
J Intell Manuf (2015) 26:527–538
DOI 10.1007/s10845-013-0811-5

An ant colony optimization approach for the parallel machine
scheduling problem with outsourcing allowed

Roberto Fernandes Tavares Neto ·
Moacir Godinho Filho · Fabio Molina da Silva

Received: 27 April 2013 / Accepted: 1 July 2013 / Published online: 27 July 2013
© Springer Science+Business Media New York 2013

Abstract Several manufacturing environments can be rep-
resented as a set of identical parallel machines. Moreover,
some industries uses third-part manufacturing to increase the
production capacity for short periods. This paper proposes,
implements and evaluates anACO algorithm to solve the par-
allel machine scheduling problem with outsourcing allowed.
The goal is to minimize the sum of outsource and delay costs
(since, in many practical situations, the delay generates fine).
To the best of our knowledge, this work is the first to address
this problem. In order to evaluate the algorithm proposed,
a mathematical programming model of the problem is also
presented and implemented. The ACO algorithm proposed
is composed of three sequential transition rules, each one
responsible for one different decision: the first one decides
the next job to be scheduled; the second decides the machine
to schedule a job and the third decides if the job must be
outsourced or not. Computational results show that this algo-
rithm, for instances of size larger or equal to 20 jobs, could
reach better solutions than the ones found using the mathe-
matical programming method when the commercial solver
used has its running time limited by 1h. Moreover, the times
required to reach a solution were significantly smaller when
the ACO is executed.

Keywords Ant colony optimization ·
Parallel machine scheduling problem · Outsourcing
R. F. Tavares Neto · M. Godinho Filho (B) · F. M. da Silva
Department of Production Engineering, Federal University
of São Carlos, Via Washington Luiz, Km 235, São Carlos,
SP CEP 13565-905, Brazil
e-mail: moacir@dep.ufscar.br

R. F. Tavares Neto
e-mail: tavares@dep.ufscar.br

F. M. da Silva
e-mail: fabio@dep.ufscar.br

Introduction

Scheduling problems are a set of combinatorial problems
that deal with allocating resources over time to perform a
set of tasks (Baker and Bertrand 1982). These tasks com-
pete among themselves for resources, such as machine time,
energy, and tools. One or more goals to be accomplished can
be set: for example, the minimizing of tardiness, flow time
or total number of late tasks. These tasks can also be carried
out in different manufacturing environments. For instance,
a set of tasks’ flow time on one single machine, or in an
n parallel machine environment, a flow-shop, job-shop, or
open-shop environment can be minimized. These character-
istics indicates why Brucker (2007) claims that “the theory
of scheduling is characterized by a virtually unlimited num-
ber of problem types”. Pinedo (2012) shows examples of
relevant scheduling problems in real-world environments,
such as semiconductor manufacturing, gate assignment in
airports, and process scheduling on a computer CPU. Some
recent books dealing with scheduling theme are: Leung and
Anderson (2004), Brucker (2007), and Pinedo (2009).

According to Ruiz-Torres et al. (2006), the outsourcing of
manufacturing operations continues to gain popularity, forc-
ing companies to deal with the issue of scheduling orders in
increasingly complex supply chains. Despite its importance
in modern supply chain (Boulaksil and Fransoo 2009), out-
sourcing is a topic relatively low studied in the scheduling
literature. Outsourcing can be defined as assigning to a third
party some operations of an entire process according to that
party’s specialty, instead of managing all processes directly
(Lee and Choi 2011). According toAntelo and Bru (2010), in
the last few decades, many industries have followed a trend
to successively outsource additional segments of the supply
chain. ToYadav andGupta (2008) andGonzalez et al. (2006),
the importance of outsourcing has increased in the last years.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-013-0811-5&domain=pdf

528 J Intell Manuf (2015) 26:527–538

Since the paper published by Colorni et al. (1991), many
researchers use “artificial ants” to solve difficult combina-
torial problems. This class of algorithms, named ACO (Ant
Colony Optimization), based on the behavior of real ants,
shows good results with regard to several well-known hard
problems. For example, one can refer to Dorigo et al. (1996)
and Gambardella and Dorigo (2000) for the solution of
both symmetric and asymetric travelling salesman problem
(TSP), Gambardella and Dorigo (2000) for the Sequential
Ordering Problem (SOP), Bullnheimer et al. (1999) for the
Capacitaded Vehicle Routing Problem. Other examples of
manufacturing problems solved using ACO are: manufac-
turing scheduling (for example, Arnaout et al. 2010, 2012;
Prakash et al. 2008), renovation scheduling in construction
projects (for example, Lee 2012), location/allocation prob-
lem (for example, Arnaout 2013), maintenance optimization
(for example, Samrout et al. 2007), product platform for-
mation under mass customization approach (for example,
Kumar and Allada 2007), process planning optimization (for
example, Liu and Yi 2013). Additional problems and studies
can be found in Dorigo and Stutzle (2004), which presents
more than 60 publications on the theme. This algorithm - ini-
tially called “Ant System” and then extended to “Ant Colony
System”(ACS, Dorigo et al. 1996), “Beam-ACO” (Dorigo
and Blum 2005), “Max-Min Ant System”(MMAS, Stutzle
and Hoos 2000), and others, has been demonstrated capable
of showing encouraging results. The focus of this paper is the
application of ACO to scheduling problemswith outsourcing
allowed.

