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Abstract In this work we consider a multiobjective open
shop scheduling problem with uncertain processing times
and flexible due dates, both modelled using fuzzy sets. We
adopt a goal programming model based on lexicographic
multiobjective optimisation of both makespan and due-date
satisfaction and propose a particle swarm algorithm to solve
the resulting problem.We present experimental results which
show that this multiobjective approach achieves as good
results as single-objective algorithms for the objective with
the highest priority, while greatly improving on the second
objective.

Keywords Open shop scheduling · Fuzzy processing
times · Flexible due dates · Particle swarm optimisation ·
Lexicographic goal programming

Introduction

The open shop scheduling problem (OSP) is a problem with
an increasing presence in the literature and clear applications
in industry—consider for instance testing facilities where
units go through a series of diagnostic tests that need not
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be performed in a specified order and where different test-
ing equipment is usually required for each test (see Pinedo
2008). For a number of machines m ≥ 3 this problem is
NP-complete; in consequence, it is usually tackled via meta-
heuristics techniques. For instance, for makespan minimisa-
tion, Guéret and Prins (1998) describe two heuristic methods
to obtain a list of operation priorities later used in a list-
scheduling algorithm; Liaw (1999) proposes a tabu search
algorithm; Blum (2005) hybridises ant colony optimisation
with beam search and Sha and Cheng-Yu (2008) propose a
solution based on particle swarm optimisation. To minimise
total tardiness, Naderi et al. (2011) propose two metaheuris-
tics based on genetic algorithms and variable neighbourhood
search and formultiobjective open shopwefind an ant colony
algorithm combinedwith simulated annealing in Panahi et al.
(2008) and particle swarm optimisation in Sha et al. (2010).

Traditionally, scheduling has been treated as a determin-
istic problem that assumes precise knowledge of all data
involved, in contrast with the uncertainty and vagueness per-
vading real-world problems. To enhance the range of appli-
cations of scheduling, an increasing part of the research is
devoted to modelling this lack of certainty with great diver-
sity of approaches (Herroelen and Leus 2005). In particular,
fuzzy sets have been used in different manners, ranging from
representing incomplete or vague states of information to
using fuzzy priority rules with linguistic qualifiers or pref-
erence modelling and as an interesting tool for improving
solution robustness and stability (Guiffrida and Nagi 1998;
Dubois et al. 2003; Petrovic et al. 2008).

Far from being trivial, extending heuristic strategies to
uncertain settings usually requires a significant reformulation
of both the problem and solving methods. This is patent in
the available literature on job shop problems with uncertain
processing times and/or flexible constraints. For instance,
Dubois et al. (1995) extend a constrained-based approach,
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Fortemps (1997) uses simulated annealing and Sakawa and
Kubota (2000) propose a genetic algorithm in what can
be seen as pioneering works in the application of meta-
heuristic strategies, followed bymany authors, e.g. González
Rodríguez et al. (2008), Puente et al. (2010), Niu et al. (2008)
or Zheng et al. (2011). However, while there are many con-
tributions to solve fuzzy job shop problems, the literature
on fuzzy open shop is still scarce. Indeed, the open shop
with uncertainty constitutes a relatively new and complex
research line. Among the few existing proposals, in (Alcaide
et al. 2006) a heuristic approach is proposed to minimise
the expected makespan for an open shop problem with sto-
chastic processing times and randombreakdowns; González-
Rodríguez et al. (2010) minimise the expected makespan of
an open shop with fuzzy durations using a genetic algorithm
hybridised with local search, while Palacios et al. (2011) use
a particle swarm optimisation algorithm for the same prob-
lem. Finally, a possibilistic mixed-integer linear program-
mingmethod is proposed inNoori-Darvish et al. (2012) for an
OSP with setup times, fuzzy processing times and fuzzy due
dates to minimise total weighted tardiness and total weighted
completion times.

Another issue that must be taken into account to reduce
the gap between academic and real-world problems is the fact
that many real-life applications require taking into account
several conflicting points of view corresponding to multiple
objectives. This is one of the reasons why the applications
of multiobjective decision making techniques in engineer-
ing have grown in the recent decades (Pasandideh and Niaki
2013). Although Pareto optimality is undoubtedly the most
extended approach to multicriteria optimisation, as Ehrgott
(2005) puts it, “it is not the end of the story”, with other
approaches to multiobjective optimisation in the literature
(Ehrgott and Gandibleux 2000). Among these techniques,
lexicographic and goal programming methods are some of
the most popular ones (Farahani et al. 2010). The philoso-
phy behind goal programming (Romero 2001) can be traced
back to the theories of rational decision developed in the
1950s, especially the concept of satisficing solutions: in a
complex environment, the decision maker’s aim may be to
reach a certain satisfactory level for every relevant objective,
rather than optimising its value. Also, lexicographic prob-
lems arise naturally when conflicting objectives exist in a
decision problem but for reasons outside the control of the
decision maker the objectives have to be considered in hier-
archical manner. Recent examples of real-world problems
where these techniques are applied can be found, for instance,
in Ehrgott (2005), Diaz-Balteiro and Romero (2008), Puente
et al. (2013), Coshall and Charlesworth (2011), and Libera-
tore et al. (2013). Additionally, there exist interesting rela-
tionships between lexicographic and Pareto-optimal solu-
tions. Indeed, “lexicographic minimisation is well-suited to
seek a compromise between conflicting interests, as well as

reconciling this requirementwith the crucial notionofPareto-
optimality” (Bouveret and Lemaître 2009).

To our knowledge, a lexicographical goal programming
approach to solve multiobjective instances of fuzzy open
shop has never been taken in the still scarce literature on this
problem. This paper attempts to contribute to filling this gap.
To this end, in the sequel we propose amultiobjective particle
swarm optimisation (MOPSO) algorithm to solve instances
of open shop where uncertain processing times are modelled
with triangular fuzzynumbers andflexible due dates aremod-
elled with fuzzy sets. In “Uncertain processing times and
flexible constraints” section we provide some background
on fuzzy sets, which will be used in “The fuzzy open shop
scheduling problem” section to formulate the Fuzzy Open
Shop Problem (FOSP). We adopt a lexicographic goal pro-
gramming approach to define an objective function which
combines minimisation of the expected fuzzy makespan and
maximisation of overall due-date satisfaction. The resulting
problem is solved by means of a particle swarm optimization
method searching in the space of possibly active schedules,
as proposed in “Particle swarm optimization for the FOSP”
section. “Experimental results” section reports results from
the experimental study which illustrate the potential of the
proposedmethod. Finally, in “ Conclusions and future work”
section we summarise the main conclusions and propose
some ideas for future work.

Uncertain processing times and flexible constraints

In real-life applications, it is often the case that the exact
duration of a task is not known in advance. However, based
on previous experience, an expert may be able to estimate,
for instance, an interval for the possible processing time or
its most typical value. In literature, it is common to use fuzzy
intervals to represent such processing times, as an alternative
to probability distributions, which require a deeper knowl-
edge of the problem and usually yield a complex calculus.

