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Abstract This paper studies the problem of scheduling a
multiple-load carrier which is used to deliver parts to line-side
buffers of a general assembly (GA) line. In order to maximize
the reward of the GA line, both the throughput of the GA line
and the material handling distance are considered as schedul-
ing criteria. After formulating the scheduling problem as a
reinforcement learning (RL) problem by defining state fea-
tures, actions and the reward function, we develop a Q(λ)
RL algorithm based scheduling approach. To improve per-
formance, forecasted information such as quantities of parts
required in a look-ahead horizon is used when we define
state features and actions in formulation. Other than apply-
ing traditional material handling request generating policy,
we use a look-ahead based request generating policy with
which material handling requests are generated based not
only on current buffer information but also on future part
requirement information. Moreover, by utilizing a heuristic
dispatching algorithm, the approach is able to handle future
requests as well as existing ones. To evaluate the performance
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of the approach, we conduct simulation experiments to com-
pare the proposed approach with other approaches. Numeri-
cal results demonstrate that the policies obtained by the RL
approach outperform other approaches.
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making · Reinforcement learning · Multiple-load carrier
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Introduction

A general assembly (GA) line is a system where parts are
assembled into products. As an example, the GA line shown
in Fig. 1 consists of a series of six assembly workstations.
Before the GA line, there are incoming semi-products from
upstream manufacturing processes. A semi-product will be
first loaded to Workstation 1 of the GA line and then to Work-
station 2 and go on. At each workstation, operators pick up
certain types of parts from line-side buffers at the station and
assemble them into the semi-product. The semi-product is
then transferred to the next workstation or to the warehouse
when it becomes a final-product after the assembly operation
in Workstation 6 is finished. Because capacities of line-side
buffers are limited, a dolly train is used by the material han-
dling system (MHS) of the GA line to deliver parts from
a stocking area to the line-side buffers. The dolly train is
a multiple-load carrier that can carry multiple containers of
parts at a time. To maximize the profit of the GA line, the
MHS has to replenish parts in time to make sure that there are
enough parts for assembly. Otherwise the throughput of the
GA line cannot be maximized. Furthermore, because mate-
rial handling cost plays an important part of manufactur-
ing cost (Joe et al. 2012), the MHS has to minimize mate-
rial handling cost. Therefore, an efficient material handling
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Fig. 1 A general assembly line

scheduling approach is very important for the GA line. In this
paper, we study the problem of scheduling the dolly train in
a real-time fashion. Because we aim at optimizing the profit
of the GA line, both the throughput of the GA line and the
material handling distance are considered.

However, the material handling scheduling problem con-
sidered here is very difficult. Firstly, according to our previ-
ous study (Chen et al. 2011), it’s very difficult to optimize
both criteria at the same time even if it’s not impossible.
Higher throughput usually means longer material handling
distance while shorter distance often indicates lower through-
put. Secondly, due to the fluctuation and variation of market
requirement and production plans, the consumption rates of
parts are not constant from a short-term perspective. There-
fore we should find a policy that is able to schedule according
to the real-time status of the GA line. Thirdly, information
necessary for scheduling of the entire scheduling period is
not available before scheduling in practice. Actually, at each
decision epoch, the scheduling system can only access to
information within a short period of time. Hence, we need to
make decisions based on local information despite that we
focus on long-term performance. As a result, it’s important
but difficult to evaluate the performance of a decision from
a long-term perspective. Furthermore, scheduling multiple-
load carriers is considered to be far more complicated than
scheduling unit-load carriers (Berman et al. 2009).

The importance and the difficulties of material handling
scheduling problems have attracted a lot of attentions. In the
literature, different scheduling approaches have been devel-
oped. For example, Ozden (1988) use a simple pick-all-
send-nearest rule for a carrier scheduling problem. There are
also other researches study simple scheduling approaches
which consider only a few attributes of system status
(e.g., Occena and Yokota 1993; Nayyar and Khator 1993).

Sinriech and Kotlarski (2002) categorize multiple-load car-
rier scheduling rules into three categories, namely idle car-
rier dispatching rules, load pick-up rules and load drop-off
rules.

To further improve the performance of MHSs, more com-
plex methods have been proposed (e.g. Potvin et al. 1992;
Chen et al. 2010; Dang et al. 2013). Such approaches include
fuzzy logic based methods (Kim and Hwang 2001), genetic
algorithm based methods (Orides et al. 2006), particle swarm
optimization based methods (Belmecheri et al. 2013), neural
network based methods (Min and Yih 2003; Wang and Chen
2012), hybrid meta-heuristic methods (Vahdani et al. 2012),
etc. Vis (2006), Le-Anh and De Koster (2006) and Sarin et al.
(2010) provide comprehensive reviews on material handling
scheduling problems.

Recently, because of RL methods’ ability in finding
optimal/near-optimal policies in dynamic environments, RL
algorithms have been applied to production scheduling prob-
lems (e.g., Wang and Usher 2005; Gabel and Riedmiller
2011; Zhang et al. 2012). Li et al. (2002) apply an RL algo-
rithm based on Markov games to determine an agent’s best
response to others’ response in an automated-guided vehicle
dispatching problem. Jeon et al. (2011) consider the prob-
lem of determining shortest-time routes for vehicles in port
terminals. They use Q-learning methods to estimate waiting
times of vehicles during travelling. However, previous stud-
ies have not thoroughly explored the application of RL algo-
rithms to material handling scheduling problems, especially
to the multiple-load carrier scheduling problem considered
in this paper.