Several studies use ACO to solve a large variety of
scheduling problems. For example, one can observe single-
machine-related researches like Zapfel and Bogl (2008),
Holthaus andRajendran (2005), andXu et al. (2012); parallel
machines (for example, Arnaout et al. 2008); flow shop (for
example, Marimuthu et al. 2009) and job-shop (for example,
Zhou et al. 2007a, b, 2008; Huang et al. 2013). For a review
about the application of ACO algorithm to the scheduling
problem, see Tavares Neto and Godinho Filho (2013).

Within this context, the present paper aims at proposing,
implementing and evaluating an ACO algorithm to solve
the parallel machine scheduling problem with outsourcing
allowed. Similar problems have been studied in few papers,
like Bartal et al. (2000) and Ruiz-Torres et al. (2006): the first
one aims tominimize the sumof sequencemakespan and out-
source costs; the secondminimizes the sum of number of late
jobs and total outsource machine time. Based on this litera-
ture, the problem approached in the present paper is stated
as follows: let J be a set of jobs, each one with a processing
time pi and a due date di . The cost of the delay of each job
per time unit (that can be described as the time-unit fine for
each job) is measured by a parameterwi . The additional cost
of outsource (difference between production cost and total
outsourcing cost) is measured by a job parameter oi . This

problem is based on the premises: (i) that any delay job will
generate a cost if delayed, and this cost increases according
the tardiness value of the job, and (ii) the outsourcing cost
for each job is always greater that the production costs. We
assume that the fines related to each job can be different.
The goal is to minimize the weighted sum of outsource costs
and tardiness costs. This objective function is designed to
allow the minimization of two major costs involved in such
situations: the increase of the manufacturing costs due the
outsourcing of some jobs and the fines related to tardy deliv-
eries to each client. Since those two indicators are measured
using the same unit (monetary units), the authors considered
that is safe to allow the sumof themon the objective function,
and it can be easily applied in practical situations, especially
when the total cost is the main concern of the enterprise. To
the best of our knowledge, the present work is the first to
address this problem.

This paper is organized as follows: The following section
presents a literature review about using ACO to solve the
parallel scheduling problem and also about scheduling prob-
lems with outsourcing allowed. “Problem definition” section
shows the definition of the problem focused in this paper. The
next section presents a mathematical programming approach
to solve the problem. “The proposed algorithm” is devoted to
describing basics features ofACOand also themost common
characteristics used to implement such algorithms in schedul-
ing problems. Within this section, the ACO algorithm pro-
posed is also shown. “Computational Results” presents the
computational results followed by “Conclusions” section.

Literature review

A literature review about ACO applied to parallel scheduling
problem with outsourcing allowed was performed. Actually,
any paper applying ACO to the parallel machine scheduling
problemwith outsourcing allowedwas found. Therefore, our
paper is the first to consider all of these characteristics. In this
section, we show basic features of the ACO technique, as
well as the most common characteristics used to implement
such algorithms, focused on how the current literature apply
ACO to scheduling in parallel environments. Moreover, our
literature review also presents how scheduling problems are
approached considering the possibility of outsource a subset
of jobs.

An ant colony optimization approach

The Ant Colony Optimization (ACO) heuristic presented by
Colorni et al. (1991), and later extended by several researches
(e.g. Dorigo et al. 1996’s ACS), uses a swarm intelligence
approach to solve the Traveling Salesman Problem (TSP). In
this well-known NP-Hard problem, a set of n cities must be

123

J Intell Manuf (2015) 26:527–538 529

Fig. 1 The evolution of the pheromone impact on the path decision.
The arrow’s size are proportional to the probability of choose a path

visited by one single travelling salesman. The goal is to mini-
mize the total distance length. Colorni et al. (1991), Dorigo et
al. (1996), Gambardella and Dorigo (2000) and others create
computational agents (called “artificial ants”) and mimic the
behavior of real ants going from their nests to a food source.
To do so, the “artificial ants” (hereafter called just “ants”) are
placed on a graph and forced tomove. Each singlemovement
of the ant on the graph generates another piece of the solution.
The set of moves generated the full problem solution. ACO
has been used in several classes of problems with great prac-
tical appeal, such as vehicle routing (e.g. Bullnheimer et al.
1999), examination scheduling problem (e.g. Dowsland and
Thompson 2005) and scheduling (e.g. Zhou et al. 2007a, b).

