.00 (5,1)(1,1)(9,1)(10,1)(2,1)(6,1)(11,1)(7,1)(8,1)(4,1)(3,1)(12,1)(8,3)(4,3)(3,3)(7,3)(6,3)(5,3)

(1,3)(2,3)(2,4)(1,4)(4,4)(4,5)(1,5)(10,2)(11,2)(12,2)(9,2)(10,6)(9,6)(12,6)(11,6)(3,4)(3,5)(2,5)

7.54 4.54 3.00 (9,1)(1,1)(2,1)(10,1)(6,1)(5,1)(12,1)(7,1)(11,1)(3,1)(8,1)(4,1)(4,3)(5,3)(1,3)(2,3)(6,3)(7,3)

(3,3)(8,3)(4,4)(3,4)(3,5)(11,2)(12,2)(9,2)(10,2)(10,6)(11,6)(12,6)(9,6)(1,4)(2,4)(2,5)(4,5)(1,5)

7.56 4.76 2.80 (5,1)(2,1)(11,1)(3,1)(12,1)(8,1)(4,1)(7,1)(7,3)(3,3)(8,3)(4,3)(5,3)(6,1)(10,1)(1,1)(1,3)(2,3)

(6,3)(9,1)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)(9,2)(12,2)(11,2)(10,2)(10,6)(11,6)(12,6)(9,6)

IA 6.26 3.86 2.40 (1,1)(5,1)(8,1)(4,1)(3,1)(7,1)(12,1)(9,1)(10,1)(2,1)(6,1)(6,3)(2,3)(1,3)(5,3)(8,3)(4,3)(3,3)(7,3)

(11,1)(11,2)(12,2)(9,2)(10,2)(10,6)(11,6)(12,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.32 3.92 2.40 (1,1)(5,1)(9,1)(12,1)(8,1)(4,1)(3,1)(7,1)(11,1)(10,1)(6,1)(2,1)(2,3)(1,3)(5,3)(8,3)(4,3)(3,3)

(7,3)(6,3)(10,2)(9,2)(12,2)(11,2)(11,6)(12,6)(9,6)(10,6)(2,4)(1,4)(4,4)(3,4)(3,5)(4,5)(1,5)(2,5)

6.34 3.94 2.40 (5,1)(1,1)(2,1)(6,1)(7,1)(3,1)(11,1)(12,1)(8,1)(4,1)(4,3)(8,3)(3,3)(7,3)(6,3)(2,3)(1,3)(5,3)(9,1)

(10,1)(10,2)(9,2)(12,2)(11,2)(11,6)(12,6)(9,6)(10,6)(2,4)(1,4)(4,4)(3,4)(3,5)(4,5)(1,5)(2,5)

6.34 3.94 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(9,1)(12,1)(11,1)(7,1)(3,1)(4,1)(8,1)(8,3)(4,3)(3,3)(7,3)(6,3)(2,3)

(1,3)(5,3)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(9,6)(10,6)(2,4)(1,4)(4,4)(4,3)(3,5)(4,5)(1,5)(2,5)

6.36 3.96 2.40 (1,1)(5,1)(6,1)(2,1)(10,1)(12,1)(8,1)(4,1)(3,1)(11,1)(7,1)(7,3)(3,3)(4,3)(8,3)(5,3)(1,3)(2,3)

(6,3)(9,1)(9,2)(12,2)(11,2)(10,2)(10,6)(11,6)(12,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

CS 6.26 3.86 2.40 (1,1)(5,1)(8,1)(4,1)(3,1)(7,1)(12,1)(9,1)(10,1)(2,1)(6,1)(6,3)(2,3)(1,3)(5,3)(8,3)(4,3)(3,3)(7,3)