Furthermore, most of the studies in the literature focus
on manufacturing systems where MHSs are used to trans-
fer materials between workstations. In these type of manu-
facturing systems, a material handling request is generated
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whenever a workstation completes a load (see Ho et al. 2012
for an example). It’s quite obvious to do so because after a
workstation completes a load, the load should be delivered to
another workstation for processing. On the other hand, for the
GA line we study here, when to generate material handling
requests is a question need to be answered first by scheduling
approaches. In automotive industry, the reorder-point (ROP)
policy is usually applied in practice. With the ROP policy, a
request for the i th type of part, Pi , will be generated when
the inventory level of Pi ’s buffer is no more than its reorder
point, i.e., buf i ≤ RPi . However, using the ROP policy in a
dynamic environment could cause problems sometimes. For
instance, if buf i = 0 but Pi is not required in the near future,
requesting for Pi is not necessary and could lead to extra cost
(such as holding cost).

Although it’s impossible to obtain information of the
entire scheduling period before scheduling in practice, infor-
mation in a look-ahead horizon is usually available even in
a stochastic environment. To improve performance of MHSs
in such dynamic and stochastic manufacturing environments,
it’s necessary to develop look-ahead methods that consider
forecasted information (Le-Anh et al. 2010). De Koster et
al. (2004) show that using look-ahead information leads to
significant improvement in the performance for a unit-load
carrier scheduling problem. On the other hand, Grunow et
al. (2004) develop an algorithm which considers orders ini-
tiated in a look-ahead time window for a multiple-load AGV
dispatching problem. However, because these studies pay
no attention to the problem of generating material handling
requests, we need to further investigate how to incorporate
look-ahead information in material handling request gener-
ating policies.

Moreover, in most studies, MHSs are only allowed to han-
dle existing requests. This is because every request corre-
sponds to a load completed by a workstation in those studies.
And it’s impossible to move a load that is not yet output from
a workstation. However, there is no such restriction for the
case we study here. The dolly train is allowed to replenish Pi
even though there is no request for Pi yet. Actually, it’s ben-
eficial to do so sometimes. For instance, consider two types
of parts, P1 and P2, whose buffer locations are close to each
other. Assume that there is a request for P1 but no request
for P2 at time t0. Also assume that buf 2 is very close to RP2,
which means a request for P2 will soon be generated shortly
after t0. Then it’s better to replenish P1 together with P2. Oth-
erwise the dolly train has to start a new trip for P2 after P1

is replenished. Hence, it’s necessary to develop an approach
to consider both existing requests and future requests.

To address the issues above, we first propose a new method
to generate material handling requests based on forecasted
information in a look-ahead horizon. We also propose a
heuristic dispatching algorithm that is able to consider future
requests as well as existing requests. Using the new request

generating policy and the heuristic algorithm, we formulate
the material handling scheduling problem as a reinforcement
learning (RL) problem by defining state features, actions
and reward function. Finally, we apply a Q(λ) algorithm to
find the optimal policy of the material handling scheduling
problem.

The remainder of the paper is organized as follows. The
next section describes the scheduling problem investigated
in this paper and formulates it as an RL problem. After prob-
lem formulation, the RL based scheduling approach is pro-
posed. Next, simulation experiments are conducted to eval-
uate the performance of the proposed approach. The last
section draws conclusions and highlights areas for further
research.

Problem formulation

Notations

The following notations will be used throughout this paper:

Nw the number of workstations in the GA line;
Np the number of part types will be assembled

into semi-products; also the number line-side
buffers;

NA the number of product models;
Nc the capacity of a dolly train, i.e., the maximum

number of containers a dolly train can handle
at the same time;

CT the cycle time of the GA line;
Pi the i th type of parts;
SPQi standard pack quantity of Pi , i.e., the quantity

of Pi that will be loaded to one container in the
stocking area; also the capacity of Pi ’s line-
side buffer;

buf i the inventory level of Pi ’s line-side buffer;
ULLi the threshold that determines whether extra

unloading time is needed to unload Pi
tload loading time per container;
tunload unloading time per container;
textra extra unloading time per container
di the distance between the stocking area and

Pi ’s line-side buffer;
T the length of the entire scheduling period;
M the throughput of the GA line in T ;
wM the coefficient of M ;
D the material handling distance in T ;
wD the coefficient of D;
v the velocity of a dolly train;
li the maximum number of assembly orders

that Pi ’s line-side buffer can support without
replenishment;
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W (i) the workstation that Pi is assembled into semi-
products;

I (W, t) the no. of the semi-product that is the first to
enter workstation W after time t ;

B( j) the model of the j th semi-product;
H(B, i) the quantity of Pi required by a semi-product

whose model is B;
J (t) the no. of the latest semi-product arrived in the

look-ahead period [t, t + L];
ui the quantity of Pi required by a semi-product

on average;
RPi Pi ’s reorder point defined in the ROP policy;
RPL

i Pi ’s reorder point defined in the look-ahead
based reorder point policy;

nreq the number of material handling requests gen-
erated;

tnext the time left for the GA line to proceed to the
next assembly cycle; X = {x1, x2, . . . , xn}
is a drop-off sequence; xk (k = 1, 2, . . . , n) is
the type of parts in the kth container to deliver;

n the number of loads to handle in a drop-off
sequence;

ttotal the amount of time to execute a drop-off
sequence;

tstop the amount of time that the GA line is not
working during the execution of a drop-off
sequence;

ta ta = ttotal − tstop is the actual working time of
the GA line during the execution of a drop-off
sequence;

