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Abstract Awide rangeof opportunities are emerging in the
micro-system technology sector for laser micro-machining
systems, because they are capable of processing various
types of materials with micro-scale precision. However, few
process datasets and machine-learning techniques are opti-
mized for this industrial task. This studydescribes the process
parameters of micro-laser milling and their influence on
the final features of the microshapes that are produced. It
also identifies the most accurate machine-learning technique
for the modelization of this multivariable process. It exam-
ines the capabilities of laser micro-machining by performing
experiments on hardened steel with a pulsed Nd:YAG laser.
Arrays of micro-channels were manufactured using various
scanning speeds, pulse intensities and pulse frequencies. The
results are presented in terms of the main industrial require-
ments for any manufactured good: dimensional accuracy (in
our case, depth andwidth of the channels), surface roughness
and material removal rate (which is a measure of the produc-
tivity of the process). Different machine-learning techniques
were then tested on the datasets to build highly accuratemod-
els for each output variable. The selected techniques were:
k-Nearest Neighbours, neural networks, decision trees and
linear regressionmodels.Our analysis of the correlation coef-
ficients and the mean absolute error of all the generated mod-
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els show that neural networks are better at modelling channel
depth and that decision trees are better at modelling material
removal rate; both techniques were similar for width and sur-
face roughness. In general, these two techniques show better
accuracy than the other twomodels. The work concludes that
decision trees should be used, if information on input para-
meter relations is sought, while neural networks are suitable
when the dimensional accuracy of the workpiece is the main
industrial requirement. Extensive datasets are necessary for
this industrial task, to provide reliable AI models due to the
high rates of noise, especially for someoutputs such as rough-
ness.

Keywords Machine learning-techniques · Laser process ·
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Introduction

Laser systems are increasingly employed in many diverse
micro-system technology sectors such as biomedicine, auto-
motive manufacture, telecommunications, display devices,
printing technologies and semiconductors (Rizvi and Apte
2002). Material removal during the laser-machining process
depends, to a certain degree, on the characteristics of the
laser and the properties of the workpiece; however, it is pri-
marily determined by the interaction between the laser and
the workpiece (Pham et al. 2007). In real factory conditions,
this interaction is influenced by other types of machine-tool
parameters that are easily controlled, such as pulse frequency,
peak power, scanning speed and overlapping.Althoughmany
of these process parameters can be adjusted, in order to obtain
the desired quality and to optimize the efficiency of the fea-
tures being produced, there is a lack of knowledge about
how they affect the laser machining process, especially in
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new sensitive applications such as micro-machining of the
shape of micro geometries (Brousseau and Eldukhri 2011).

Various studies have investigated how laser process para-
meters affect the quality of the resultant machined fea-
tures. Campanelli et al. (2007) analyzed the influence of
frequency, scanning strategy and overlap on depth and sur-
face roughness, during laser machining of an aluminum-
magnesium alloy. Various experiments and variance analysis
have demonstrated that, in general, optimizing surface rough-
ness is conversely related to depth maximization. Cicală et
al. (2008) studied the effects of pulse frequency, power, scan-
ning speed and overlap on the MRR and surface roughness.
The results showed that pulse frequency and scanning speed
were themain parameters affecting surface roughness, which
was reduced with lower scanning speeds and higher frequen-
cies. The Material Removal Rate (MRR) mainly depends on
pulse frequency alone. Bartolo et al. (2006) analyzed the inci-
dence of the same parameters while looking at the scanning
strategy, in the machining of channels in tempered steel and
aluminum. Their results suggested that surface quality is bet-
ter at lower frequencies and reduced laser power. However,
both parameters need to be increased, in order to achieve an
optimum value for a higher MRR. Kaldos et al. (2004) used
a CNC milling machine with a Nd:YAG laser source, on die
steel, to study the impact of lamp current, pulse frequency,
overlapping and scanning speed on surface roughness and the
MRR. They concluded that an increase in current intensity or
insufficient overlap of laser passes results in a less well fin-
ished surface. Semaltianos et al. (2010) studied the effects of
fluence and pulse frequency on surface roughness and MRR
in nickel-based alloys with a Nd:YVO4 picosecond laser.
They also analyzed the surface morphology of these alloys
with AFM and SEM techniques.

Ciurana et al. (2009) used a pulsed Nd:YAG laser to study
the effect of the process parameters on minimum volume
error and surface roughness in laser machined tool steel for
macro scale geometry, although micro scale geometry was
not evaluated. The experimental results were inconsistent for
large shapes. Dhara et al. (2008) micro-machined die steel
while modifying pulse intensity, pulse frequency, pulse dura-
tion and air pressure, in order to predict the optimum process
parameter settings for maximum depth with a minimum
recast layer. Kumar and Gupta (2010) investigated the influ-
ence of laser power, pulse frequency, number of scans and
air pressure, on the groove depth in the generation of micro-
notcheswith a nanosecond pulsedfiber laser on stainless steel
and aluminum. Karazi et al. (2009) machined and character-
izedmicro-channel formation by lasermachining. They stud-
ied the effects of laser power, pulse frequency and scanning
speed on thewidth and depth of the channels. They alsomod-
eled the process using Artificial Neural Networks (ANN).