(11,1)(11,2)(12,2)(9,2)(10,2)(10,6)(11,6)(12,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.26 3.86 2.40 (1,1)(5,1)(8,1)(4,1)(3,1)(7,1)(12,1)(9,1)(10,1)(2,1)(6,1)(6,3)(2,3)(1,3)(5,3)(8,3)(4,3)(3,3)(7,3)

(11,1)(11,2)(12,2)(9,2)(10,2)(10,6)(11,6)(12,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.34 3.94 2.40 (5,1)(1,1)(2,1)(6,1)(7,1)(3,1)(11,1)(12,1)(8,1)(4,1)(4,3)(8,3)(3,3)(7,3)(6,3)(2,3)(1,3)(5,3)(9,1)

(10,1)(10,2)(9,2)(12,2)(11,2)(11,6)(12,6)(9,6)(10,6)(2,4)(1,4)(4,4)(3,4)(3,5)(4,5)(1,5)(2,5)

6.34 3.94 2.40 (5,1)(1,1)(2,1)(6,1)(7,1)(3,1)(11,1)(12,1)(8,1)(4,1)(4,3)(8,3)(3,3)(7,3)(6,3)(2,3)(1,3)(5,3)(9,1)

(10,1)(10,2)(9,2)(12,2)(11,2)(11,6)(12,6)(9,6)(10,6)(2,4)(1,4)(4,4)(3,4)(3,5)(4,5)(1,5)(2,5)

6.34 3.94 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(9,1)(12,1)(11,1)(7,1)(3,1)(4,1)(8,1)(8,3)(4,3)(3,3)(7,3)(6,3)(2,3)

(1,3)(5,3)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(9,6)(10,6)(2,4)(1,4)(4,4)(4,3)(3,5)(4,5)(1,5)(2,5)

123

J Intell Manuf (2016) 27:417–429 425

Table 5 continued

Algo Obj PT ST Sequence of operations

CSGA 6.10 3.70 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(11,1)(7,1)(3,1)(4,1)(12,1)(8,1)(8,3)(4,3)(3,3)(7,3)(6,3)(2,3)(1,3)

(5,3)(9,1)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(10,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.10 3.70 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(11,1)(7,1)(3,1)(4,1)(12,1)(8,1)(8,3)(4,3)(3,3)(7,3)(6,3)(2,3)(1,3)

(5,3)(9,1)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(10,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.14 3.74 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(9,1)(12,1)(11,1)(7,1)(3,1)(4,1)(8,1)(8,3)(4,3)(3,3)(7,3)(6,3)(2,3)

(1,3)(5,3)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(10,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.14 3.74 2.40 (5,1)(1,1)(2,1)(6,1)(10,1)(11,1)(12,1)(8,1)(4,1)(3,1)(7,1)(7,3)(3,3)(4,3)(8,3)(5,3)(1,3)(2,3)

(6,3)(9,1)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(10,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

6.14 3.74 2.40 (5,1)(1,1)(2,1)(6,1)(11,1)(12,1)(8,1)(4,1)(3,1)(7,1)(7,3)(3,3)(4,3)(8,3)(5,3)(1,3)(2,3)(6,3)

(10,1)(9,1)(9,2)(10,2)(11,2)(12,2)(12,6)(11,6)(10,6)(9,6)(1,4)(2,4)(3,4)(4,4)(4,5)(3,5)(2,5)(1,5)

0 500 1000
5

10

15

20

Generations

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

Fig. 6 The best solution of CSGA over 1000 generations

pur (2007) is 8.88min and not 7.58min as claimed in their
paper. CSGAarrived at its best solution of 6.10min twice and
the calculation of the objective function value is as follows:

• Positioning Time = [(13) + 7 + 12 + 7 + 7 + 12 + 7 +
7 + 12 + 12 + 7 + 0 + 7 + 12 + 7 + 20 + 7 + 12 + 7 +
7 + 0 + 8 + 12 + 8 + 0 + 8 + 12 + 8 + 12 + 12 + 32 +
12 + 0 + 12 + 32 + 12 + (8)]/100 = 3.70

• Switching Time = 0.2+0.2+0.6+0.8+0.2+0.4 = 2.40
• Total Operation Time = 3.70 + 2.40 = 6.10

where the time in brackets denotes the time to move from the
initial position to the first hole, and the time to move from
the last hole back to the initial position. Figure 6 shows the
convergence plot of the solution.