SMDi the standard material handling distance to
deliver a unit quantity of Pi ;

ARQi the actual replenished quantity of Pi ;
deff (X) the effective material handling distance during

the execution of X ;
dtotal(X) the total material handling distance to execute

X ;
dsaved(X) the total saved distance to execute X ;
ASR the average standard reward to assemble a unit

product;
ρ the standard reward rate;
SR(X) the standard reward received during the exe-

cution of X ;
ER(X) the expected reward received during the exe-

cution of X ;
r̃(X) the expected reward rate during the execution

of X ;
s, s′ state vectors
twait the maximum amount of time that the dolly

train should wait in the stocking area until the
next decision epoch;

Na the number of actions;
φg(s) the gth Gaussian radial basis function (RBF);

G the number of RBFs;
θag the weights of φg(s);
Cg the center of φg(s);
σg the width of φg(s);
�a �a = (θa1 , θa2 , . . . , θaG)T is the vector of

weights;
� � = (φ1(s), φ2(s), . . . , φG(s))T is the vector

of RBFs;
Y(a) Y(a) = (ya1 , ya2 , . . . , yaG)T is a vector of the

eligibility traces for action a;

Problem description

The multiple-load carrier scheduling problem considered in
this paper can be described as follows. The GA line is a
serial line consisting of Nw workstations. The workstations
are synchronized because of the usage of a synchronized
conveyor transferring semi-products between workstations.
Therefore, the cycle timeCT is equal to the longest cycle time
of the workstations; and the entire GA line will stop working
whenever a workstation stops. During assembly, parts will be
assembled into semi-products in these workstations. The GA
line employs a dolly train whose capacity is Nc to replenish
parts. To schedule the dolly train, the MHS usually needs to
(1) generate material handling requests based on a request
generating policy (e.g., the ROP policy); (2) decide whether
the dolly train should deliver parts or wait in the stocking area
when it is idle; (3) select parts to deliver if “deliver” deci-
sion has been made; and (4) determine the drop-off sequence
for the parts selected. Therefore, the multiple-load carrier
scheduling problem involves four sub-problems. For clarity
and simplicity, the following assumptions are made:

(1) If the dolly train is idle, it must stay in the stocking area
unless there are one or more material handling requests;

(2) If the GA line is stopped because there is no enough
parts for assembly, the dolly train is not allowed to be
idle in the stocking area;

(3) If the dolly train is busy, it must finish tasks currently
assigned to it before it can be dispatched to handle new
tasks;

(4) Drop-off sequence of parts cannot be changed once it’s
determined;

(5) The dolly train’s velocity v is constant;
(6) The types of parts in different containers carried by the

dolly train at the same time must be different;
(7) Different types of parts cannot be mixed in the same

container;
(8) Breakdown and maintenance of the dolly train are not

considered;
(9) If the GA line is not stop and buf i > ULLi , it is not

allowed to unload Pi ;
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(10) It takes tunload time units to unload Pi if buf i ≤ ULLi .
Otherwise it takes tunload + textra time units, because
more efforts are required in such cases;

(11) buf i is equal to SPQi right after Pi is replenished;
(12) The distance between the unloading point of Pi and that

of Pj is given by |di − d j |;
(13) The first workstation (Workstation 1) will never starve;
(14) The last workstation (Workstation Nw) will never be

blocked;
(15) The semi-products arrive to the GA line are numbered

sequentially starting from 1; and
(16) The information of semi-products that will arrive to

the GA line in the next L time units is assumed to be
available.

The objective of the problem is to maximize fT , the total
reward of a given scheduling period T , i.e.,

fT = wMM − wDD. (1)

Look-ahead based request generating policy

In this section, we first discuss the problem of generating
material handling requests because it is the basis to make
other decisions.

As described in Introduction, the MHS will monitor the
inventory levels when the ROP policy is used. It will generate
a request for Pi if the following condition is met and there is
no request for Pi yet.

buf i ≤ RPi , ∀i ∈ {
1, 2, . . . , Np

}
. (2)

When assembly orders arrive in a way that models of prod-
ucts distribute evenly over time, larger buf i means longer
remaining life of Pi ’s buffer, i.e., Pi ’s buffer can support
more assembly cycles without replenishment. However, this
is usually not the case in a dynamic environment where con-
sumption rates of parts fluctuate frequently from a short-term
perspective. Therefore, it’s possible to improve the perfor-
mance of the scheduling system by using a better request
generating policy in such an environment.

Since buf i is not a good indicator of the remaining life of
Pi ’s buffer in a dynamic environment, we directly monitor
the remaining lives of buffers instead of the inventory levels,
i.e., the inequities (2) become

li ≤ RPL
i , ∀i ∈ {

1, 2, . . . , Np
}
. (3)

Then the request generating policy used in this paper can
be described as: generate a request for Pi if condition (3) is
satisfied and there is no request for Pi yet.

Unlike the inventory level, however, the remaining life
of a buffer cannot be directly observed. In order to deter-
mine li for each Pi , the following algorithm (Algorithm 1) is
used.