The application of Artificial Intelligence (AI) techniques
tomodel themicromachiningofmetal components is anopen

issue. Most of the very few works on this topic have focused
on the application ofANNs to this task: thework ofDesai and
Shaikh (2012) predicted the depth of cut for single-pass laser
micro-milling process using ANN and genetic programming
approaches and the work of Karazi et al. (2009) compared
ANN and DoE models for the prediction of laser-machined
micro-channel dimensions. All these works refer only to
geometrical dimensions and do not model other outputs of
industrial interest, such as productivity and surface rough-
ness. Other kinds of AI techniques, such as decision trees,
Bayesian Networks, and ensembles have not been tested in
this industrial context. If the state of the art can include the
application of AI techniques to machining processes similar
to laser milling, we can conclude that ANNs are the most
common technique used for most of these processes such
as milling, drilling or laser finishing (Quintana et al. 2011,
2012; Chandrasekaran et al. 2010), although many other AI
techniques have also been applied for such purposes. Bustillo
et al. proposed the use of Bayesian Networks and ensembles
to predict surface roughness in drilling (Bustillo and Correa
2012), laser finishing (Bustillo et al. 2011a) and roughing
(Bustillo et al. 2011b) operations, Grzenda et al. (2012a, b)
proposed different evolutionary algorithms to improve ANN
accuracy in drilling and milling operations, and Mahdavine-
jad et al. (2012) proposed the use of artificial immune sys-
tems to model milling processes. In any case, most of the
most recent works, such as those proposed by Bustillo et
al. (2011b), Correa et al. (2009), Desai and Shaikh (2012),
Mahdavinejad et al. (2012) and Díez-Pastor et al. (2012), all
use ANNs as a standard technique to be improved by new
approaches.

The aim of this work is to describe the information needed
to improve the laser micro-machining process in the produc-
tion of microshapes and to develop a suitable AI model for
the modelization of this industrial task. The process parame-
ter settings are studied with statistical tools and optimized
with models developed from experimental work, to achieve
the required dimensional precision, surface quality and pro-
ductivity. The experimental section consists in fabricating
arrays of micro-channels on hardened tool steel using laser
machining processes, while measuring feature size, geomet-
ric accuracy, surface roughness and theMRR. This work will
contribute to the selection of appropriate process parame-
ters through an analysis of the influence of scanning speed,
pulse frequency and pulse intensity on the final quality of the
machined micro-feature. Moreover, machine-learning meth-
ods are used to evaluate the complexity of prediction tasks.
Representatives of rule-based, instance-based, and both lin-
ear and nonlinear models are applied. Prediction accuracy
remains at different levels depending on the parameter to be
modeled rather than the technique used to model it. Hence,
the complexity of modeling individual features of particular
interest may be more easily determined.
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Experimental set up

The experiments, set up to study the influence of the process
parameters, were performed with a pulsed Nd:YAG, Deckel
Maho Lasertec 40 machine, with 100W average laser power
and a wavelength of 1,064 nm.

Although the pulse intensity level on the surface was not
measured during our experiments, based on the technical data
of the laser system, we can provide an ideal pulse intensity
level, which is given by:

P I = P

π
( d
2

)2 (1)

where, P is the laser power (100 W), and d is the beam spot
diameter (0.003 cm). Therefore the ideal pulse intensity was
estimated to be 1.4 W/cm2. Furthermore, we can determine
the ideal Peak Pulse Power (PPP), which is given by:

PPP = P

τ
(2)

where, P is the laser power (100 W) and τ is the laser pulse
duration (10 ns). For the laser characteristics used in this
study, the PPP is estimated to be 10MW/s. The specifications
of the micro channels are: 200µm in width (W) and 50µm
in depth (D), machined by the motion of the laser beam in
the x and y directions removing material in all three direc-
tions (x, y and z). As shown in Fig. 1, in order to machine
the entire cavity, there is overlap between adjacent pulses
(Oy)within a pass of length (L) and overlap between succes-
sive passes (Ox). All the experiments were performed with a

laser spot size (∅) of 0.03 mm and a track displacement (dis-
tance between passes, a) of 10µm. The overlap Ox between
successive passes is given by (Samant and Dahotre 2010):

Ox =
(
1− a

∅

)
× 100 (3)

In this study, Ox was 66.6%. The overlap between adjacent
pulses (Oy) depends on the scanning speed, the pulse fre-
quency and the spot diameter. It is therefore different for
each experiment. Oy is given by:

Oy =
(
1− SS

PF × ∅

)
× 100 (4)

where, SS is the scanning speed andPF is the pulse frequency,
which are different for each experiment.

Hardened AISI H13 tool steel was selected as the work-
piece material, because it is widely used in the moulds and
dies industry.

Dimensionalmeasurementswere performedwith aZEISS
SteREO Discovery.V12 stereomicroscope. Quartz PCI©
software was used to measure the feature dimensions and
Mitutoyo SV2000 Surftest equipment was used to measure
surface roughness.

Some screening experiments were performed to select the
appropriate factor levels of the process parameters. Several
micro-channels were machined, in each case changing one
single parameter while the others remained fixed. In this way,
we could observe the impact of each single control variable,
in order to determine the control parameter range. This pre-

Fig. 1 A schematic illustration
of the 3D-laser milling process
and overlapping laser pulses
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evaluation provides a full factorial design with the variable
factors and factor levels presented in Table 1, which is then
used to study the influence of the input parameters on the
finished workpiece, for which the response parameters are
surface roughness (µm), theMRR (mm3/min) and the width
and depth dimensions (µm). Similar experimental studies
have been conducted in earlier works. Statistical analyses
have pointed out that pulse frequency is the least relevant
of the three factors that were studied. Thus, just two levels
for these parameters were selected, while nine levels were
established for the scanning speed, in order to conduct an
in-depth study of its effect on the responses.