It is clear from Table 5 the proposed CSGA performs
astonishingly well when compared to ACO, PSO, IA, and
CS. The 5 best solutions obtained by CSGA are better than
all the solutions obtained by the other algorithms. The 25
independent runs of CSGA return solutions with an average
objective function value of 6.216, which is, by itself, bet-

ter than the best solutions obtained by ACO, PSO, IA, and
CS. It can thus be concluded that CSGA is a more efficient
algorithm.

Computational experience

The performance of the proposed CSGA was further evalu-
ated through comparing it with ACO proposed by Ghaiebi
and Solimanpur (2007), the IA by Hsieh et al. (2011b) and
CS by Lim et al. (2012) for the travelling salesman prob-
lem. The TSP problem was made to be easily reproducible.
The arrangement of holes for the problem is considered as
follows:

• The number of rows in the workpiece is �√I
 (floor of√
I), where I is the total number of holes.

• The center to center distance of adjacent holes in each
direction is assumed to be 2 cm.

For example, the position of holes in the workpiece when
N = 10 is shown in Fig. 7. As seen in this figure, the number
of rows is �√10
 = 3.

In solving this TSP problems, the number of holes con-
sidered were 5, 10, 15, 20, 25, 50, 100, 200, 500 and 1000.

We have implemented CSGA using MATLAB� R2012a
under 64-bit Linux Mint 14: Nadia operating system. Exper-
iments are conducted on a desktop with Intel� CoreTM i7-
2600 CPU@ 3.40GHz x 4, and 12GB of RAM. In each case
study, 25 independent runs of the algorithms are carried out
with a population number of 2.

The experimental results of the CSGA algorithm are com-
pared with ACO, IA, and CS in Table 6. The results for ACO
and IA are obtained fromGhaiebi and Solimanpur (2007) and
Hsieh et al. (2011b), respectively, while the results for CS
and CSGA are obtained through experiments. For all the test
problems compared, CSGA and IA obtained equally good

123

426 J Intell Manuf (2016) 27:417–429

Fig. 7 Position and numbering of the 10 holes in the workpiece

Table 6 Comparison of the experimental results of CSGA with ACO,
IA, and CS

N ACO IA CS CSGA

Best Average Time Best Best Average Time Best Average Time

5 12 12 0.00 12 12 12 0.00 12 12 0.00

10 24 24 0.00 24 24 24 0.00 24 24 0.00

15 32 32 0.03 32 32 32 0.05 32 32 0.02

20 40 40 0.14 40 40 40 0.24 40 40 0.08

25 52 52.96 3.83 52 52 52 0.76 52 52 0.06

50 136 137.04 20.14 104 104 111.8 1.37 104 104 0.75

Fig. 8 The best sequence obtained for N = 100 by CSGA

solutions. In terms of timings, it can be seen from Table 6
thatACO,CS, andCSGAperforms equallywellwhen N = 5
and N = 10. For N = 15 and N = 20, both ACO, CS, and
CSGA obtained the optimal result and all three algorithms

Fig. 9 The best sequence obtained for N = 200 by CSGA

Fig. 10 The best sequence obtained for N = 500 by CSGA

have very close timings. However, for N = 25 and N = 50,
CSGA significantly outperform ACO and CS both in terms
of both optimality and timings.