Fuzzy interval arithmetic to model processing times

Fuzzy intervals are a natural extension of human originated
confidence intervals when some values appear to be more
plausible than others. The simplest model is a triangular
fuzzy number or TFN, using an interval [a1, a3] of possible
values and a single plausible value a2 in it. For a TFN A,
denoted A = (a1, a2, a3), the membership function takes
the following triangular shape:

μA(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1

a2−a1
: a1 ≤ x ≤ a2

x−a3

a2−a3
: a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)
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Triangular fuzzy numbers and more generally fuzzy inter-
vals have been extensively studied in the literature (cf.Dubois
and Prade 1986). A fuzzy interval Q is a fuzzy quantity
(a fuzzy set on the reals) whose α-cuts Qα = {u ∈ R :
μQ(u) ≥ α}, α ∈ (0.1], are convex, i.e. they are intervals
(bounded or not). The core of Q consists of those elements
with full membership μQ(u) = 1, also called modal values
and its support is Q0 = {u ∈ R : μQ(u) > 0}. A fuzzy num-
ber is a fuzzy quantity whose α-cuts are closed intervals,
with compact (i.e. closed and bounded) support and unique
modal value. Thus, real numbers can be seen as a particular
case of fuzzy ones.

In order to work with fuzzy numbers, it is necessary to
extend the usual arithmetic operations on real numbers. In
general, if f is a function f : R

2 → R and Q1, Q2 are
two fuzzy quantities, the fuzzy quantity f (Q1, Q2) is calcu-
lated according to the Extension Principle. However, com-
puting the resulting equation is in general cumbersome, if
not intractable. It can be somewhat simplified for two fuzzy
numbers M and N , so the α-cuts Mα and Nα are closed
bounded intervals of the form [mα,mα] and [nα, nα], if f is
a continuous isotonic mapping from R

2 into R, that is, if for
any u ≥ u′ and v ≥ v′ it holds f (u, v) ≥ f (u′, v′). In this
case, the First Decomposition Theorem provides us with an
alternative formula for f (M, N ):

f (M, N ) = ∪α∈(0,1][ f (mα, nα), f (mα, nα)] (2)

In the open shop, we essentially need the following opera-
tions on fuzzy durations: addition and maximum. In the case
of TFNs, the addition is fairly easy to compute, since it is
reduced to operating on the three defining points, that is, for
any pair of TFNs M and N :

M + N = (m1 + n1,m2 + n2,m3 + n3). (3)

Unfortunately, for the maximum of TFNs there is no such
simplified expression. Being an isotonic function, we can
use Eq. (2) above, but in general this still requires an infinite
number of computations, since we have to evaluate maxima
for each value α ∈ (0, 1]. For the sake of simplicity and
tractability of numerical calculations, we follow (Fortemps
1997) and approximate all results of isotonic algebraic oper-
ations on TFNs by a TFN. Instead of evaluating the intervals
corresponding to all α-cuts, we evaluate only those intervals
corresponding to the support and α = 1, which is equiva-
lent to working only with the three defining points of each
TFN. This is an approach also taken, for instance, in Niu et
al. (2008) and Chen and Chang (2001). Therefore, for any
two TFNs M and N , their maximum will be approximated
as follows:

max(M, N ) ∼ M 	 N = (max(m1, n1),

max(m2, n2),max(m3, n3)). (4)

Despite not being equal, for any two TFNs M, N , if F =
max(N , M) denotes their maximum and G = N 	 M
its approximated value, it holds that ∀α ∈ [0, 1], f

α
≤

g
α
, f α ≤ gα . In particular, F and G have identical support

and modal value: F0 = G0 and F1 = G1. The approximated
maximum can be trivially extended to n > 2 TFNs.

For a fuzzy number N , itsmembership functionμN can be
interpreted as a possibility distribution on the real numbers.
This allows to define the expected value of a fuzzy number
(Liu and Liu 2002), given for a TFN A by

E[A] = 1

4
(a1 + 2a2 + a3). (5)

The expected value coincides with the neutral scalar substi-
tute of a fuzzy interval and can also be obtained as the centre
of gravity of its mean value or using the area compensation
method (Dubois et al. 2003). It induces a total ordering≤E in
the set of fuzzy intervals (Fortemps 1997), where for any two
fuzzy intervalsM, N M ≤E N if and only if E[M] ≤ E[N ].

Modelling flexible due dates

In practice, if due-date constraints exist, they are often flex-
ible. For instance, customers may have a preferred delivery
date d1, but some delay will be allowed until a later date d2,
after which the order will be cancelled. The satisfaction of a
due-date constraint becomes a matter of degree, our degree
of satisfaction that a job is finished on a certain date. A com-
mon approach to modelling such satisfaction levels is to use
a fuzzy set D with linear decreasing membership function:

μD(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 : x ≤ d1

x−d2

d1−d2
: d1 < x ≤ d2

0 : d2 < x

(6)

This expresses a flexible threshold “less than”, representing
the satisfaction level sat (t) = μD(t) for the ending date t of
the job (Dubois et al. 2003). When the job’s completion time
is no longer a real number t but a TFNC , the degree to which
C satisfies the due-date constraint D may be measured using
the following agreement index (Sakawa and Kubota 2000;
Celano et al. 2003):

AI (C, D) = area(D ∩ C)

area(C)
(7)

where area(D∩C) and area(C) denote the areas under the
membership functions of (D ∩ C) and C respectively. The
intuition behind this definition is to measure the degree to
which C is contained in D (the degree of subsethood).
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The fuzzy open shop scheduling problem

The open shop scheduling problem, orOSP in short, consists
in scheduling a set of n jobs J1, . . . , Jn to be processed on a
set of m physical resources or machines M1, . . . , Mm . Each
job Ji consists of m tasks or operations oi j ( j = 1, . . . ,m),
where oi j requires the exclusive use of a machine Mj for its
whole processing time pi j without preemption, i.e. all tasks
must be processed without interruption. In total, there are
mn tasks. Additionally, for each job Ji there may be a due
date di , i = 1, . . . , n before which it is desirable that the
job be finished. A solution to this problem is a schedule (a
starting time for all tasks) which, besides being feasible, in
the sense that precedence and capacity constraints hold, is
optimal according to some criteria, for instance, that due-
date satisfaction is maximal or that the project’s makespan is
minimal.

Fuzzy schedules from crisp task orderings

A schedule s for an open shop problem of size n × m (n
jobs andm machines) may be determined by a decision vari-
able z = (z1, . . . , znm) representing a task processing order,
where 1 ≤ zl ≤ nm for l = 1, . . . , nm. This is a permuta-
tion of the set of tasks where each task oi j is represented by
the number (i − 1)m + j . The task processing order repre-
sented by the decision variable uniquely determines a feasi-
ble schedule; it should be understood as expressing partial
orderings for every set of tasks requiring the same machine
and for every set of tasks belonging to the same job.

Let us assume that the processing time pi j of each task oi j ,
i = 1, . . . , n, j = 1, . . . ,m is a fuzzy variable (a particular
case of which are TFNs), so the problem may be represented
by a matrix of fuzzy processing times p of size n ×m. For a
given task processing order z and a task oi j , its starting time
Si j (z, p) is the maximum (Eq. 4) between the completion
times of the task preceding oi j in its job, let it be denoted oik ,
and the task preceding oi j in its machine, let it be denoted
ol j :

Si j (z, p) = Cik(z, p) 	 Cl j (z, p) (8)

where Cik(z, p) or Cl j (z, p) are taken to be zero if oi j is
the first task to be processed either in its job or its machine.
Then, its completion time Ci j (z, p) is obtained by adding its
duration pi j to Si j (z, p):

Ci j (z, p) = Si j (z, p) + pi j (9)

The completion time of a job Ji will then be the maxi-
mum completion time of all its tasks, that is, Ci (z, p) =
	1≤ j≤m{Ci j (z, p)}.