Experimental results and discussion

Following the design of the experiments summarized in
Table 1, 54 micro channels were machined with the laser
machining process. Surface roughness was measured in five
different sections of eachmicro-channel to get themeanvalue
of the entire channel. Then, each channel was cut into three
parts to get the cross-section profiles, from which the mea-
surements of depth andwidthwere taken by processed digital
images. Once again, five different measurements, propor-
tionally distributed along the depth and the width, were mea-
sured. The area removed was also measured for each channel
profile, in order to calculate the MMR. The mean values of
the experimental results obtained from themachined features
for all the combinations of the variable factors are shown in
Table 2.

The micro-channels presented variations in dimensions
and shape. These variations are clearly represented in Fig. 2,
which presents the images of six micro-channels. Analysis
of Variance was performed for each response factor, to study
the influence of the process parameters.

Micro-channel depth

As can be seen in Table 2, which shows the results obtained
for the micro-channel depths, the target depth of 50µm was
never reached. This is clear in Fig. 3, where the influence
of the scanning speed and the pulse intensity on the depth
dimension is summarized. It shows that almost all of the

Table 1 Variable factors and factor levels

Variable factors Factor levels

Scanning speed (SS) (mm/s) 200 225 250

275 300 325

350 375 400

Pulse intensity (PI) (%) 35 40 45

Pulse frequency (PF) (kHz) 35 40 –

machined depths are within the 10–25µm range and only
few experiments achieved depth values above this range.

The trend lines presented in Fig. 3 clearly show that higher
scanning speeds result in smaller depths and higher pulse
intensities result in deeper micro-channels. Thus, the great-
est depth was reached with the lowest scanning speed (200
mm/s) and the highest pulse intensity (45%). In a laser-
milling process (with 3Dmovements), slower displacements
of the laser beam means that the surface is machined with
high energy for a longer time, which allows a larger amount
of energy to be absorbed by the material resulting in chan-
nels of greater depths. This demonstrates that higher pulse
intensity values would be necessary to obtain depth values
closer to the target.

Table 3 summarizes the ANOVA results, revealing that
the most significant factors for the average depth of micro-
channels were scanning speed and pulse intensity, as previ-
ously pointed out (p < 0.005). The F-values indicate that
pulse intensity was the most significant factor, which is made
clearer by the contribution values.

Compared with other authors, the experimental results
shows that higher pulse intensity and lower scanning speeds
tend to give deeper channels, which is in line with the idea
that the number of pulses per mm increases, as the laser
beam moves more slowly across the workpiece, thus remov-
ing more material. Furthermore, when the intensity is higher,
the pulse energy increases, which in turn results in greater
depth values (Bordatchev and Nikumb 2003; Yousef et al.
2003).

Micro-channel width

Table 2 presents width dimensions that range from 175.5 to
197.7µm. Once again, no experiment achieved the target
value (200µm). Figure 4 shows how the scanning speed and
the pulse intensity affected the average width. In this case,
in contrast to the results on depth, the experimental values
were closer to the target width when the scanning speed was
high and the pulse intensity was low. These converse effects
on width and depth are due to the fact that straight walls
are really difficult to achieve. Thus, as the channel becomes
deeper, the width becomes narrower, producing a smaller
mean width value.

Table 4 summarizes the results of the ANOVA analysis
on the average width. It can be seen that the pulse frequency
has no statistically significant effect onwidth dimension. The
parameters that do have a significant effect on the width are
pulse intensity and scanning speed,with pulse intensity being
the most significant, as is clearly indicated by the results of
the F-value, with a contribution of 69.5%.

Although other studies using single laser shots (Bor-
datchev and Nikumb 2003; Yousef et al. 2003) have con-
cluded that crater depth and diameter increase with pulse
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Table 2 DoE with the experimental results

# PI
(%)

PF
(kHz)

SS
(mm/s)

depth
(µm)

width
(µm)

Ra
(µm)

MRR
(mm3/

min)

# PI
(%)

PF
(kHz)

SS
(mm/s)

depth
(µm)

width
(µm)

Ra
(µm)

MRR
(mm3/

min)