The graphical solutions for the best sequences for the
larger size problems obtained by CSGA are shown in Figs. 8,
9, 10 and 11, while the complete experimental results are
summarized in Table 7, where the first column ‘N’ shows
the number of holes, the column ‘Best’ shows the length of
the best solution found by the algorithm, the column ‘Mean’
gives the average solution length of the 25 independent runs
of the algorithm,while the column ‘Worst’ denotes theworst
solution length obtained of 25 independent runs, the column
‘SD’ denotes the standard deviation of the solutions over
25 runs, and the column ‘Time’ shows the average time in
seconds for 25 runs. In the Tables 6 and 7, the best results
are presented in boldface. As the problem size grows the

123

J Intell Manuf (2016) 27:417–429 427

Fig. 11 The best sequence obtained for N = 1000 by CSGA

superiority of CSGA over CS becomes more apparent and
overwhelming. For N = 1000 the best results obtained by
CSGA is almost 3 times smaller than CS in addition to a near
tenfold reduction in computational time.

Figure 12 shows the convergence plot of the TSP problem
with N = 50 and N = 200 obtained by CS and CSGA.
It can be observed that CSGA converges quicker than CS
and the prolonged generations of CSGA thereafter are just to
slightly converge the solution further. It is evident that CSGA
not only obtain better results, it also has a faster convergence
speed when compared to CS.

Discussion and conclusion

In this paper, the hybrid CSGA was proposed by incorpo-
rating the evolutionary strategies of GA with the breeding
behavior of cuckoos. By embedding the GA’s operators such

as crossover and mutation into the standard CS imitates the
real life behavior of cuckoo birds. The success or failure of
population based algorithms depends on its ability to estab-
lish proper trade-off between exploration and exploitation.
Since both GA and CS are population based algorithms,
while developing the hybridCSGA,more attention is given to
the two major components of the algorithm: intensification
and diversification, or exploitation and exploration (Blum
and Roli 2003). The superior performance of CSGA can
be explained by the balance between the exploration and
exploitation ability of the algorithm. It is also partly due to
the fact that the CSGA maintains the Lamarckian property
of the solution (Gen and Cheng 2000). Having Lamarckian
property in the solutions will ensure meaningful crossover
between parent cuckoo birds.

The efficacy of the algorithm should also be attributed to
the exploratory search in the 2-point crossover. In complex
problems such as the hole-making problem addressed in this
paper, many algorithms easily fall into a local minima. The
vastly diversifying search of the 2-point crossover allows the
CSGA to extensively search the solution space that would
otherwise not be searched by the standard search strategies
employed for the standard TSP. While exploring the solution
space, the crossover of the cuckoo birds still retain partial
identity of the parent cuckoo bird rather than blindly search-
ing for better solutions. The mutation of the cuckoo eggs
further improves the performance of the algorithm in con-
tributing to the local search of the solution space by making
small but logical changes in the genes. In addition, the rota-
tion strategy applied at the end of every generation aids to the
search for the global minimum with minimal computational
cost, and further reducing the possibility of a premature con-
vergence at a local minima. Some form of elitism strategy is
used in CSGA to ensure that best solutions are always carried
forward to the next generation.

Besides that, the proposed CSGA is designed in such a
way that there is virtually no parameters to be fine tuned; it