For this schedule, the fuzzy makespan Cmax (z, p) is
defined as the maximum of job completion times:

Cmax (z, p) = 	1≤i≤n (Ci (z, p)) (10)

Notice that when uncertain durations are given as fuzzy
intervals the schedule s will be fuzzy in the sense that the
starting and completion times of all tasks as well as the
makespan are fuzzy intervals. These may be interpreted as
possibility distributions on the values that each time may
take. Fuzzy intervals are thus used to represent our incom-
plete knowledge of problem parameters related to durations
and, in consequence, our incomplete knowledge of starting
and completion times for all tasks.However, the task process-
ing order represented by z that determines such schedule is
crisp: there is no uncertainty regarding the order in which
tasks are to be processed.

Given a fuzzy schedule, it is necessary to give a precise
definition of what “optimal makespan” means, since neither
the maximum nor its approximation define a total ordering in
the set of TFNs. Using ideas similar to stochastic scheduling,
we use the total ordering provided by the expected value and
consider that the objective ofminimising themakespan trans-
lates, in practice, intominimising its expected value E[Cmax ]
(Eq. 5).

While also being fuzzy sets, due dates di for jobs Ji ,
i = 1, . . . , n, do not model uncertainty. Instead, they model
flexible constraints, introducing grades in the traditionally
Boolean notion of feasibility (cf. Dubois 2011) and the ref-
erences therein for the semantics of fuzzy sets and their role
in decision making). In this setting, the agreement index,
AI (Ci (z, p), di ) (Eq. 7), denoted AIi (z, p) for short, mea-
sures to what degree the flexible due date di is satisfied by the
fuzzy time Ci (z, p). The degree of overall due-date satisfac-
tion for schedule s may then be obtained by aggregating the
satisfaction degrees AIi (z, p), i = 1, . . . , n. In particular, we
shall consider two aggregation functions, the minimum and
the average, previously used in the literature concerning shop
scheduling with soft constraints, for instance, in Sakawa and
Kubota (2000),GonzálezRodríguez et al. (2008), Lei (2008).
Theminimum is inspired by the seminal paper on fuzzy deci-
sion making (Bellman and Zadeh 1970), while the average
provides an alternative for which the compensation property
holds. Hence, the degree AIag(z, p) to which a schedule s
determined by an ordering z satisfies due dates will be deter-
mined by one of the two following formula:

AIav(z, p) = 1

n

n∑

i=1

AIi (z, p), (11)

AImin(z, p) = min
i=1,...,n

AIi (z, p) (12)

Clearly both AIav(z, p) and AImin(z, p) should be max-
imised. Notice however that they model different require-
ments and encourage different behaviours. In the cases when
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T

J1 t1 t2

C1 D1

J2 t4 t3

C2 D2

J3 t6 t5

C3 D3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T

Cmax

M1 t1 t3 t5

M2 t4 t6 t2

(a) (b)

Fig. 1 Gantt charts of the schedule represented by the decision variable (1, 4, 6, 3, 5, 2). a Machine oriented, b Job oriented

there is no possible confusion regarding the order z or the
processing times p, we may simplify the notation and write
AIag or Cmax .

Let us illustrate the previous definitions with an exam-
ple. Consider a problem of 3 jobs and 2 machines with the
following matrices for fuzzy processing times and due dates:

p =
⎛

⎝
(3, 4, 7) (3, 4, 7)
(2, 3, 4) (4, 5, 6)
(3, 4, 5) (1, 2, 6)

⎞

⎠ d =
⎛

⎝
(11, 21)
(6, 10)
(12, 15)

⎞

⎠

Here p21 = (2, 3, 4) is the processing time of task o21, the
task of job J2 to be processed inmachineM1 andd2 = (6, 10)
is the flexible due date for job J2. Figure 1a, b show the Gantt
charts (bothmachine and job oriented) adapted toTFNsof the
schedule given by the decision variable z = (1, 4, 6, 3, 5, 2).
They represent the partial schedules on each machine and
each job obtained from this decision variable. Tasks must be
processed in the following order: o11, o22, o32, o21, o31, o12.
Given this ordering, the starting time for task o21 will be the
maximum of the completion times of o22 and o11, which are
respectively the preceding tasks in the job and in themachine:
S21 = C22 	 C11 = (4, 5, 6) 	 (3, 4, 7) = (4, 5, 7). Conse-
quently, its completion time will be C21 = S21 + p21 =
(4, 5, 7) + (2, 3, 4) = (6, 8, 11). Also, it is easy to see that
Cmax = (9, 12, 19) (see Fig. 1a), so E[Cmax ] = 13. Regard-
ing due dates, in Fig. 1b we can see that the completion time
of job J1 always satisfies its due date, so AI1 = 1, whereas
for job J2 area(C2) = 5/2 and area(d2 ∩ C2) = 4/3, so
AI2 = 0.53, and analogously AI3 = 0.75. Hence, the aggre-
gated degrees of due date satisfaction will be AImin = 0.53
and AIav = 0.76.

Multiobjective model

For the fuzzy open shop problem we are interested both
in maximising the aggregated due-date satisfaction AIag
and minimising the expected makespan E[Cmax ]. A well-
established approach dealing with multiple and possibly
conflicting objectives is lexicographic goal programming
(Ehrgott 2005; Tamiz et al. 1998), assuming that the deci-

sion makers establish a priority structure as well as target
levels for the different objectives.

Before we formulate the resulting problem, notice that
AIag(z, p) ∈ [0, 1] for both aggregation operators. Hence,
maximising AIag(z, p) is equivalent to minimising 1 −
AIag(z, p), which could be interpreted as the degree towhich
due dates are violated. In consequence, we can restate the
objective of our problem as minimising both E[Cmax (z, p)]
and 1 − AIag(z, p).

Let Cmax and 1− AIag be ordered according to their pri-
ority, and let f1 denote the objective with highest priority and
f2 denote the secondary objective. Also, let us assume that
the decision makers establish target values b1, b2 ≥ 0 for f1
and f2. Clearly, these values should not be exceeded, which
translates into the following goal constraints:

fi (z, p) + Δ−
i − Δ+

i = bi , i = 1, 2 (13)

where Δ+
1 ,Δ+

2 ≥ 0, the positive deviations from the targets,
should be minimised. This results in the following lexico-
graphic goal programming model for the fuzzy open shop
problem (FOSP):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lexmin (Δ+
1 ,Δ+

2 )

subject to:

fi (z, p) + Δ−
i − Δ+

i = bi , i = 1, 2,

bi ≥ 0, i = 1, 2,

Δ−
i ,Δ+

i ≥ 0,

1 ≤ zl ≤ nm, l = 1, . . . , nm,

zl �= zk, k �= l

zl ∈ Z
+, l = 1, . . . , nm,

(14)

where lexmin denotes lexicographically minimising the
objective vector (Δ+

1 ,Δ+
2 ).