1 35 35 200 18.3 189 0.505 0.034 28 35 40 200 13.9 192.9 0.560 0.025

2 35 35 225 17.4 190 0.477 0.036 29 35 40 225 12.6 175.5 0.479 0.017

3 35 35 250 14.9 191 0.533 0.034 30 35 40 250 11.6 188.1 0.531 0.026

4 35 35 275 15.7 195.8 0.455 0.041 31 35 40 275 15.7 191.6 0.465 0.034

5 35 35 300 12.9 197.7 0.456 0.033 32 35 40 300 8.1 193.2 0.506 0.026

6 35 35 325 11.6 193.2 0.463 0.027 33 35 40 325 8.1 189.8 0.520 0.020

7 35 35 350 8.1 191.7 0.470 0.019 34 35 40 350 11.6 189.2 0.471 0.034

8 35 35 375 10.9 192.5 0.504 0.021 35 35 40 375 10.8 189.9 0.525 0.027

9 35 35 400 10.2 192.8 0.457 0.027 36 35 40 400 11.7 190.1 0.463 0.027

10 40 35 200 29.9 183.9 0.549 0.055 37 40 40 200 31.2 186.1 0.531 0.065

11 40 35 225 30.0 184.9 0.481 0.059 38 40 40 225 26.2 186.6 0.571 0.061

12 40 35 250 25.4 184.4 0.513 0.061 39 40 40 250 23.7 187.3 0.462 0.056

13 40 35 275 21.9 187.2 0.664 0.048 40 40 40 275 17.1 190.4 0.510 0.026

14 40 35 300 16.8 189.9 0.478 0.036 41 40 40 300 17.7 195.7 0.459 0.041

15 40 35 325 14.4 188.4 0.473 0.032 42 40 40 325 19.2 192.3 0.461 0.061

16 40 35 350 18.5 188.5 0.485 0.041 43 40 40 350 17.3 190.3 0.435 0.039

17 40 35 375 18.2 190.5 0.457 0.048 44 40 40 375 16.5 190.5 0.490 0.044

18 40 35 400 18.4 190.0 0.382 0.043 45 40 40 400 14.2 192.3 0.423 0.040

19 45 35 200 39.6 184.4 0.519 0.065 46 45 40 200 38.6 184.4 0.519 0.074

20 45 35 225 35.8 184.1 0.513 0.073 47 45 40 225 35.0 184.2 0.531 0.067

21 45 35 250 33.7 181.0 0.493 0.072 48 45 40 250 29.5 180.7 0.526 0.071

22 45 35 275 22.1 184.3 0.443 0.063 49 45 40 275 26.8 185.3 0.523 0.056

23 45 35 300 25.4 186.2 0.451 0.057 50 45 40 300 25.1 187 0.514 0.067

24 45 35 325 26.5 189.2 0.451 0.061 51 45 40 325 22.8 186.8 0.446 0.062

25 45 35 350 20.8 191.1 0.447 0.047 52 45 40 350 19.3 187.3 0.509 0.039

26 45 35 375 19.8 189.9 0.397 0.054 53 45 40 375 17.5 187.6 0.408 0.040

27 45 35 400 19.1 188.3 0.377 0.049 54 45 40 400 17.7 188.6 0.413 0.040

energy, the width decreased in our case. This effect can be
explained by the laser-milling process that needed several
passes along all axes to obtain the final shape. Thus, because
of the difficulty in achieving straight walls, due the Gaussian
shape of the laser beam, the width of the channel narrowed as
it became deeper. Therefore, the mean width of the channel
decreased.

Micro-channel surface roughness

The influence of the variable factors on surface roughness
was also evaluated. Figure 5 shows the effect of the scan-
ning speed and the pulse intensity on surface roughness.
The trend lines indicate that surface roughness decreased
at high scanning speeds. The influence of pulse intensity is
less clear, although it does appear to suggest that a higher
intensity resulted in lower surface roughness. Slow scan-
ning speeds did not improve surface roughness and fast

movements hardly affected it. Furthermore, the experimen-
tal results showed no large differences, with a range between
0.4 and 0.55µm. The best surface roughness values were
obtained with a combination of the highest pulse intensity
and highest scanning speed.

Table 5 summarizes the results of the ANOVA, reveal-
ing that scanning speed was the most significant factor in
surface roughness, while neither pulse intensity nor pulse
frequency had a statistically significant effect on the same
variable. However, the contribution of the scanning speed
was relatively slight at 46.1%.

Our experimental results showed that high pulse intensi-
ties and slower scanning speeds meant that more energy was
applied to theworkpiece, increasing the damage caused to the
surface. Therefore, lower pulse intensities and higher scan-
ning speeds will improve the final quality of the machined
parts, because surface roughnesswill be reduced (Bordatchev
and Nikumb 2003).
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Fig. 2 Images of micro-channels
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Fig. 3 Influence of scanning speed and pulse intensity on depth dimen-
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Fig. 4 Influence of scanning speed and pulse intensity onwidth dimen-
sion

Table 3 ANOVA analysis for
depth Factor Degrees of freedom

(DOF)
Sum of squares
(SS)

Mean squares
(MS)

F-value P value Contribution
(%)

PI 2 1775.26 887.63 94.72 0.000 83.9

PF 1 25.43 25.43 2.71 0.107 2.4

SS 8 1163.59 145.45 15.52 0.000 13.7
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Table 4 ANOVA analysis for
width Factor Degrees of freedom

(DF)
Sum of squares
(SS)

Mean squares
(MS)

F P Contribution
(%)

PI 2 195.88 97.94 12.15 0.000 69.5

PF 1 5.01 5.01 0.62 0.435 3.5

SS 8 304.22 38.03 4.72 0.000 27

Residual 42 338.43 8.06 – – –
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Fig. 5 Influence of scanning speed and pulse intensity on surface
roughness

Micro-channel material removal rate

The effect of the process parameters on the MRR was also
studied. Figure 6 presents the effects of pulse intensity and
scanning speed on the MRR. The trend lines clearly indicate
that MRR increased at lower scanning speeds and higher
pulse intensities. Although higher scanning speeds resulted
in faster processes, the area of material removal was smaller,
so the MRR decreased. On the other hand, a higher pulse
intensity resulted in deeper channels and, in consequence,
higher MRRs.