Table 7 Comparison of
statistical results of CS and
CSGA for TSP

N CS CSGA

Best Mean Worst SD Time Best Mean Worst SD Time

5 12 12 12 0.00 0.00 12 12 12 0.00 0.00

10 24 24 24 0.00 0.00 24 24 24 0.00 0.00

15 32 32 32 0.00 0.05 32 32 32 0.00 0.02

20 40 40 40 0.00 0.24 40 40 40 0.00 0.08

25 52 52 52 0.00 0.76 52 52 52 0.00 0.06

50 104 111.80 124 4.01 1.37 104 104 104 0.00 0.75

100 236 248.96 268 8.59 17.62 200 200 200 0.00 14.61

200 660 730.40 808 32.08 32.36 400 408.16 416 3.91 31.61

500 2,496 2,599.60 2,724 80.49 360.99 1,052 1,071.04 1,100 10.09 101.56

1,000 6,424 6,638.34 6,940 184.60 2,812.81 2,240 2,291.68 2,320 20.26 297.25

123

428 J Intell Manuf (2016) 27:417–429

Fig. 12 The best solution by CSGA and CS

has only two basic parameters: the population size and the
generation number. The balance between the exploration and
exploitation ability of the algorithm can simply be adjusted
by the population size and the generation number. A larger
number of cuckoos will increase the diversifying ability,
while increasing the generation number improves the inten-
sification ability of the algorithm. With this in mind, the
population size can simply be chosen based on the size and
complexity of the problem. The stopping criterion of the opti-
mization algorithm can then be chosen for a balance between
time and solution quality desired by the user. The user can
either set the maximum number of generations, or stop the
algorithm if no change in solution was made after a cer-
tain number of generations.These unique characteristics of
CSGA make the algorithm easy to implement and apply and
will potentially be the attractive optimization technique for
practical engineering optimization problems.

In hole-making operations, to search the best path to com-
plete all the holes is a complex problem, in which random
paths may lead to much waste in non-productive time. A
12 holes problem with different hole sizes is considered in
this paper. A set of problem instances was also chosen to
cover a wide spectrum of typical problem sizes, namely 5–
1000 holes evenly distributed. In all the problems consid-
ered, CSGA prevailed at a level well above all algorithms
compared. As a comparison between CSGA and its parent
algorithm, the original CS uses Lévy flights and randomwalk
to generate new solutions for the next iterations. In continu-
ous space problems, these techniques are effective. However,
dealing with discrete solutions with these techniques unnec-
essarily increases the computational cost. CSGA, which uses
GA operators, are quick and there is no need to encode and
decode the solutions. Thus, in solving combinatorial prob-
lems, CSGA surpasses CS in terms of efficiency.

Future works can emphasize on extending the application
of this optimization technique to other complex combina-
torial engineering optimization problems such as the redun-
dancy allocation problem, the container loading problem, and
the job shop scheduling problem.

References

Arnaout, J. P. (2013). Ant colony optimization algorithm for the euclid-
ean location-allocation problem with unknown number of facilities.
Journal of Intelligent Manufacturing, 24, 45–54.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimiza-
tion: Overview and conceptual comparison. ACM Computing Sur-
veys (CSUR), 35, 268–308.

Chandrasekaran, K., & Simon, S. P. (2012). Multi-objective schedul-
ing problem: Hybrid approach using fuzzy assisted cuckoo search
algorithm. Swarm and Evolutionary Computation, 5, 1–16.

Croes,G.A. (1958).Amethod for solving traveling-salesmanproblems.
Operations Research, 6, 791–812.

Davies, N. B., Bourke, A. F. G., & de L Brooke, M. (1989). Cuckoos
and parasitic ants: Interspecific brood parasitism as an evolutionary
arms race. Trends in Ecology & Evolution, 4, 274–278.

Davies, N. B., & Brooke, Md L. (1988). Cuckoos versus reed warblers:
Adaptations and counteradaptations. Animal Behaviour, 36, 262–
284.

Dereli, T., Filiz, I., & Baykasoglu, A. (2001). Optimizing cutting para-
meters in process planning of prismatic parts by using genetic algo-
rithms. International Journal of Production Research, 39, 3303–
3328.

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: A new
meta-heuristic. In IEEE proceedings of the 1999 congress on evolu-
tionary computation, 1999 (CEC 99).

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle
swarm theory. In IEEE proceedings of the sixth international sym-
posium on micro machine and human science, 1995 (MHS’95) (pp.
39–43).

Fister, I., Jr., Yang, X. S., Fister, D., & Fister, I. (2014). Cuckoo search:
A brief literature review. In Cuckoo search and firefly algorithm (pp.
49–62). Berlin: Springer.