Because the information of semi-products that arrive in the
near future is required to calculate li s in Algorithm 1, the
request generating policy used in this paper is a look-ahead
request generating policy (LRGP).

In order to analyze the computational complexity of Algo-
rithm 1, let norders = J (t) − I (Nw, t) be the number of
semi-products currently in the GA line plus the number of
semi-products that will arrive in the following L time units.
Then it takes O(norders) efforts in the Step 2. And since we
have Np types of parts, it takes O(nordersNp) efforts to com-
pute all the li s.

A heuristic dispatching algorithm

After a “deliver” decision has been made by the MHS, dis-
patching approaches are used to select parts to deliver and
determine their drop-off sequence. When requests corre-
spond to outputs from workstations, it’s impossible to handle
requests not yet generated because the corresponding loads
don’t exist. Therefore, dispatching approaches used for such
environments consider only existing requests. However, this
is not the case for the problem we study in this paper. The
MHS is allowed to replenish parts even though there are no
requests for them. And as discussed in the Introduction, it
could be beneficial to do so.

Because material handling requests are generated based
on remaining lives of buffers, those types of parts that are
requested should be given higher priorities than others that
are not. Otherwise the GA line might stop working because
the parts requested replenishment might become out of stock.
Assume that there exists a load pick-up rule RPICK and a
load drop-off rule RDROP to select requests and determine
an initial drop-off sequence. Then the dispatching problem
can be simplified as selecting types of parts that are not
yet requested and then inserting them to the initial drop-off
sequence.

To implement the above idea, we first define the expected
reward rate r̃ for a drop-off sequence.
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Let X = {x1, x2, . . . , xn} be a drop-off sequence. And
“executing” X means delivering all the loads in X . Let SMDi ,
which is given by Eq. (4), be the standard material handling
distance to deliver a unit quantity of Pi ; and ARQi , which
is given by Eq. (5), be the actual replenished quantity of Pi .
Then deff (X) is defined by Eq. (6).

SMDi = 2di/SPQi (4)

ARQi = SPQi − buf i (5)

deff (X) =
n∑

k=1

SMDxkARQxk

=
n∑

k=1

2dxk
SPQxk

(
SPQxk − buf xk

)
(6)

It is easy to see that the deff (X) equals to the total standard
material handling distance to deliver the same amount of
parts as X does. Then dsaved(X) is defined by Eq. (7).

dsaved (X) = deff (X) − dtotal (X) . (7)

For two different sequences X and X ′ whose loads are the
same, i.e., ∀xk ∈ X ⇔ xk ∈ X ′, X is considered to be
more efficient than X ′ in terms of material handling distance
if dsaved(X) > dsaved(X ′), because the distance required to
replenish the same amount of parts is relatively shorter by
executing X instead of X ′.

According to Eqs. (1) and (4), the average standard
reward to assemble a unit product is ASR = wM −
wD

∑Np
i=1 uiSMDi . Therefore we have ρ = ASR/CT . And

the standard reward received during the execution of X is
given by

SR (X) = ρttotal. (8)

Then the expected reward ER(X) is defined as

ER (X) = SR (X) − ρtstop + wDdsaved (X)

= ρta + wDdsaved (X) , (9)

Finally, the expected reward rate r̃(X) is given by

r̃ (X) = ER (X)/ttotal. (10)

A drop-off sequence X can be considered to be more
efficient with a greater r̃(X) because the GA line receives
more reward per unit time in such case. Based on this
idea, we propose the following heuristic algorithm (Algo-
rithm 2) to pick up loads and determine their drop-off
sequence.

With the above algorithm, the dolly train will always
pick up as many requests as possible. If its capacity is not
exceeded, it will also select other types of part not yet selected
when the expected reward rate can be improved to do so (i.e.,
a greater r̃(X) is achieved).

Note that RPICK and RDROP are not specified in Algo-
rithm 2. This allows us to specify suitable rules in different
situations. After all, there is no such rule that is globally
optimal (Montazeri and Wassenhove 1990). By specifying
different load pick-up rules and load drop-off rules in the
above algorithm, we can also define different actions for
the RL problem. Because the shortest-slack-time-first-picked
(SSFP) rule and the shortest-distance-first-picked (SDFP)
rule outperform other load pick-up rules and the shortest-
distance-first-delivered (SDFD) rule outperforms other load
drop-off rules according to Chen et al. (2011), we will use
the SSFP rule and the SDFP rule as load pick-up rules
and the SDFD rule as the load drop-off rule to define the
actions.

The worst-case computational complexity of Algorithm 2
is analyzed as follows. Because that the exact load pick-up
and load drop-off rules are specified later, we focus on analyz-
ing Step 4, the process to generate new drop-off sequences.
In the inner loop of Step 4.b, we have n+1 ≤ Nc because the
capacity of the dolly train is Nc. Therefore it takes O(NcNp)

efforts in Step 4.b. After Step 4.b, X either remains the same
or is replaced by a new candidate sequence X ′ which satisfies
|X ′| = |X∗| + 1. The outer loop of Step 4 will stop in the
former case and will continue if |X | < Nc in the latter one.
Hence, it takes O(Nc) efforts in the outer loop of Step 4.
Therefore the worst-case computational complexity of Step
4 is O(N 2

c Np).
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Reinforcement learning formulation

In order to apply RL algorithms to scheduling problems, we
need to formulate the scheduling problems as RL problems.
There are three major steps in the formulation, including
defining state features, constructing actions and defining the
reward function (Zhang et al. 2011).