The resulting problem can be denoted O| f uzz pi ,
f uzz di |LexGP(E[Cmax ], 1−AIav) according to the three-
field notation from (Graham et al. 1979), extended to multi-
criteria scheduling in the spirit of T’kindt and Billaut (2006).
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Particle swarm optimization for the FOSP

Particle swarm optimisation (PSO) is a population-based sto-
chastic method inspired by bird flocking or fish schooling,
first proposed in Kennedy and Eberhart (1995) which has
been successfully applied to solve complex combinatorial
optimization problems; recent examples of this success can
be found in Belmecheri et al. (2013), Jia and Seo (2013),
and Kim and Son (2012). In particular, it has been applied
to scheduling problems, among others, in Tassopoulos and
Beligiannis (2012), Vijay Chakaravarthy et al. (2013), and
Marinakis and Marinaki (2013) as well as the already men-
tioned references devoted to the open shop problem (Sha and
Cheng-Yu 2008; Sha et al. 2010).

In PSO, each position in a multidimensional search space
corresponds to a solution of the problem and particles in
the swarm cooperate to explore the space and find the best
position (hence best solution). Particle movement is mainly
affected by the three following factors:

– Inertia: Velocity of the particle in the latest iteration,
– pbest: The best position found by the particle,
– gbest: The best position found by the swarm so far (“the
best pbest”),

Potential solutions are represented by multidimensional
particles flying through the problem space, changing their
position and velocity by following the current optimum par-
ticles pbest and gbest . A generic PSO algorithm is given in
Algorithm 1: first, the initial swarm is generated and evalu-
ated and then the swarm evolves until a termination criterion
is satisfied. In each iteration, a new swarm is built from the
previous one by changing the position and velocity of each
particle to move towards its pbest and gbest locations.

Input A FOSP instance
Output A schedule for the input instance
Generate and evaluate the initial swarm;
Compute gbest and pbest for each particle;
while no Termination Criterion is satisfied do

for each particle k do
Update velocity vk ;
Update position xk ;
Evaluate particle k;
Update pbest and gbest values;

return The schedule from the best particle evaluated so far;

Algorithm 1: A generic PSO algorithm

In the following, we present a multiobjective PSO algo-
rithm for the FOSP with lexicographic goal programming
defined in the previous section. A preliminary version of this
algorithmwas presented in Palacios et al. (2011) to minimise
the expected makespan of fuzzy open shop.

Position representation and evaluation

For each particle k in the swarm, its position xk is represented
with a priority-based representation. Thus, the decision vari-
able zk is encoded as a priority array xk = (xkl )l=1...nm where
xkl denotes the priority of task l, so a task with smaller xkl has
a higher priority to be scheduled.

Given a FOSP solution represented by a decision variable
z, which is a permutation of tasks, we can transfer this per-
mutation to a priority array as follows. First, from zwe obtain
a position array, denoted posz, such that posz

l is the position
of task l in z (posz

l = i if and only if zi = l). For instance, for
a problem with n = 2 jobs andm = 3 machines we can have
a decision variable z and the corresponding position array
posz as follows:

z = (4, 1, 5, 2, 3, 6) posz = (2, 4, 5, 1, 3, 6)

Then, the priority array x is obtained by randomly setting
xl in the interval

(
posz

l − 0.5, posz
l + 0.5

)
, so a task with

smaller xl has higher priority to be scheduled. For the above
decision variable, a possible particle position would be:

x = (2.3, 3.7, 5.4, 0.8, 2.8, 5.9)

Conversely, from every particle position x we can obtain a
position arrayposx (and the corresponding decision variable)
where posxi is the position of xi if the elements of x were
reordered in non-decreasing order.

A particle may be decoded in several ways. For determin-
istic job shop and, by extension, for open shop scheduling,
it is common to use the G&T algorithm (Giffler and Thomp-
son 1960), which is an active schedule builder. A schedule
is active if one task must be delayed for any other one to
start earlier. Active schedules are good in average and, most
importantly, the space of active schedules contains at least an
optimal one, that is, the set of active schedules is dominant.
For these reasons it isworth to restrict the search to this space.
InGonçalves et al. (2005) a narrowingmechanismwas incor-
porated to the G&T algorithm in order to limit machine idle
times using a delay parameter δ ∈ [0, 1], thus searching in
the space of so-called parametrised active schedules. In the
deterministic case, for δ < 1 the search space is reduced so it
may no longer contain optimal schedules and at the extreme
δ = 0 the search is constrained to non-delay schedules where
a resource is never idle if a requiring operation is available.
This variant of G&T has been applied in Sha and Cheng-Yu
(2008) to the deterministic OSP, under the name “parame-
terized active schedule generation algorithm”. Algorithm 2,
denoted pFG&T , is an extension of parametrised G&T to
the case of fuzzy processing times proposed in Palacios et
al. (2011). Throughout the algorithm, Ω denotes the set of
tasks that have not been scheduled yet, xk denotes the priority
array and Sl and Cl denote the starting and completion time
of task oi j such that l = (i − 1)m + j . It should be noted
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Input A FOSP instance and a particle position xk

Output A schedule for the input instance considering the priorities
given by xk

Ω ← {1, . . . , nm};
while Ω �= ∅ do
Compute {E[Sl ] : l ∈ Ω} and {E[Cl ] : l ∈ Ω} considering only
tasks previously scheduled;
C∗ ← minl∈Ω {E[Cl ]};
S∗ ← minl∈Ω {E[Sl ]};
Identify the conflict set O ← {l : E[Sl ] < S∗ + δ × (C∗ − S∗), l ∈
Ω};
Choose the task l∗ from O with smallest xkl ;
Schedule the operation l∗; {fix the value of Sl∗}
Ω ← Ω − {l∗};

return The schedule s given by {Sl : l ∈ {1, . . . , nm}}

Algorithm 2: The pFG&T

that, due to the uncertainty in task durations, even for δ = 1
we cannot guarantee that the produced schedule will indeed
be active when it is actually performed (and tasks have exact
durations).Wemay only say that the obtained fuzzy schedule
is possibly active.

Particle movement

Velocity update

Particle velocity is traditionally updated depending on the
distance to gbest and pbest . Instead, this PSO only con-
siders whether the position value xkl is greater or smaller
than pbestkl (gbestl ). For any particle, its velocity is repre-
sented by an array of the same length as the position array
where all the values are in the set {−1, 0, 1}. The initial values
for the velocity array are set randomly. Velocity and particle
updating is controlled by the inertia weight w according to
Algorithm 3. In the updating process of each particle k and
dimension d an element of randomness is introduced, mak-
ing it dependent on pbestkd with probability p1 and on gbestd
with probability p2, where p1, p2 ∈ [0, 1] are constants such
that p1 + p2 ≤ 1.

Mutation

When adapting PSO to discrete optimisation, there is a risk
of getting stuck in local minima when velocity is limited
to absolute values (Hu et al. 2003). In order to introduce
diversity, after a particle k moves to a new position, we ran-
domly choose a dimension d and then mutate its priority
value xkd independently of v

k
d . For a problem of size n×m, if

xkd < (nm/2), xkd will take a random value in [mn − n,mn],
and vkd = 1; otherwise (if xkd ≥ (nm/2)), xkd will take a
random value in [0, n] and vkd = −1.