The ANOVA results for MRR are shown in Table 6. It can
be seen that pulse frequency had no statistically significant
effect on MRR. Pulse intensity was found to have the most
significant effect on MMR with a contribution of 93.1%,
while scanning speed had a somewhat lesser impact, with a
contribution of 5.9%.

As MRR is directly proportional to the width and depth
of the channel, the MRR plot has a shape that is similar to
the depth plot, due to the fact that the influence of the depth
is greater than that of the width.

Modeling

The ability of different models to predict features of interest

Following the experimental tests, the study and ANOVA
analysis of the relationship between the parameters, various

machine-learning techniques were then selected and tested
for depth and width dimension, surface roughness andMRR,
in order to determine their correlation with the process para-
meters. The objective was to obtain the most appropriate
process parameters for producing minimal surface rough-
ness with the highest material removal rate. This selection
included the k-Nearest Neighbours (kNN) technique with k
set to 1, . . . , 5, linear regression, decision trees, and mul-
tilayer perceptrons. Hence, these methods were considered
as they have clear decision rules and the capability to per-
form both linear and nonlinear transformations on the input
data.

A 10-fold cross-validation was applied, which takes
account of the capability of themodels to predict output para-
meter values fromnew input data.More precisely, it was used
to estimate the accuracy of a model built with a machine-
learning technique that incorporated certain unique settings.
First, the entire data set was first divided into 10 non-empty
subsets. Then, each subset was used for testing the model,
which was previously constructed with both the technique
and its settings on the sum of the remaining subsets. This
process was repeated 10 times. The correlation coefficients
calculated from the testing subsets show whether the com-
bination of the machine-learning technique and its settings
can develop models that are capable of predicting the value
of the parameter of interest such as depth. Importantly, this
capability was tested for new inputs not used in the construc-
tion of the models. The correlation coefficients reported in
this section were calculated in this way.

In addition, a single model built with the entire available
data setwas constructed for every output parameter and every
technique. The correlation coefficient for the model that was
built and tested with the same entire data set is reported in
brackets for the multilayer perceptron, decision tree and lin-
ear regression in Tables 8, 9, 10, 11 and 12. A substantial
difference can frequently be observed between the ability of
the technique such as decision tree to model known cases
and to predict the feature of interest for new process settings.
This is most clearly seen for the 1 nearest neighbour classi-
fier, which yielded the correlation of 1 on the data set with
which it was constructed. It simply remembers each pattern
with which it was developed and uses the pattern to give a
direct response with the requested value of the parameter of
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Table 5 ANOVA analysis for
surface roughness Factor Degrees of freedom

(DF)
Sum of squares
(SS)

Mean squares
(MS)

F P Contribution
(%)

PI 2 0.004 0.002 1.92 0.160 13.4

PF 1 0.005 0.005 5.79 0.021 40.5

SS 8 0.051 0.006 6.58 0.000 46.1

Residual 42 0.039 0.001 – – –
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Fig. 6 Influence of scanning speed and pulse intensity on MRR

interest. Thus, no correlation coefficients for the training set
were reported for NN classifiers.

The results of a samplemachine-learning parameter selec-
tion are discussed in greater detail in “The selection of
machine-learning parameters in the example of decision
trees” section. As each technique is associated with its own
set of parameters, decision trees were selected for more
detailed analysis. The key parameters for the remainingmod-
els are: k value for kNN, the number of hidden neurons for
multilayer perceptrons and the selection of attributes for lin-
ear regression.

A naïve approach was adopted as a baseline to analyse the
prediction of the individual parameters listed above and to
ensure that the newmodels extracted useful information from
the dataset. The naïve approach is based on using the mean
values of a parameter as a prediction of its parameter value.
The prediction produced by the naïve method is always the
same, irrespective of the values of the process parameters.
As a consequence, the higher the difference between the cor-
relation coefficient attained for the machine-learning model
such as neural network and naïve method, the greater the
ability of the machine-learning model to capture the impact
of process parameters on the parameter of interest e.g. depth.
Should the two correlation coefficients for the naïve method
and machine-learning method remain at a similar level, the
benefits of using the latter method would be questionable.
More precisely, this would mean that the quality of predic-
tions developed with the machine-learning method was sim-
ilar to random guessing.

Hence, the correlation coefficient (R2) andMeanAbsolute
Error (MAE) for individual input parameters modelled with
the naïve approach were analysed first of all. The results are
shown in Table 7, in which it may be seen that the correlation
coefficients for the four models with the naïve approach are
very low.

Starting with the low accuracy provided by a naïve
approach, different machine-learning models were built for
each output parameter. First, the accuracy, in terms of R2 and
MAE, of the depth modelling are shown in Table 8. The best
results for the training set are observed for decision trees.
However, multilayer perceptrons yielded the best accuracy
for cross-validation (in bold in Table 8) and the highest cor-
relation. It can be observed that 1NN is the best technique
out of all the kNN simulations under analysis. This suggests
limited noisiness of depth, i.e. the most similar input features
provide the best estimation of the output parameter.