State features

The objective of an RL algorithm is to find an optimal pol-
icy that is able to choose optimal actions for any given state.
Theoretically, anything that is variable and related to the GA
system (either the GA line itself or the MHS), such as sta-
tus of workstations, status of the dolly train, information of
semi-products that are being assembled currently, incoming
assembly orders, etc., can be considered as states. However,
for a complex manufacturing system, it’s impossible to take
all kinds of such information into consideration and it would
make the RL problem way too complex. Therefore, we need
to carefully define state features concisely such that the state
space is compressed and it’s easier for learning. More impor-
tantly, they should be able to represent the major character-
istics of the GA system that impact the scheduling of MHS
considerably. In this paper, we define the state features as
follows:

State feature 1 (s1). Let s1 indicate if the GA line is stopped
and define

s1 =
{

0 if the GA line is working
1 if the GA line is stopped

. (11)

State feature 2 (s2). Let tnext denote the time left for the
GA line to proceed to the next assembly cycle and define

s2 = tnext/CT . (12)

State feature 3 (s3,i , i ∈ {
1, 2, . . . , Np

}
). s3,i is defined

as

s3,i = buf i/SPQi . (13)

State feature 4 (s4,i , i ∈ {1, 2, . . . , Np}). Let lMAX
i be the

maximum possible value of li which is given by

lMAX
i =

⌈
L

CT
+ W (i) − 1 +

(
SPQi + 1

)

ui

⌉

. (14)

Then s4,i is defined as

s3,i = li/l
MAX
i . (15)

With the definition of the state features, the system state
at time t can be represented as

st = (
s1, s2, s3,i

(
i = 1, 2, . . . , Np

)
,

s4,i
(
i = 1, 2, . . . , Np

))
. (16)

Note that actions are taken only at decision epochs. We call
time t a decision epoch if one of the following conditions is
met:

(1) The dolly train becomes idle;
(2) The GA line is stopped because a certain type of part

becomes out of stock; and
(3) A new material handling request is generated.

The states at decision epochs are also called decision
states.

Actions

The actions of an RL problem are decisions made at decision
epochs. There are a lot of decisions can be made at decision
epochs for the multiple-load carrier scheduling problem we
study here, such as waiting in the stocking area, dispatching
the dolly train to deliver P1, dispatching the dolly train to
deliver P2 and P3 with a drop-off sequence X = {2, 3},
dispatching the dolly train to deliver P3 and P4 with a drop-
off sequence X = {4, 3} and so on. It would be inefficient
for learning if we define each possible decision as an action.
Because the dolly train is either idle in the stocking area or
dispatched to replenish parts, we define actions as follows:

Action 1 (a1). Wait in the stocking area until one of the
following conditions is met:

(1) The dolly train has been idle for more than twait time
units since the last Action 1 is taken; and

(2) The system state transits to a new decision state.

Action 2 (a2). Use Algorithm 2 to pick up loads and to
determine the drop-off sequence with the SSFP rule as RPICK

and the SDFD as RDROP, deliver the loads then come back
to the stocking area.

Action 3 (a3). Use Algorithm 2 to pick up loads and to
determine the drop-off sequence with the SDFP rule as RPICK

and the SDFD as RDROP, deliver the loads then come back
to the stocking area.

After defining the actions, the action space can be rep-
resented as A = {a1, a2, a3}. And the number of actions is
Na = |A|.

Reward function

Because the objective of the RL problem is to maximize the
accumulated reward such that the reward of the GA line can
be maximized, the definition of the reward function should
be also related to both throughput and the material handling
distance.

Consider the case of the state of the system at decision
epoch t, s, transiting to a new state, s′, at the next decision
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epoch t ′ after action at ∈ A is performed at t . Based on
Eq. (9), the reward received in the period of [t, t ′] is defined
as

r
(
s, at , s′

) = ρ
(
t ′ − t − tstop

) + wDdsaved . (17)

The reinforcement learning based scheduling approach

In the previous section, we formulate the multiple-load car-
rier scheduling problem as an RL problem. To apply RL in
scheduling, we need to solve the RL problem first. Because
the time spent in state transition is part of the reward func-
tion, algorithms developed for problems in MDP context
cannot be applied to the RL problem directly. In order to
solve the RL problem, the discount factor γ is replaced
by e−β(t ′−t) and the reward received in the period of [t, t ′]
becomes

r
(
s, at , s′

) =
∫ t ′

t
e−β(τ−t)ξ (τ )dτ, (18)

where ξ(τ )(τ ∈ (t, t ′]) is the reward rate function within
[t, t ′] which is given by

ξ (τ ) = [
ρ

(
t ′ − t − tstop

) + wDdsaved
]
/
(
t ′ − t

)
. (19)

Also note that all the state features are continuous except
for s1. Thus the state space is infinite, which makes the use
of tabular form RL algorithms impossible. In such cases,
function approximators, such as linear approximator, neural
networks approximator and kernelized approximator, etc. are
usually used to approximate value functions. In this paper,
we use a linear function with a gradient-descent method to
approximate value function for each action a. Each approxi-
mator is a linear combination of a set of radial basis functions
(RBFs), i.e.,

Q (s, a) =
G∑

g=1

θagφg (s), (20)

where φg(s)(g ∈ {1, 2, . . . ,G}) are Gaussian RBFs given
by Eq. (21).