Input A particle position xk and velocity vk , best particle and swarm
positions pbestk and gbest , inertia w and updating probabilities
p1, p2

Output The updated particle position xk and velocity vk

for each dimension d do
generate random value rand ∼ U (0, 1);
if vkd �= 0 and rand ≥ w then

vkd ← 0;
if vkd = 0 then
generate random value rand ∼ U (0, 1);
if rand ≤ p1 then

if pbestkd ≥ xkd then vkd ← 1;
else vkd ← −1;
generate random value rand2 ∼ U (0, 1);
xkd ← pbestkd + rand2 − 0.5;

if p1 < rand ≤ p1 + p2 then
if gbestd ≥ xkd then vkd ← 1;
else vkd ← −1;
generate random value rand2 ∼ U (0, 1);
xkd ← gbestd + rand2 − 0.5;

else
xkd ← xkd + vkd ;

return The updated particle position xk and velocity vk ;

Algorithm 3: Particle movement

Diversification strategy

In the case that all particles had the same pbest solution, they
could be trapped into local optima. To prevent such situation,
a diversification strategy is proposed in Sha and Cheng-Yu
(2008) in order to keep the different pbest solutions. Accord-
ing to this strategy, the pbest solution of each particle is not
the best solution found by the particle itself, but one of the
best N solutions found by the swarm so far, where N is the
size of the swarm. Once any particle generates a new solu-
tion, the pbest solutions will be updated as follows: if the
new solution equals the makespan of any pbest solution, the
latter will be replaced with the new solution; else if the new
solution has better makespan than the worst pbest solution
and has a different makespan from all pbest solutions, then
the worst pbest solution is replaced by the new one; else, the
set of N pbest solutions remains unchanged.

Experimental results

For the experimental study, we use the fuzzy open shop
instances proposed in González-Rodríguez et al. (2010).
These were obtained by fuzzyfying the well-known bench-
mark from (Brucker et al. 1997), consisting of 6 fami-
lies, denoted J3, J4, …, J8, of sizes 3 × 3 to 8 × 8, with
8 or 9 instances each. Each family is divided into three
sets of problems per0, per10 and per20 according to the
difference between minimum and maximum workloads of
jobs and machines (the number in the name refers to this
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difference in percentage). We shall only consider the largest
instances, pertaining to the blocks of size 7 × 7 and 8 × 8
and compare our results on expected makespan to those
of the memetic algorithm (MA) proposed in González-
Rodríguez et al. (2010), which combines a genetic algo-
rithm with a local search schema. According to the results
reported in González-Rodríguez et al. (2010), this MA out-
performs the genetic algorithm alone when run under equiv-
alent running conditions; additionally, on crisp instances
of OSP it improves two GAs from Liaw (2000) and Prins
(2000) and is competitive with two PSO algorithms from
Sha andCheng-Yu (2008), one of them hybridisedwith beam
search.

For each original deterministic problem instance there
are 10 fuzzy versions, generated by transforming the orig-
inal crisp processing times into symmetric TFNs such that
their modal value corresponds to the original duration. To
add a due date di for each job Ji we follow Andresen
et al. (2008): first, we define a generic due date di =
TF × ∑m

j=1 p
2
i j , where TF is a tightness factor; then, we

use two different tightness factors to have the earliest and
latest due dates: d1i , with TF = 1.10, and d2i , with TF =
1.15.

Given the method for generating due dates, in per0
instances, where all jobs have the same workload (and
consequently the same due date), the makespan and due
date satisfaction are strongly correlated objectives, mak-
ing these instances unsuitable for our multiobjective study.
Therefore, the experimental analysis will be conducted on
the instances per10 and per20 of size 7 × 7 and 8 ×
8, making it a total of 120 instances, these being the
hardest ones to solve when both objectives are consid-
ered.

For each problem instance, we have run the PSO algo-
rithmusing different objectives: we have considered the three
single-objective functions E[Cmax ], AIav and AImin and the
four multiobjective functions that result from combining the
two choices of aggregation function for due date satisfaction
(AIag = AImin or AIag = AIav) and the two possible pri-
ority structures for objectives ( f1 = Cmax , f2 = AIag or
f1 = AIag, f2 = Cmax ).
For the multiobjective cases, it is necessary that the target

values for both objectives be fixed. As already mentioned,
in practice these target values should be given by the DM
based on his/her expertise in the problem. Unfortunately,
such expert knowledge is not available for the set of synthetic
instances used herein. Instead, we emulate the DM and try
to gain insight into the problem instances with some pre-
liminary runs of the PSO using E[Cmax ], AIav and AImin as
single objectives, using the parameter values proposed in Sha
and Cheng-Yu (2008). Then, we set b1 (resp. b2 for 1− AIag)
equal to the worst value of E[Cmax ] (1 − AIag) across 30
runs of the PSO.

Table 1 Parameter settings

Parameters Factor level

1 2 3 4

Swarm size (N ) 60 80 100 120

Inertia weight (w) linearly
decreasing [from,to]

[0.9, 0.3] [0.7, 0.1] [0.9, 0.7] [0.7, 0.5]

Guiding probabilities
(gp = (p1, p2))

(0.7, 0.1)(0.5, 0.3)(0.3, 0.5)(0.1, 0.7)

Delay parameter (δ) 0 0.25 0.75 1

Parameter setting

To ensure that the algorithm yields reliable solutions within
a reasonable amount of time, the Taguchi method is used for
parameter tuning. Table 1 shows the parameters of our algo-
rithm together with the four possible values (factor levels
in the Taguchi terminology) considered for each of them. A
caveat in changing the swarm size N is its considerable effect
on the algorithm’s runtime if a constant number of iterations
is considered. Now, it is common in literature to measure
the computational effort of a metaheuristic in terms of the
number of objective-function evaluations, which is indepen-
dent of the computer system. This suggests adjusting the
number of iterations in such a way that the PSO evaluates
roughly the same number of particles for all possible swarm
sizes: for N = 60, 80, 100 and 120, the number of iterations
Niter is set respectively to 3,000, 2,250, 1,800 and 1,500.
As for the second parameter, the inertia weight w, it should
be linearly decreasing from a starting value, thus stimulating
the exploration of the PSO. We consider two possible start-
ing values, 0.9 and 0.7, and two possible slopes, 0.6/Niter
and 0.2/Niter , which should allow to analyse the behaviour
of the PSO with either more exploration or more exploita-
tion in the last iterations. In consequence, w will be linearly
decreasing in four possible intervals, as shown in Table 1.
Regarding the guiding probabilities, p1 and p2, since their
sum must be less or equal to 1, we consider them as a single
factor: given the values 0.7, 0.5, 0.3 and 0.1, p1 and p2 simul-
taneously traverse these values in increasing and decreasing
order respectively, that is, first p1 = 0.7 and p2 = 0.1,
then p1 = 0.5 and p2 = 0.3 and so forth. Thus, we always
ensure that the constraint p1 + p2 ≤ 1 holds, while covering
a varied sample of values for both probabilities. Finally, for
the delay parameter we consider the two extremes values,
δ = 0—which in the deterministic case restricts the search
to the space of non-delay schedules—and δ = 1, together
with two intermediate values δ = 0.25 and δ = 0.75.