The meaning of an ant’s move is highly dependent of the
graph representation of the problem.For example,when solv-
ing the TSP problem, Dorigo et al. (1996) represents each
node of the graph as a city, and each arc has the weight cor-
responding to the distance between the cities. When the ant
moves from one node to another, it means the travel between
the two corresponding cities. For permutational scheduling
problems, the order of the visited nodes means the schedule
of jobs (e.g. Merkle and Middendorf 2000 and Gajpal and
Rajendran 2006).

The behavior of this algorithm can be exemplified as illus-
trated in Fig. 1 (Colorni et al. 1991). As one can note, at
t=0, an ant randomly chooses one path or the other. When it
reaches its goal, a fitness function is calculated (e.g., the TSP
problem uses the total travelled distance), and an artificial
pheromone is deposited according. This pheromone deposit
is apositive reinforcement strategy of the algorithm, and it
tends to privilege the best solutions. To avoid saturation,
Colorni et al. (1991) also developed a negative reinforce-
ment strategy, called pheromone evaporation, formulated as
amultiplication of all pheromone values by a heuristic coeffi-
cient 0 < ρ < 1. According Colorni et al. (1991), after some
iterations, the best solution will tend to dominate the poor
ones (Fig. 1c), allowing all the ants will choose one single
route.

The algorithmic steps of the ACO design by Colorni et al.
(1991) are shown in Algorithm 1.

Algorithm 1: The ACO pseudo-code

1 Initialize
2 Repeat (at this level, each execution is named iteraction)
3 Each ant is positioned on the initial node
4 Repeat (at this level, each execution is named step)
5 Each ant uses a transition rule to increment the solution

set
6 Update the pheromones according the local pheromone

update rule
7 Until all ants have built a complete solution
8 Apply a local search procedure
9 Apply a pheromone global update rule
10 Until a stop criteria is satisfied

This algorithm can be explained as follows:

1) Each iteraction begins with the positioning of the ant on
an initial node following a specific rule

2) All ants are then moved according to a transition rule,
until they create a complete solution (a solution is a set
of moves)

3) To choose the next node, the transition rule uses a
problem-specific visibility function

The transition rule is chosen based on the probability of an
ant choose a track. This probability is normally given by
Eq. (1).

ra
i j =

{
(τi j)

α ·(ηi j)
β∑

h∈Allowed H (τih)α ·(ηih)β
i f j ∈ Allowed H

0 otherwise
(1)

Where:

• raij is the probability of an ant a moves from i to j
• τi j is the pheromone level between i and j
• Allowed H is a set of all allowed destinations (e.g.,

unscheduled jobs)
• ηi j is the visibility of the path i to j
• 0 < α < 1, 0 < β < 1 are parameters

The visibility function ηi j is a problem-specific function, and
its definition changes according the problem that the ACO is
applied. For example, Bauer et al. (1999), define a visibility
rule for scheduling problems based on the Earliest Due Date
(EDD) rule, as shown in Eq. 2.

ηi j = 1/di , (2)

123

530 J Intell Manuf (2015) 26:527–538

4) After each move (also referred in the literature as step),
the pheromones are updated according to a local update
rule

A very common update rule found in literature is shown in
Eq. 3 (e.g. Dorigo et al. 1996; Bauer et al. 1999):

τ t+1
i j = ρ · τ t

i j +
∑

a∈ants

�a
i j , (3)

Where:

• τ t+1
i j is the pheromone between sites i and j on the next
time frame

• 0 < ρ < 1 is the evaporation constant
• ants is the set of the ants
• �a

i j is how much pheromone ant a deposits in the path
ij (usually a positive constant if a moves from i to j ,
0 otherwise)

5) After all the ants have built a solution, two procedures are
executed: the first, optional, is a local search procedure
that tries to improve the solution created by the ants; the
second is the application of a pheromone global update
rule

6) This cycle occurs until a stop criteria is satisfied. Two
usually founded stop criteria in the literature are num-
ber of interactions (e.g. Shyu et al. 2004) and algorithm
stabilization (e.g. Lin et al. 2008)

The literature about ACO applied to the parallel scheduling
problem

In parallel machine scheduling problems, it’s assumed the
availability of a set of m machines. Those machines can be
identical, unrelated or uniform, but all capable to process
any of the given jobs (Graham et al. 1979). The environment
is named identical when all jobs have the same processing
time in any machine. When the processing time varies on the
machines, the environment is identified as unrelated parallel
machines. The uniform parallel machine environment occurs
when there is a proportional factor of the processing time
in each machine. In our literature review, we found ACO
applications related to the first two environments.