φg (s) = e−‖s−Cg‖2
/2σ 2

g (21)

According to Eqs. (20) and (21), we need to determine G,
Cg , σg and θag in order to approximate the Q-value func-
tion. In this paper, we set G to 20 by convenience and
apply Hard K-Means (Duda and Hart 1973) based heuris-
tic method to determine Cg and σg . And then we use a
gradient-descent method to update θag during learning. To
solve the multiple-load carrier scheduling problem, a Q(λ)
RL algorithm with function approximation is proposed as
Algorithm 3.

In the following we analyze the worst-case computational
complexity of Algorithm 3. In Step 1, it takes O(NaG)

efforts to initialize weights and eligibility traces. Accord-
ing to the computational complexity of Algorithm 1, it takes
O(nordersNp) efforts in Step 3 because we need to compute
li s to determine the system state s. It takes O(NpNaG) efforts
to choose an action in Step 4. Similar to Step 3, Step 5 requires
O(nordersNp) efforts to determine the next system state s′. In
Step 6, it takes O(NpNaG) efforts to update Y(a) and �a

and O(nordersNp) efforts to calculate r(st , at , st ′). Hence the
worst-case computational complexity of an iteration of Algo-
rithm 3 is O(Np(norders + NaG)).

Note that Algorithm 3 is executed before real-time
scheduling. Once Algorithm 3 is terminated, �a deter-
mined in Algorithm 3 can be used in multiple-load carrier
scheduling. Let the system state be s at an arbitrary deci-
sion epoch during scheduling. Then the scheduling system
will take action a∗(s) = arg maxa∈A(s) Q(s, a) at the deci-
sion epoch. If a∗(s) = a1, the dolly train will wait until
the next decision epoch. And if a∗(s) = a2, the dolly train
will use Algorithm 2 with the SSFP rule as RPICK and the
SDFD as RDROP to determine a drop-off sequence X . And
then the dolly train will replenish parts according to X .
Similarly, if a∗(s) = a3, the dolly train will also replen-
ish parts. However, SDFP will be used as RPICK in such
cases.

Performance evaluation

To evaluate the performance of the proposed approach, we
conduct simulation experiments to compare the approach
with other scheduling approaches based on a numerical
example.
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Table 1 The layout of the GA line

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

Distance 163 169 174 300 303 406 409 515 522 690 693 696 746 751

Workstation no. 1 1 1 2 2 3 3 4 4 5 5 5 6 6

“Workstation no.” is the no. of the workstation where the corresponding parts will be assembled (e.g., P4 will be assemled to semi-products in
Workstation 2)

Table 2 Bill of material and the
SPQs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

M1 1 1 1 1 0 0 1 1 0 0 1 0 0 1

M2 1 0 0 0 1 1 1 0 1 0 0 1 0 1

M3 1 0 0 0 1 0 1 1 0 1 0 0 1 0

SPQ 95 16 18 18 60 22 120 70 20 50 90 90 36 100

Experimental conditions

The GA line used for simulation experiments consists of six
workstations. Operators will assemble 14 part types into three
types of product models, M1, M2 and M3. The product mix
of the three product models is (0.3, 0.3, 0.4) which means
among all the products to be assembled, 30 % are M1, 30 %
are M2 and 40 % are M3. The cycle time of the GA line is
72 s. The capacity of the dolly train is three. The velocity of
the dolly is 3.05 m/s. For loading and unloading operations,
tload = 36.6 s, tunload = 43.2 s, and textra = 60 s. The look-
ahead horizon is 1,080 seconds, i.e., L = 1,080 s. The coef-
ficients of throughput and material handling distance, wM

and wD , are 5,000 and 4.92, respectively. Table 1 gives the
layout information of the GA line. Table 2 presents the bill of
material (BOM) and the SPQs. The threshold for unloading
is given by Eq. (22).

ULLi = SPQi/10, i = 1, 2, . . . , Np (22)

The scheduling approaches selected to compare with the
RL approach include the minimum batch size (MBS-z, Neuts
1967) rule (including MBS-1, MBS-2 and MBS-3) based
approaches, the next arrival control heuristic (NACH, Fowler
et al. 1992) based approaches and the minimum cost rate
(MCR, Weng and Leachman 1993) based approaches. These
approaches use MBS-z rules, NACH algorithm or MCR algo-
rithm to decide when to dispatch the dolly train to handle
material handling requests. All of them use the SDFP rule
to pick up loads and the SDFD rule to drop off loads. These
approaches can use either ROP or LRGP to generate material
handling requests. The reorder points of ROP and LRGP are
given by Eqs. (23) and (24) respectively.

RPi =
⌈(

1

v

(
di + 2 × max j d j

) + σ

)

× ui
CT

⌉
, i = 1, 2, . . . , Np, (23)

RPL
i =

⌈(
1

v

(
di + 2 × max j d j

) + σ L
)

× ui
CT

⌉
, i = 1, 2, . . . , Np, (24)

In Eqs. (23) and (24), σ and σ L are parameters to change
reorder point settings.

For the RL approach, we set μ = 0.001 and β = 0.00005
using a heuristic method presented in Zhang et al. (2011).
Because the cycle time is 72 s, twait should not be >72. Oth-
erwise the scheduling system is not able to react to changes of
the GA line in time. And it is too frequent to make decisions
with a too small twait . Hence, we set twait = 20 s after we
search a suitable setting for twait within the interval [10, 72]
through pilot simulation experiments.