With a total of four parameters and four factor levels
each, the orthogonal array L ′

16 is pertinent for the Taguchi
analysis. For every combination of parameter values given
by the orthogonal array we run the PSO with the four
multiobjective functions: L(Cmax , AIav), L(Cmax , AImin),
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Table 2 Orthogonal tabulation
and average performance values Exp. Parameter levels Average performance

N w gp δ L(Cmax , AImin) L(AImin,Cmax ) L(Cmax , AIav) L(AIav,Cmax )

1 1 1 1 1 0.919 0.727 0.524 0.727

2 1 2 2 2 0.051 0.043 0.208 0.178

3 1 3 3 3 1.266 1.344 1.302 1.409

4 1 4 4 4 1.701 1.759 1.661 1.871

5 2 1 2 3 1.084 1.104 1.100 1.015

6 2 2 1 4 1.282 1.423 1.361 1.546

7 2 3 4 1 0.970 0.792 1.035 0.764

8 2 4 3 2 0.324 0.258 0.556 0.186

9 3 1 3 4 1.650 1.693 1.702 1.776

10 3 2 4 3 1.222 1.217 1.193 1.294

11 3 3 1 2 0.293 0.226 0.175 0.004

12 3 4 2 1 1.023 0.775 0.881 0.740

13 4 1 4 2 0.822 0.429 0.441 0.197

14 4 2 3 1 1.055 0.802 1.063 0.953

15 4 3 2 4 2.000 2.000 2.000 1.983

16 4 4 1 3 0.912 0.930 0.920 0.605

L(AIav,Cmax ), and L(AImin,Cmax ) on a fuzzy instance of
each 8 × 8 problem.

To measure the quality of each configuration we need a
value that can consistently combine such heterogeneous val-
ues as Cmax , AIav and AImin while taking into account the
lexicographical goal programming nature of themodel. First,
we consider the distance of each value to its corresponding
target, averaged across ten runs of the algorithm and nor-
malised so as to unify scales (notice that such distance is
taken to be zero if the target is reached). Let d1 and d2 denote,
respectively, the normalised distance values for the primary
and secondary objective. These values will allow us to char-
acterise the algorithm’s performance for the Taguchi analysis
as follows: if the first target is reached, i.e. d1 = 0, then the
performance is given by d2 (the distance to the second objec-
tive); in the worse case that the primary objective does not
reach its target (d1 > 0), then the performance is given by
1 + d1. Since 0 ≤ d2 ≤ 1, this guarantees that the algo-
rithm is always considered to perform worse when the target
for the primary objective is not reached, as well as discrim-
inating among solutions taking into account how far they
are from reaching each target. We have opted for using this
performancemeasure directly, instead of the classical signal-
to-noise ratio, in the line of the use of the Taguchi method
in Jia and Seo (2013) and Wang et al. (2013) for scheduling
problems.

Table 2 shows, for every combination of factor levels in
the orthogonal array, the average performance value for each
of the four multiobjective functions considered. It is based
on these values that we can compute the response value of
each parameter and analyse their significance rank.As a sum-

mary, Fig. 2 depicts the response values of each parameter for
each of the four objective functions, illustrating the effect of
the parameter levels on the algorithm’s performance. Clearly,
the most significant parameter for all objective functions is δ,
with a difference between the highest and lowest level over
1.25 of a maximum possible difference of 2.00 (see Fig. 2d).
The second most significant parameter is the pair of guiding
probabilities (Fig. 2c), although their effect is significantly
smaller. Finally, the smallest effect on the performance for
all functions is obtained with the swarm size and the inertia
weight (see Fig. 2a, b). Additionally, for the two most sig-
nificant parameters it can be clearly seen that the best level
remains the same for all four objective functions. This is not
the case for swarm size and inertia weight, where the best
levels differ for L(Cmax , AIav) and L(AIav,Cmax ); how-
ever, the difference is relatively small, 0.079 for swarm size
and 0.142 for inertia weight. In consequence, we will take
the factor level that performs best for all but one objective
functions, this being a good value in all cases.

As a result of this analysis, the parameter setting in what
follows will be δ = 0.25, gp = (p1, p2) = (0.7, 0.1), w

linearly decreasing from 0.7 to 0.1, and swarm size N = 80
for all objective functions.

Highest priority for makespan minimisation

Let us first consider the case whereCmax is the objective with
highest priority and let L(Cmax , AIav) and L(Cmax , AImin)

denote the resulting multiobjective functions for AIag =
AIav and AIag = AImin respectively.
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Fig. 2 Average performance of the fourmultiobjecive-PSO for each parameter level. aSwarm size (N ).b Inertiaweight (w). cGuiding probabilities
(gp). d Delay parameter (δ)

Fig. 3 Evolution of E[Cmax ]
and E[AImin] on the
L(Cmax , AImin) version for the
J8-per20-1 instance
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In order to illustrate the algorithm’s convergence, we first
focus on a single problem instance. Figure 3 shows the con-
vergence pattern of L(Cmax , AImin) for a fuzzy instance
generated from J8-per20-1, one of the largest and hardest
instances. We can see how the algorithm shows a proper
convergence: initially the algorithm minimises the expected
makespan E[Cmax ] while the behaviour of AImin is erratic.
However, once the algorithm has reached the expected

makespan target (around the 250th iteration), it starts max-
imising AImin instead. We can also observe the evolution
of the AIav value and its correlated behaviour w.r.t. AImin .
Analogous convergence curves show that the number of iter-
ations can be reduced for 7 × 7 to 2,100 iterations.

Tables 3 and 4 contain a summary of the results obtained
when makespan minimisation has the highest priority. For
each objective function used by the PSO they report the
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Table 3 Comparison of results for E[Cmax ] highest priority on instances of size 7 × 7

Objective E[Cmax ] AImin AIav

Targ. Avg SD Target Avg SD Target Avg SD

J7-per10-0 L[Cmax , AImin] 1035 1032 1.655 0.9569 0.9155 0.0992 0.9923 0.9818 0.0225

L[Cmax , AIav] 1035 1032 1.878 0.9569 0.9114 0.0925 0.9923 0.9815 0.0205

E[Cmax ] – 1030 1.946 – 0.8182 0.1157 – 0.9669 0.0226

AImin – 1058 9.363 – 0.9873 0.0108 – 0.9968 0.0035

AIav – 1057 10.473 – 0.9841 0.0162 – 0.9971 0.0029

J7-per10-1 L[Cmax , AImin] 1019 1017 1.478 0.9303 0.7562 0.0321 0.9857 0.9352 0.0117

L[Cmax , AIav] 1019 1017 1.664 0.9303 0.7529 0.0340 0.9857 0.9351 0.0137

E[Cmax ] – 1017 1.157 – 0.7502 0.0253 – 0.9346 0.0102

AImin – 1049 8.212 – 0.9723 0.0212 – 0.9916 0.0083

AIav – 1047 9.655 – 0.9653 0.0298 – 0.9934 0.0049

J7-per10-2 L[Cmax , AImin] 1038 1033 3.410 0.9358 0.7685 0.1091 0.9817 0.9252 0.0301