It is worth noting here that the accuracy of both the deci-
sion tree and themultilayer perceptron is quite similar, which
suggests that the decision tree is better adapted to industrial
applications. It also provides a clear explanation of the way
the parameter of interest is estimated, which in this case is
depth. It is interesting to investigate the definition of the tree
shown in Fig. 7. As is clear from the ANOVA analysis, pulse
intensity is the main parameter (83.9%) for this process. The
first node therefore refers to this parameter; scanning speed
is the second parameter from the ANOVA analysis (13.7%)
and forms the second nodal level of the tree; leaving the last
level for the parameter with the weakest influence: pulse fre-
quency. It is also interesting to see how the tree generates the
final leaves at different scanning speeds, depending on the
pulse intensity; which was expected considering the relation
between both parameters shown in Fig. 3. This capability of
the decision tree,which produced clear graphical conclusions
whenmodelling the influence of each parameter, makes them
the most interesting technique. Moreover, the linear regres-
sion models failed to achieve the required accuracy, a result
that fits in well with the conclusion presented in “Experi-
mental results and discussion” section: that channel depth
depends mainly on scanning speed and pulse intensity and
that this dependency is not linear.

Next, the results forwidthwere analysed. These results are
shown in Table 9. The best method on the training set turned
out to be a decision tree, which suggests that a nonlinear
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Table 6 ANOVA analysis for
MRR Factor Degrees of freedom

(DF)
Sum of squares
(SS)

Mean squares
(MS)

F P Contribution
(%)

PI 2 0.0086 0.0043 57.92 0.000 93.1

PF 1 4.82× 10−5 4.82× 10−5 0.65 0.424 1

SS 8 0.0021 0.0002 3.65 0.003 5.9

Residual 42 0.0031 7.4× 10−5 – – –

Table 7 Naïve prediction for individual parameters

Parameter Correlation coefficient
(R2)

Mean absolute
error (MAE)

Depth 0.178 6.49

Width 0.133 3.078

Surface roughness
(Rα)

0.239 0.0397

MRR 0.178 0.0141

method was once again needed this time. However, when
the objective was accurate width predictions for new process
settings, the 3NN technique yielded the highest correlation
coefficient, albeit a limited one. It can be observed that the
3NNmethod provides the best correlation out of all the kNN

simulations that were analysed. Again, from the industrial
point of view, this provides quite an intuitive technique. The
prediction is made based on averaging the width from the 3
most similar process settings. However, the lowest MAE rate
for kNN methods is observed for k = 1. This clearly shows
that the best model in terms of one criterion is not necessarily
the best model under another criterion. As already observed
for width modelling, linear regression models do not achieve
the desired accuracy; this result fits well with the conclusion
presented in “Experimental results and discussion” section,
that channel width depends mainly on scanning speed and
pulse intensity and that this dependency is clearly not linear.
The substantial difference between the training and testing
error rates for the multilayer perceptron suggests that a larger
data set could be useful to improve the generalisation capa-

Table 8 Accuracy of different models of laser milling depth

1NN 2NN 3NN 4NN 5NN Linear regression Decision tree Multilayer
perceptron

R2 0.870 0.870 0.819 0.799 0.807 0.818 (0.839) 0.871 (0.955) 0.887 (0.940)

MAE 2.04 2.04 2.60 2.81 2.80 2.90 2.31 2.17

Table 9 Accuracy of different models of laser milling width

1NN 2NN 3NN 4NN 5NN Linear regression Decision tree Multilayer
perceptron

R2 0.325 0.325 0.393 0.364 0.348 0.367 (0.441) 0.371 (0.638) 0.317 (0.606)

MAE 1.82 1.82 1.95 2.07 2.14 2.09 2.18 2.62

Table 10 Accuracy of different models of laser milling surface roughness

1NN 2NN 3NN 4NN 5NN Linear regression Decision tree Multilayer
perceptron

R2 0.090 0.090 0.205 0.236 0.305 0.323 (0.417) 0.076 (0.595) 0.303 (0.481)

MAE 0.043 0.043 0.035 0.034 0.033 0.030 0.038 0.038

Table 11 Accuracy of different models of laser milling surface roughness—part II

6NN 7NN 8NN 9NN 10NN 11NN 12NN 13NN 14NN 15NN

R2 0.242 0.231 0.263 0.264 0.240 0.152 0.116 0.100 0.096 0.090

MAE 0.034 0.033 0.032 0.033 0.034 0.036 0.037 0.037 0.037 0.038
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Table 12 Accuracy of different models of laser milling MRR

1NN 2NN 3NN 4NN 5NN Linear regression Decision tree Multilayer
perceptron

R2 0.769 0.769 0.680 0.650 0.657 0.702 (0.741) 0.689 (0.825) 0.668 (0.828)

MAE 0.006 0.006 0.007 0.007 0.008 0.007 0.007 0.008

bilities of the neural networks i.e. the ability to accurately
predict width under new process settings.

In the case of surface roughness modeling, an interesting
phenomenon was observed (Tables 10, 11). The correlation
coefficient values appeared to grow at higher values of k,
which led us to conduct an extended analysis of the values
of k that exceeded 5, as shown in Table 11.

As expected, the value of the correlation coefficient dete-
riorates for k > 5. Obviously, it will converge to naïve
results i.e. error rates attained when mean roughness value
is returned as prediction. The main conclusion here is that
the impact of process settings on surface roughness is quite
sophisticated and possibly noisy, as averaging roughness
from k = 5 most similar experiments yielded the best rough-
ness prediction out of all kNN experiments. At the same
time, the best overall correlation coefficient value and MAE
rate was attained for cross-validation for linear regression
(in bold in Table 10) and for training data for decision trees
and was superior to kNN. As already observed for width
and depth modelling, the linear regression models did not
achieve the expected accuracy. At the same time, the nonlin-
earmodels, namely decision trees andmultilayer perceptrons
did not yield sufficient generalisation - i.e. high correlation
in cross-validation -, in all probability due to the limited size
of the data set. However, the nonlinear models and especially
the decision trees were capable of modelling the dependen-
cies in the training data with much higher accuracy than lin-
ear regression. This result fits in well with the conclusion in
“Experimental results and discussion” section, which states
that channel roughness depends mainly on scanning speed
with a very noisy dependency, which in no case is ever linear.