Simulation results

Although Q-learning methods are proved to converge (Peng
and Williams 1996), there is no convergence result for
Q-learning methods with function approximators. Therefore,
before we evaluate the performance of the proposed RL
approach, we first study its convergence.

Let PDk be the mean value of the square of the difference
of all the �as between the (k + 1)th iteration and the kth
iteration, defined as Eq. (25) where φa

g,k denotes the value of
φa
g in the kth iteration. Figure 2 presents howPDk varies with

the number of iterations. As Fig. 2 indicates, PDk decreases
sharply before 50,000 iterations. And then it decreases much
more slowly after 100,000 iterations. Therefore Fig. 2 shows
that the weights of RBFs become stable gradually and they
converge asymptotically.

PDk =
G∑

g=1

∑

a∈A

(
φa
g,k+1 − φa

g,k

)2
/NaG (25)
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Fig. 2 Variation of PDk with respect to the number of iterations

In order to evaluate the performance of the proposed RL
approach, we conduct simulation experiments to compare
throughput, material handling distance and the reward of dif-
ferent approaches. The simulation experiments consist of 50
tests, each of which lasts for 300 h. And for each test, the
warm-up period is 10 h. In the experiments, both parameters
for RPi and RPL

i , σ and σ L , are set to 480. Note that Algo-
rithm 3 is executed to solve the RL problem before real-time
scheduling in the RL approach. The simulation results are
shown in Table 3.

As shown in Table 3, there is no such approach that yields
shortest distance and largest throughput at the same time,
which agrees with Chen et al. (2011)’s observation. Among
all the approaches, MBS-3(ROP), i.e. the MBS-3 approach
using the ROP policy, is the best in terms of material han-
dling distance while MBS-1(LRGP) is the worst. Their gap
is 38.5 %. This result indicates that if we want to minimize

the material handling distance, we should dispatch the dolly
train to handle more requests at a time.

On the other hand, the proposed RL approach is the best
approach in terms of throughput. Compared to the worst
approach, MBS-3(LRGP), the RL approach improves the
throughput by 23.1 %. The RL approach is also the best
approach that yields maximum reward. It’s 24.1 % better
than MBS-3(LRGP) which is the worst approach in terms
of reward. The smallest gap between the RL approach and
other approaches is 4.6 %.

Because the cycle time is 72 s, the maximum number
of products the GA line can possibly assemble in 300 h is
M∗ = 300 × 3,600/72 = 14,750. Assuming that there is
a hypothetical approach whose throughput is 14,750 and its
distance is the same as the MBS-3(ROP) approach’s, then its
reward would be 6.93 × 107. Compared to the hypothetical
approach’s performance, the RL approach’s performance is
only 4.8 % worse, which further indicates the effectiveness
of the RL approach.

Considering that reorder point settings can affect the per-
formance of scheduling, by changing σ and σ L , we also
conduct simulation experiments with different reorder point
settings. In these experiments, all the parameters except for
σ and σ L are the same as the previous ones.

As shown in Table 4, the reorder point settings indeed
affect the performance of different approaches. For example,
the performance of MCR(LRGP) can be improved 5.7 % by
changing the σ L from 60 to 540. However, the RL approach
is still the best approach even with different reorder point
settings. On average, the RL approach is 4.9 % better than
the second best approach.

Because prices of products and the cost per unit material
handling distance might change over time due to the fluc-
tuation of the dynamic environment, it’s very important to
make sure that the proposed approach can perform well in

Table 3 Results of the case
example

Gap (%) is calculated by
|current value −
best value|/current value ×
100 %
The best values in each column
are highlighted in bold

Methods Performance criteria

Distance
(×106)

Gap (%) Throughput
(×104)

Gap (%) Reward
(×107)

Gap (%)

MBS-1(ROP) 1.27 29.2 1.37 3.9 6.24 5.7

MBS-1(LRGP) 1.46 38.5 1.34 6.6 5.96 10.6

MBS-2(ROP) 1.07 16.1 1.33 7.2 6.12 7.7

MBS-2(LRGP) 1.11 18.9 1.23 15.6 5.62 17.4

MBS-3(ROP) 0.90 0 1.27 11.9 5.92 11.3

MBS-3(LRGP) 9.65 6.7 1.16 23.1 5.32 24.1

NACH(ROP) 1.05 14.4 1.32 7.9 6.09 8.3

NACH(LRGP) 1.12 19.8 1.37 4.1 6.30 4.6

MCR(ROP) 0.91 1.5 1.28 11.0 5.97 10.4

MCR(LRGP) 0.93 3.4 1.31 8.7 6.10 8.2

RL approach 1.11 18.2 1.43 0 6.60 0

123



J Intell Manuf (2015) 26:1233–1245 1243

Table 4 Results of experiments with different reorder point settings

Methods Reward (×107)

σ (For ROP) / σ L (For LRGP)