L[Cmax , AIav] 1038 1034 2.935 0.9358 0.7495 0.1322 0.9817 0.9347 0.0275

E[Cmax ] – 1031 2.915 – 0.6873 0.1511 – 0.9091 0.0353

AImin – 1072 13.352 – 0.9713 0.0183 – 0.9898 0.0073

AIav – 1071 14.196 – 0.9670 0.0257 – 0.9938 0.0045

J7-per20-0 L[Cmax , AImin] 1001 1001 0.294 0.8278 0.3915 0.1116 0.9459 0.7322 0.0683

L[Cmax , AIav] 1001 1001 0.343 0.8278 0.3140 0.1501 0.9459 0.7838 0.0433

E[Cmax ] – 1001 0.145 – 0.1412 0.0888 – 0.6426 0.0695

AImin – 1030 7.829 – 0.8700 0.0167 – 0.9419 0.0170

AIav – 1027 7.934 – 0.8367 0.0412 – 0.9635 0.0086

J7-per20-1 L[Cmax , AImin] 1032 1031 1.561 0.8337 0.3143 0.1404 0.9531 0.7730 0.0560

L[Cmax , AIav] 1032 1031 1.603 0.8337 0.2204 0.1767 0.9531 0.7960 0.0468

E[Cmax ] – 1028 2.329 – 0.0884 0.1144 – 0.7312 0.0435

AImin – 1082 9.013 – 0.8781 0.0210 – 0.9550 0.0147

AIav – 1082 10.664 – 0.8534 0.0400 – 0.9698 0.0069

J7-per20-2 L[Cmax , AImin] 1027 1024 2.246 0.8658 0.4303 0.2055 0.9617 0.8225 0.0562

L[Cmax , AIav] 1027 1024 2.974 0.8658 0.3934 0.2045 0.9617 0.8333 0.0517

E[Cmax ] – 1021 2.742 – 0.2688 0.2400 – 0.7972 0.0606

AImin – 1074 15.165 – 0.9158 0.0211 – 0.9665 0.0121

AIav – 1076 13.906 – 0.8979 0.0412 – 0.9771 0.0082

values of E[Cmax ], AIav and AImin in the solution, aver-
aged across the 30 executions of the PSO and the 10 fuzzy
instances generated from the same original problem, together
with the standard deviations. The average values are shown in
bold when they reach the target for the corresponding objec-
tive.

A first look at Tables 3 and 4 confirms the strong cor-
relation between the values of AImin and Aav , both mea-
suring the overall due-date satisfaction. In most cases, the
single-objective version using any of these aggregated values
reaches the target value established for the other aggregated
measure. That is, when any one of these aggregatedmeasures
is optimised, the alternative one is also optimised.

Let us now compare results obtained by the proposed
multiobjective approach using L(Cmax , AImin) and L(Cmax ,

AIav) with the results obtained when optimising a sin-
gle criterion. For the objective with the highest priority—
minimisation of expected makespan—we see that both
multiobjective approaches behave similarly to the single-
objective function. In particular, they always reach the
expected makespan target. Additionally, the multiobjective
approach obtains a clear improvement in due-date satis-
faction. Indeed, for all instances, AImin values obtained
with L(Cmax , AImin) are in average 159% better than those
obtained using E[Cmax ] as single-objective function. There
are however remarkable differences in the improvement rate
depending on the instance type. For example, due-date satis-
faction improves only 8% for J7-per10 instances and 16%
for J8-per10, but this improvement scales up to 164 and
450% in per20 instances of sizes 7×7 and 8×8 respectively.

123



1212 J Intell Manuf (2015) 26:1201–1215

Table 4 Comparison of results for E[Cmax ] highest priority on instances of size 8 × 8

Objective E[Cmax ] AImin AIav

Targ. Avg SD Target Avg SD Target Avg SD

J8-per10-0 L[Cmax , AImin] 1055 1052 2.587 0.9026 0.8292 0.0889 0.9756 0.9515 0.0261

L[Cmax , AIav] 1055 1052 2.676 0.9026 0.8017 0.0999 0.9756 0.9545 0.0225

E[Cmax ] – 1050 3.105 – 0.7504 0.1156 – 0.9399 0.0271

AImin – 1073 10.333 – 0.9598 0.0273 – 0.9874 0.0100

AIav – 1072 9.972 – 0.9453 0.0384 – 0.9898 0.0063

J8-per10-1 L[Cmax , AImin] 1036 1032 3.391 0.8653 0.7242 0.0987 0.9664 0.9062 0.0360

L[Cmax , AIav] 1036 1033 2.904 0.8653 0.6721 0.1333 0.9664 0.9141 0.0355

E[Cmax ] – 1030 3.744 – 0.6087 0.1316 – 0.8858 0.0375

AImin – 1064 11.386 – 0.9386 0.0342 – 0.9801 0.0151

AIav – 1063 12.490 – 0.9342 0.0485 – 0.9881 0.0088

J8-per10-2 L[Cmax , AImin] 1041 1036 5.139 0.8656 0.7958 0.1082 0.9658 0.9357 0.0364

L[Cmax , AIav] 1041 1037 4.521 0.8656 0.7533 0.1275 0.9658 0.9436 0.0330

E[Cmax ] – 1033 5.225 – 0.6735 0.1283 – 0.9108 0.0371

AImin – 1065 13.246 – 0.9330 0.0339 – 0.9778 0.0149

AIav – 1062 13.724 – 0.9279 0.0472 – 0.9862 0.0088

J8-per20-0 L[Cmax , AImin] 1022 1020 2.339 0.8644 0.1645 0.1259 0.9668 0.7168 0.0712

L[Cmax , AIav] 1022 1020 2.001 0.8644 0.0771 0.1324 0.9668 0.7728 0.0550

E[Cmax ] – 1015 2.255 – 0.0219 0.0515 – 0.6685 0.0604

AImin – 1074 11.741 – 0.9394 0.0322 – 0.9814 0.0123

AIav – 1072 11.650 – 0.9250 0.0481 – 0.9870 0.0083

J8-per20-1 L[Cmax , AImin] 1003 1002 0.800 0.7574 0.2573 0.1703 0.9225 0.7709 0.0716

L[Cmax , AIav] 1003 1002 0.793 0.7574 0.1541 0.1846 0.9225 0.7914 0.0630

E[Cmax ] – 1001 0.862 – 0.0411 0.0790 – 0.6946 0.0589

AImin – 1023 9.613 – 0.8358 0.0417 – 0.9288 0.0255

AIav – 1025 11.223 – 0.7799 0.0920 – 0.9513 0.0147

J8-per20-2 L[Cmax , AImin] 1018 1017 2.292 0.8246 0.3463 0.2001 0.9502 0.7961 0.0700

L[Cmax , AIav] 1018 1017 2.191 0.8246 0.2714 0.2040 0.9502 0.8239 0.0567

E[Cmax ] – 1014 2.538 – 0.1269 0.1498 – 0.7593 0.0561

AImin – 1065 15.408 – 0.9026 0.0347 – 0.9628 0.0185

AIav – 1062 15.974 – 0.8879 0.0611 – 0.9758 0.0127

This variability is due to the fact that, as mentioned above,
the dependency between E[Cmax ] and AImin is greater for
per10 instances, given the way in which the original bench-
markwas created. In consequence, for per10 problems,when
themakespan is optimised, due-date satisfaction is also being
optimised to a certain extent; however this is not always the
case for an arbitrary open shop problem.