Gandomi, A. H., Talatahari, S., Yang, X. S., & Deb, S. (2012). Design
optimization of truss structures using cuckoo search algorithm. The
Structural Design of Tall and Special Buildings. doi:10.1002/tal.
1033.

Gandomi, A. H., Yun, G. J., Yang, X. S., & Talatahari, S. (2013). Chaos-
enhanced accelerated particle swarm optimization.Communications
in Nonlinear Science and Numerical Simulation, 18, 327–240.

Gazi, V., & Passino, K.M. (2004). A class of attractions/repulsion func-
tions for stable swarm aggregations. International Journal of Con-
trol, 77, 1567–1579.

Gen, M., & Cheng, R. (2000). Genetic algorithms and engineering
optimizationm, vol. 7. New York: Wiley.

Ghaiebi, H., & Solimanpur, M. (2007). An ant algorithm for optimiza-
tion of hole-making operations. Computers & Industrial Engineer-
ing, 52, 308–319.

123

http://dx.doi.org/10.1002/tal.1033
http://dx.doi.org/10.1002/tal.1033

J Intell Manuf (2016) 27:417–429 429

Ghodrati, A., & Lotfi, S. (2012). A hybrid cs/ga algorithm for global
optimization. In Proceedings of the international conference on
soft computing for problem solving (SocProS 2011) (pp. 397–404).
Berlin: Springer.

Glover, F. (1986). Future paths for integer programming and links to
artificial intelligence. Computers & Operations Research, 13, 533–
549.

Goldberg, D. E. (1989). Genetic algorithm. Search, Optimization and
Machine Learning, 343–349.

Ho, W., & Ji, P. (2004). A hybrid genetic algorithm for component
sequencing and feeder arrangement. Journal of Intelligent Manufac-
turing, 15, 307–315.

Hsieh, Y. C., Lee, Y., You, P. S., & Chen, T. C. (2011a). Optimal opera-
tion sequence of hole-making with multiple tools in manufacturing:
A pso evolutionary based approach.Key Engineering Materials, 460,
398–403.

Hsieh,Y.C., Lee,Y.C.,&You, P. S. (2011b).Using an effective immune
based evolutionary approach for the optimal operation sequence of
hole-making with multiple tools. Journal of Computational Infor-
mation Systems, 7, 411–418.

Kanagaraj, G., Ponnambalam, S., & Jawahar, N. (2013). A hybrid
cuckoo search and genetic algorithm for reliability-redundancy allo-
cation problems. Computers & Industrial Engineering, 66, 1115–
1124.

Kolahan, F.,&Liang,M. (1996).A tabu search approach to optimization
of drilling operations.Computers & Industrial Engineering,31, 371–
374.

Kolahan, F., & Liang, M. (2000). Optimization of hole-making oper-
ations: A tabu-search approach. International Journal of Machine
Tools and Manufacture, 40, 1735–1753.

Li, J., Khoo, L., & Tor, S. (2003). A tabu-enhanced genetic algorithm
approach for assembly process planning. Journal of Intelligent Man-
ufacturing, 14, 197–208.

Li, S., Liu,Y., Li,Y., Landers, R.G.,&Tang, L. (2012). Process planning
optimization for parallel drilling of blind holes using a two phase
genetic algorithm. Journal of Intelligent Manufacturing (pp. 1–14).

Li, X., &Yin, M. (2013). A hybrid cuckoo search via lévy flights for the
permutation flow shop scheduling problem. International Journal of
Production Research, 51, 4732–4754.

Lim, W. C. E., Kanagaraj, G., & Ponnambalam, S. (2012). Cuckoo
search algorithm for optimization of sequence in pcb holes drilling
process. In Emerging trends in science, engineering and technology
(pp. 207–216). Brelin: Springer.

Liu, Xj, Yi, H.,&Ni, Zh. (2013). Application of ant colony optimization
algorithm in process planning optimization. Journal of Intelligent
Manufacturing, 24, 1–13.