In the case of MRR modelling, Table 12, multilayer per-
ceptrons and decision trees yield the best and virtually identi-
cal results on the training data set. In this case, 1NN proves to
be the best method out of kNNmethods for k ranging from 1
to 5 and the best in terms of its generalisation capabilities i.e.
the correlation coefficient for cross-validation runs. This is
in line with previous findings for depth i.e. the closest input
settings produce the most similar output parameter value:
this time, the MRR rates. Linear regression models do not
achieve the required accuracy; this result fits in well with the
conclusion presented in “Experimental results and discus-
sion” section, that MRR depends mainly on pulse intensity
(more than 93% in theANOVA test) and that this dependency
is not linear.

To sumupprediction accuracy evaluation, depth andMRR
can be modelled with high accuracy. Lower, but still signif-
icant accuracy in comparison with the naïve baseline, was
observed for surface roughness and width modelling. In the
case of surface roughness, a higher value of k, meaning the
averaging of roughness based on many similar experiments
gave better results than using the roughness from the most
similar experiment in terms of input settings. This observa-
tion points to noisy data, dependencies between inputs and
outputs that are difficult to capture and even the need to col-
lect other parameter values that contribute to the problem. In
accordance with the bibliography (Benardos and Vosniakos
2003), it can be concluded that surface roughness depends on
too many variables to assure a complete determination of the
milling process, which means that all models will inevitably
be less accurate than the other performance parameters under
study. In no case did the linear regressions show high accu-
racy, which was expected, considering the non-linear depen-
dencies between the input and the output parameters in all
cases.

The selection of machine-learning parameters in the
example of decision trees

One of themost accurate of the above-described techniques is
the decision tree. The function of a decision tree is to predict
the value of the parameter of interest. This process will be
discussed in relation to the example of the depth parameter.
Decision trees were used in this case in the following way.
First, the domain of depth value was divided into 15 ranges.
Next, the function of the decision treewas to predict the range
of the depth value for the process parameters. A sample tree
developed for the whole available data set is shown in Fig. 7
and has been discussed earlier in the paper.

However most machine-learning techniques are con-
trolled with additional parameters, such as k for kNN tech-
nique or the number of neurons in a hidden layer for multi-
layer perceptrons. Hence, the question is whether the default
parameter settings will yield the most accurate results. To
answer this question, parameter tuning can be performed.
This is frequently based on some heuristics or by testing dif-
ferent values in the domain of the parameter. To illustrate this
process, the search for a C parameter that controls the deci-
sion tree construction is performed. Its default value, used
to construct the decision trees is 0.25. The parameter is used
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15.0125

10.0667    10.9 27.7333 35.3667

   19.5 24.7833 19.0333

 17.325    16.3

PI < 37.5  

SS < 287.5  SS < 262.5  

SS < 362.5   PI < 42.5   PI < 42.5  

SS < 287.5   SS < 337.5  

SS < 387.5  

  PI >= 37.5

  SS >= 287.5   SS >= 262.5

  SS >= 362.5   PI >= 42.5   PI >= 42.5

  SS >= 287.5   SS >= 337.5

  SS >= 387.5

Fig. 7 Decision tree for the estimation of depth

Fig. 8 The impact of the C parameter on the accuracy of the decision
trees built for depth and tested on the training set and on the testing
subsets. The cross-validation series shows the results attained on the
testing subsets in cross-validation

for tree pruning and its smaller values incur more restrictive
pruning. Hence, by varying the parameter, we may expect
smaller or larger tree structures yielding predictions that dif-
fer from those generated by the tree constructed with the
default settings.

Thus, the tree construction process was repeated for dif-
ferent C values in the domain (0,0.5]. For each setting, the
averaged correlation coefficient calculated on the testing sub-
sets of a 10-fold cross-validation was calculated. Moreover,
the correlation coefficient showing the similarity of the actual
depth value and depth predicted by the decision tree was cal-
culated on the entire training data sets. This was done for
decision trees constructed with this entire training data set.
The results of these experiments are summarized in Fig. 8.

It follows from this figure that constant quality may be
observed, at C values higher than 0.25, for the decision trees
constructed in the cross-validation process andwith the train-
ing set. Should a C value below 0.1 be used, this will neg-
atively affect the accuracy of the models. For all C values,
the correlation reported for the data used in tree construction

(the training data) is higher than the correlation for the new
process settings not used in the tree construction and present
in individual testing folders of cross-validation. Finally, it
can be observed that the best accuracy on the training set
is observed for C values of 0.25 and above. However, the
best generalization ability shown by the highest value of R2

for cross-validation is observed for C = 0.15. This clearly
illustrates the fact that an overly complex model will respond
properly for the data used to construct it i.e. the training data,
but will lose its capability to predict the parameter of interest,
in this case depth, for new input data i.e. new process settings.
On the other hand, the simulations show that a default value
of C = 0.25 in the analysed case was close to optimal in
terms of model accuracy observed in cross-validation. Tak-
ing into account the overall results of the experiments dis-
cussed above, a C value in the range (0.15, 0.25) can be used
to develop a decision tree model for depth. Such a model can
be used in industrial applications to predict the depth value
for new process settings and to show the impact of known
process settings on depth value.