60 180 300 420 540 660

MBS-1(ROP) 6.23 6.23 6.26 6.22 6.25 6.18

MBS-1(LRGP) 5.71 5.83 5.89 5.94 5.97 5.98

MBS-2(ROP) 6.02 6.05 6.12 6.11 6.15 6.11

MBS-2(LRGP) 5.28 5.43 5.51 5.59 5.66 5.70

MBS-3(ROP) 5.70 5.78 5.87 5.89 6.00 5.95

MBS-3(LRGP) 5.06 5.17 5.23 5.30 5.37 5.41

NACH(ROP) 6.07 6.04 6.09 6.05 6.11 6.06

NACH(LRGP) 6.12 6.21 6.26 6.28 6.29 6.24

MCR(ROP) 5.73 5.78 5.85 5.88 5.95 5.94

MCR(LRGP) 5.80 5.93 6.00 6.08 6.12 6.12

RL approach 6.58 6.59 6.56 6.58 6.56 6.51

The best values in each column are highlighted in bold

Table 5 Results of experiments with different wM

Methods Reward (×107)

wM =2,000 wM =3,000 wM =4,000 wM =6,000

MBS-1(ROP) 2.12 3.49 4.87 7.61

MBS-1(LRGP) 1.95 3.29 4.63 7.30

MBS-2(ROP) 2.13 3.46 4.79 7.45

MBS-2(LRGP) 1.92 3.15 4.39 6.85

MBS-3(ROP) 2.10 3.38 4.65 7.20

MBS-3(LRGP) 1.84 3.00 4.16 6.47

NACH(ROP) 2.14 3.49 4.83 7.51

NACH(LRGP) 2.19 3.56 4.93 7.67

MCR(ROP) 2.12 3.40 4.69 7.26

MCR(LRGP) 2.18 3.51 4.84 7.49

RL approach 2.31 3.74 5.16 8.01

The best values in each column are highlighted in bold

such environments. Therefore, we conduct experiments with
four different wM values, 2,000, 3,000, 4,000 and 6,000. In
all the experiments we use the same wD = 4.92. And other
parameters also remain the same.

Table 5 indicates that, the rewards of different approaches
varies significantly because of the changes of wM . Never-
theless, the proposed RL approach still outperforms other
approaches in terms of reward for different settings of
wM s.

Note that offline RL is conducted before each setting of
wM when the RL approach is applied. In order to show that
the RL approach can learn a good solution to adapt the envi-
ronment, we compare throughput and ADUP, the average
distance per unit product, for different wM s. According to
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Fig. 3 Average distance per unit product and throughput under differ-
ent settings of wM

Eq. (26), a larger ADUP means more cost for a unit prod-
uct assembled. And smaller ADUP indicates that less cost is
required to assemble a unit product.

ADUP = D/M (26)

Since wM is the coefficient of throughput, when it
increases, the importance of throughput also increases
according to Eq. (1). And the importance of distance
decreases relatively. In such cases, the GA line should focus
more on throughput even though it has to pay more cost in
material handling. As indicated by Fig. 3, both throughput
and ADUP increase at the same time when wM increases. It
means that through RL, the RL approach adjusts its policy to
achieve higher throughput with the price of higher unit cost
when wM increases.

We can also compare the RL approach with the hypo-
thetical approach for different wM s. The rewards of the
hypothetical approach for the four different wM values are
2.51×107, 3.98×107, 5.46×107 and 8.41×107. Thus the
gaps between the RL approach and the hypothetical approach
are 8.0, 6.0, 5.5 and 4.7 %, respectively.

From the above simulation results, we can see that the pro-
posed RL approach outperforms other approaches in terms
of reward in all of the experiments. More importantly, Fig. 3
indicates that the RL approach can change its policy to adapt
the environment through RL. By doing this, the RL approach
performs well in all of the experiments. As indicated by the
results of comparing the RL approach and the hypothetical
approach, the performance of the RL approach is close to that
of the hypothetical approach. Because it’s almost impossible
to find a realistic approach that can perform as well as the
hypothetical approach does, the RL approach is suitable for
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the multiple-load carrier scheduling problem studied in this
paper.

Conclusion

In this paper we investigate the problem of scheduling a
dolly train, a multiple-load carrier in a GA line. The objec-
tive of the scheduling problem is to maximize the reward of
the GA line. Thus we consider two scheduling criteria, the
throughput of the GA line and the material handling distance.
Based on look-ahead information, we propose a look-ahead
based material handling request generating policy. We also
develop a heuristic dispatching algorithm to pick up loads
and to determine the order of delivery. After modeling the
scheduling problem as a RL problem with continuous time
and space, we propose a Q(λ) RL algorithm to solve the
RL problem. In the RL algorithm, a linear function with
a gradient-descent method is used to approximate Q-value
functions.

To evaluate the performance of the proposed approach, we
compare the performance of the proposed RL approach with
that of other approaches. The results show that the proposed
approach outperforms other approaches with respect to the
reward of the GA line. Therefore, the proposed approach
is an appropriate real-time multiple-load carrier scheduling
approach in a dynamic manufacturing environment.

In this paper, we use a look-ahead based request gen-
erating policy other than the traditional ROP policy. How-
ever, because the scheduling system can always dispatch the
dolly train to deliver parts regardless of the status of line-side
buffers, it’s not necessary to have a request generating policy
in the GA line theoretically. As a matter of fact, a scheduling
system without a request generating policy is identical to a
scheduling system in which reorder points are set to some
sufficiently large number. Therefore, it’s very interesting to
develop approaches without request generating policies. Fur-
thermore, only three types of actions are defined in our RL
formulation despite that there are a lot of possible actions
can be defined. It’s very important to discuss this issue in the
future in order to improve the performance of the scheduling
approach.
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