Merchant, M. E. (1985). World trends and prospects in manufacturing
technology. International Journal of Vehicle Design, 6, 121–38.

Nguyen, H. D., Yoshihara, I., Yamamori, K., & Yasunaga, M. (2007).
Implementation of an effective hybrid ga for large-scale traveling
salesman problems. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B: Cybernetics, 37, 92–99.

Oftadeh, R., Mahjoob, M., & Shariatpanahi, M. (2010). A novel meta-
heuristic optimization algorithm inspired by group hunting of ani-
mals: Hunting search. Computers & Mathematics with Applications,
60, 2087–2098.

Onwubolu, G. C., & Clerc, M. (2004). Optimal path for automated
drilling operations by a new heuristic approach using particle swarm
optimization. International Journal of Production Research, 42,
473–491.

Oysu, C., & Bingul, Z. (2007). Tool path optimization using genetic
algorithms. In GEM (pp. 120–126).

Prakash, A., Tiwari, M., & Shankar, R. (2008). Optimal job sequence
determination and operation machine allocation in flexible manufac-
turing systems: An approach using adaptive hierarchical ant colony
algorithm. Journal of Intelligent Manufacturing, 19, 161–173.

Sayadi, M. K., Hafezalkotob, A., & Naini, S. G. J. (2012). Firefly-
inspired algorithm for discrete optimization problems: An appli-
cation to manufacturing cell formation. Journal of Manufacturing
Systems, 32, 78–84.

Storn, R., & Price, K. (1995). Differential evolutiona simple and
efficient adaptive scheme for global optimization over continuous
spaces. International Computer Science Institute, Berkeley. Techni-
cal Report. CA, 1995, Tech. Rep. TR-95-012.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1,
67–82.

Yang, X. S. (2010a).Nature-inspired metaheuristic algorithms. Luniver
Press.

Yang, X. S. (2010b). A new metaheuristic bat-inspired algorithm.
In Nature inspired cooperative strategies for optimization (NICSO
2010) (pp. 65–74). Berlin: Springer.

Yang, X. S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M.
(2013). Swarm intelligence and bio-inspired computation: Theory
and applications. Amsterdam: Elsevier.

Yang, X. S., & Deb, S. (2009). Cuckoo search via lévy flights. In IEEE
world congress on nature & biologically inspired computing 2009
(NaBIC 2009) (pp. 210–214).

Yang, X. S., & Deb, S. (2010). Engineering optimisation by cuckoo
search. International Journal of Mathematical Modelling and
Numerical Optimisation, 1, 330–343.

Yang, X. S., & Deb, S. (2013). Multiobjective cuckoo search for design
optimization. Computers & Operations Research, 40, 1616–1624.

Yang,X. S.,&Koziel, S. (2011).Computational optimization and appli-
cations in engineering and industry, vol. 359. Berlin: Springer.

Yao, Z., & Gupta, S. K. (2004). Cutter path generation for 2.5 d milling
by combining multiple different cutter path patterns. International
Journal of Production Research, 42, 2141–2161.

Yildiz, A. R. (2013). Cuckoo search algorithm for the selection of opti-
mal machining parameters in milling operations. The International
Journal of Advanced Manufacturing Technology, 64, 55–61.

Zhang, Y., & Ge, L. (2009). Selecting optimal set of tool sequences
for machining of multiple pockets. The International Journal of
Advanced Manufacturing Technology, 42, 233–241.

123

	A hybrid cuckoo search-genetic algorithm for hole-making sequence optimization
	Abstract
	Introduction
	Hole-making sequence optimization problem
	Mathematical formulation

	Proposed cuckoo search-genetic algorithm
	Solution representation
	Initial population
	Crossover operator
	Mutation operator
	Rotation strategy
	Elitism

	Algorithm verification
	Computational experience
	Discussion and conclusion
	References