Regarding AIav values, they improve 7.2% when using
L(Cmax , AIav). Again there is a remarkable variability in
the improvement depending on the family of problems:
2.1% for per10 instances and 12.2% for per20 instances.
It is also tempting to conclude that the gain obtained with
L(Cmax , AImin) is much higher than that obtained with
L(Cmax , AIav). However, this is only a scale effect. If
instead of considering absolute gains, we measure the reduc-

tion of the gap between the AImin and the AIav values
and their corresponding targets, the multiobjective approach
L(Cmax , AImin) is in average over 36% better than E[Cmax ]
and L(Cmax , AIav) is also over 36% better than E[Cmax ]
w.r.t. the corresponding secondary target. In any case, it
is worth noticing that for per10 instances L(Cmax , AImin)

performs better than L(Cmax , AIav) whereas for per20
instances thebest performance corresponds to L(Cmax , AIav)

in terms of gap reduction w.r.t. its secondary target. A possi-
ble explanation is that AImin is a more demanding aggrega-
tion operator. If it is relatively “easy” to satisfy the due dates
for all jobs (at least to a certain extent), then 0 < AImin ≤
AIav and AImin will probably provide a better guide formax-
imising due date satisfaction. However, as long as it is likely
that one of the due dates is not satisfied at all in schedules
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Table 5 Comparison between PSO and MA in terms of E[Cmax ]
Problem Target MA PSO

E[Cmax ] L(Cmax , AImin) L(Cmax , AIav)

J7-per10-0 1,035 1,066 1,032 1,032

J7-per10-1 1,019 1,052 1,017 1,017

J7-per10-2 1,038 1,067 1,033 1,034

J7-per20-0 1,001 1,004 1,001 1,001

J7-per20-1 1,032 1,044 1,031 1,031

J7-per20-2 1,027 1,042 1,024 1,024

J8-per10-0 1,055 1,083 1,052 1,052

J8-per10-1 1,036 1,066 1,032 1,033

J8-per10-2 1,041 1,071 1,036 1,037

J8-per20-0 1,022 1,037 1,020 1,020

J8-per20-1 1,003 1,014 1,002 1,002

J8-per20-2 1,018 1,035 1,017 1,017

with good makespan values (as is the case for per20 prob-
lems), then AImin = 0 with high probability, thus providing
a poor guide for the optimisation process.

Finally, the correlation between both aggregation oper-
ators is further confirmed if we look at the behaviour
of AIav in case of L(Cmax , AImin) and AImin in case
of L(Cmax , AIav): both multiobjective approaches signifi-
cantly reduce the alternative due-date objective, with a gap-
improvement of approximately 26% in both cases.

Let us now compare the multiobjective PSO using
L(Cmax , AIav) or L(Cmax , AImin) with the single-objective
memetic algorithm (MA) from González Rodríguez et al.
(2010) in terms of expected makespan minimisation. Table 5
contains the expected makespan results for each method—
MA optimising only E[Cmax ], PSO with L(Cmax , AIav)

andPSOwith L(Cmax , AImin)—with values averaged across
the 10 instances of each size and 30 runs of the algo-
rithm. Clearly, the PSO with both multiobjective functions
L(Cmax , AIav) and L(Cmax , AImin) compares favourably
with the single-objective MA in terms of makespan val-
ues. Indeed, the multiobjective PSO reduces E[Cmax ] val-
ues about 2.25% (slightly over 3% for per10 instances and
slightly below 1.5% for per20 instances), with no signifi-
cant differences between different problem sizes or different
aggregated measures for due-date satisfaction. This reduc-
tion may not seem very important in absolute values. How-
ever, on a closer look we can see that the MA never reaches
the expected makespan target value, whereas the multiobjec-
tive PSO reaches this target in all instances. We can conclude
that our multiobjective PSO outperforms the previous single-
objective algorithmwhen it comes to optimising the objective
with the highest priority (makespan), while also optimising
the secondary objective.

Highest priority for due-date satisfaction

We now consider the alternative priority structure where
due-date satisfaction becomes the primary objective; let
L(AIag,Cmax ) denote the resulting lexicographic goal pro-
gramming multiobjective function. If we now compare each
L(AIag,Cmax ) with the corresponding aggregated due-date
satisfaction value AIag (AImin or AIav), the results are anal-
ogous to the case where makespan was the first objective. In
all instances L(AIag,Cmax ) reaches the corresponding tar-
get for due-date satisfaction value whereas the gap between
the expected makespan and its target value is reduced 36%
in average when AIag = AImin and 40% in the case that
AIag = AIav . Figure 4 shows the E[Cmax ] values (aver-
aged across the 10 fuzzy instances of every original problem
and the 30 executions of the PSO algorithm) obtained with
AImin , AIav and the corresponding multiobjective functions
on each family of problems. It also depicts the E[Cmax ] tar-
get values for each family. We can clearly appreciate how
the expected makespan behaves better in the multiobjective
approach.We can also observe that AIav used as single objec-
tive function obtains in general slightly better E[Cmax ] val-
ues than the alternative AImin . Also, its multiobjective coun-
terpart L(AIav,Cmax ) performs slightly better (in terms of
makespan minimisation) than L(AImin,Cmax ). The expla-
nation, again, lies in the fact that AImin is a more pessimistic
aggregator of individual job due-date satisfaction. The fig-
ure also illustrates that, as above, the solutions are in general
closer to the target values for per10 instances than for per20
ones.

Conclusions and future work

We have proposed a multiobjective approach for solving
the open shop scheduling problem with uncertain durations
and flexible due dates modelled using fuzzy sets. We have
adopted a lexicographic goal programming framework to
deal with the multiple objectives of minimising the project’s
makespan and maximising due-date satisfaction. The result-
ing problem has been solved by adapting a particle swarm
optimisation algorithm to the hierarchical multiobjective
framework. The experimental results, on fuzzy instances of
well-known benchmark problems, illustrate the potential of
our proposal. In general, the multiobjective approaches per-
form as well as their single-objective counterparts when it
comes to optimising the objective with the highest prior-
ity, reaching the target levels in all cases. Additionally, the
multiobjective approaches greatly improve on the secondary
objective. Also, the multiobjective PSO algorithm compares
favourably to amemetic algorithm from the literature in terms
ofmakespanminimisation,when this is the objectivewith the
highest priority.
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Fig. 4 Average E[Cmax ]
values obtained with AImin ,
AIav and the corresponding
multiobjective L(AImin,Cmax )

and L(AIav,Cmax )
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In the future, we would like to contemplate an alternative
approach to multiobjective optimisation, appropriate for the
case when no priority structure among multiple objectives
can or needs to be established. We would like to explore
the known relationships between lexicographic and Pareto
optimality, as well as extending the PSO algorithm to directly
work with sets of non-dominated solutions. We would also
like to adapt the PSO algorithm to other scheduling problems
with uncertainty, such as job shop or resource-constrained
project scheduling.
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