Parameter tuning can be performed in a similar way for
other machine-learning methods and their parameters. This
process can also be repeated for the remaining output fea-
tures.

Industrial application

From the industrial point of view, it is not sufficient to
demonstrate that the tested machine-learning techniques can
develop accurate models. Certain figures of merit or, bet-
ter still, certain plots are required, so that the workshop can
take advantage of the information held by the model. The
developed models consider three of the input parameters that
can be easily changed in any real laser-milling centre: scan-
ning speed, pulse intensity and pulse frequency. Therefore
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Fig. 9 Channel depth prediction with a Decision Tree model under different PI, PS and SS conditions: a PF = 35 KHz and b PF = 40 KHz

the modification of any of these parameters in a real situa-
tion can be done immediately. In our case, the model should
assist technicians in preparing theComputerAidedManufac-
turing (CAM) program. This program fixes laser trajectories
and milling conditions to machine the channels. Therefore,

a plot that provides information on how the laser-milling
conditions (SS, PI and PS) affect the geometry and surface
roughness of a channel as well as milling productivity would
be very useful. To do so, the following procedure was fol-
lowed:
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– First of all, four models using Decision Trees to predict
the four outputswere developed.Themodelswere trained
using all the real data collected during experiments.

– Then, the four models were programmed to predict their
respective outputs for a grid of laser-milling conditions
that covers the whole experimental range of the three
process variables (SS, PI and PS). 20 steps were fixed for
each variable range, giving a total of 9261 laser-milling
conditions (21× 21× 21) to be predicted.

– Because only 3 variables can be shown on a 3D plot,
different 3D plots were drawnwith the predicted variable
on the Z-Axis and using the X and the Y-Axis to show
the two process variables with a higher influence in the
output variable behavior for a fixed value of the third
process variable.

One example will easily show the beneficial results of apply-
ing this methodology. Figure 9a, b show the predicted depth
of a channel as a function of PI and SS for two fixed values of
PF (the two limits of the variation range of this variable: 35
and 40 KHz). The first conclusion is that the influence of PF
is almost negligible, because both plots are almost the same.
This result was expected from the ANOVA analysis that gave
a 2.4% contribution to depth. Three main flat surfaces can be
defined in the 3D Plot that would allow the workshop techni-
cians to identify the best laser-milling conditions depending
in the desired depth. For example, if a depth of 25µm is
desired, SS should be fixed in the range of (280–320) mm/s
andPI in the rangeof (41–45)%.For higher depths, SS should
be smaller than 280 mm/s and PI kept in the range of (41–
45)%. At smaller depths (of around 20µm), SS should be
higher than the 300 mm/s range and PI smaller than 39%.

Conclusions

Micro-laser milling is a machining process suitable for fab-
ricating micro-moulds. However, it requires highly tuned
process parameters settings. In this study, surface quality,
dimensional features and the productivity of micro-channels
have been studied in a micro-laser milling process. Although
the results obtained for themicro-channels present variations,
they do suggest that laser machining is capable of produc-
ingmicro-geometries. Several specific conclusions should be
pointed out:

1. Low scanning speeds and high pulse intensities increase
the depth and decrease the width of the micro-channels.

2. The surface quality of the channels improves with a rise
in scanning speed, which in turn decreases surface rough-
ness.

3. Laser micromachining productivity increases with high
pulse intensities and low scanning speeds.

4. ANOVA results show that pulse frequency is not statisti-
cally significant for the responses under study.

5. Machine-learning techniques are suitable techniques
with which to model laser-milling manufacture of micro
shapes. Higher accuracy is observed for depth and mate-
rial removal rate modelling, than for surface roughness
andwidthmodelling. Neural networks were a bit better at
modelling depth dimensions and decision trees were bet-
ter at modelling MRR; both techniques were similar for
width and surface roughness. In general, these two tech-
niques showed better accuracy than the other twomodels:
k-nearest neighbours and linear regression. The use of
decision trees is therefore feasible, if information on the
relation between input parameters is sought, while neural
networks are better where the main industrial require-
ment is the dimensional accuracy of the workpiece.

6. TheNearestNeighbourmodelswith higher k values show
greater accuracy for roughness prediction, allowing us
conclude that the noisiness of this output is higher or that
it depends onmore parameters than the other variables, as
suggested in the previous literature. Datasets of a larger
size (52 instances for 3 input parameters) are necessary
to increase the accuracy of the most accurate models:
Decision Trees and MLPs.

Future work will consider other AI techniques, such as
ensembles of classifiers or regressors. These ensembles are
built by combining different basic classifiers that could
improve final model accuracy. Non-linear models will also
be tested, such as non-linear regressors, to ensure that
any interaction effect is taken into account and evalu-
ated. This experimental methodology, in which the best
process parameter combination is selected, will also be
applied to other types of materials, such as transparent
polymers typically used for disposable lab-on-chip devices
and ceramics used for various industrial applications in
aeronautics, automobile manufacturing, electronics, medi-
cine, and semiconductors. Moreover, other process para-
meters will be considered as input attributes to be added
to the model, in order to make it more reliable and pre-
cise.
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