Concerning identical parallel machine environments,
Sankar et al. (2005) use an ACO algorithm, based on an
n- dimensionalTSPapproach aiming atminimizingmakespan
for the identical parallel machines scheduling problem with
sequence-dependent setups. The same problem is addressed
by Behnamian and Zandieh (2009). These authors use the
ACO to generate an initial solution, which is then improved
by Simulated Annealing and Variable Neighborhood Search
techniques. Behnamian and Zandieh (2009) also present
three local search algorithms: (i) thefirst consists of swapping

the positions of two jobs in the sequence of the samemachine;
(ii) the second consists of swapping the positions of two
jobs in the sequence of different machines; and (iii) the last
transfers jobs from the machine with higher makespan to the
machine with a lower makespan. Raghavan and Venkatara-
mana (2006) seek the minimization of the sum of weighted
tardiness in a parallel machine environment that allows the
formation of batches. The proposed algorithm consists of
two phases: (i) generation of allowed batches using the
dispatch rule Apparent Tardiness Cost (ATC), and, (ii) an
ACO based algorithm to schedule those batches on different
machines. Chang et al. (2008) develop an ant colony opti-
mization system to address a multi-stage job-shop parallel-
machine-scheduling problem. This paper also deals with the
decision about the numbers of parallel machines in worksta-
tions dynamically scheduled. Raghavan and Venkataramana
(2009) develop an ACO algorithm to solve the scheduling
problem in a system of parallel processors with the objec-
tive of minimizing total weighted tardiness. Ali Berrichi
and Yalaoui (2013) propose a bi-objective model to deal
with parallel machine scheduling and maintenance plan-
ning problems simultaneously. The solution of the integrated
model is based on multi-objective ant colony optimization
approach.

Regarding applications in unrelated parallel machine
environment, Zhou et al. (2007a, b) extends the algorithm
proposed by Liao and Juan (2007) aiming at minimizing
weighted tardiness. In their approach, three different aspects
were implemented in theACOalgorithm: (i) The authors uses
two types of pheromones: the first indicates the desirability of
processing one specific job at one specific machine, and the
second is related to the choice to process a job Ji after a job
Jj; (ii) An heurist rule is used to obtain the initial pheromone
levels; (iii) A new visibility rule is defined. The same prob-
lem is also addressed by Monch (2008). The author uses
several approaches, including ACO. In this case, the ATC
rule is used as a visibility function. Still addressing unrelated
parallel machine scheduling problems, Arnaout et al. (2008)
and (2009) propose and implement an ACO algorithm for
minimizing makespan considering dependent setup times.
To solve this problem, a two-stage algorithm is proposed and
implemented: in the first stage, the jobs are allocated to the
machines. In the second stage, the jobs are sequenced on
each machine. Keskinturk et al. (2012) focus on minimiz-
ing average relative percentage of imbalance (ARPI) with
sequence-dependent setup times in a parallel-machine envi-
ronment. He compares an ACO algorithm to some heuristics,
a Genetic algorithm and also mathematical programming.
These authors conclude that the ACO outperformed all the
other methods. Lin et al. (2008) develop an ant colony opti-
mization (ACO) algorithm to solve the problem of schedul-
ing unrelated parallel machines to minimize total weighted
tardiness.

123

J Intell Manuf (2015) 26:527–538 531

The literature about scheduling problems with outsourcing
allowed

The study of outsourcing under machine scheduling models
starts recently and the most studies focuses on single-stage
problems (Qi 2011). Bertrand and Sridharan (2001) work
with the single-machine scheduling problem with outsourc-
ing aiming at minimizing the total tardiness. Engels et al.
(2003) considers a single-machine scheduling problem to
minimize the weighted sum of the total weighted completion
times and the total outsourcing cost. Lee and Sung (2008)
considers a set of n jobs that must be allocated to a single
machine or be done by a third party (outsourced). The objec-
tive of such authors was minimizing the weighted sum of the
outsourcing cost and the scheduling measure represented by
the sum of completion time, subject to outsourcing budget.
The same authors also studied the single-machine schedul-
ing problem with outsourcing allowed aiming at minimiz-
ing maximum lateness and outsourcing costs and also mini-
mizing total tardiness and outsourcing costs (Lee and Sung
2008). Tavares Neto and Godinho Filho (2012) proposes an
ACO algorithm to solve the problem considered by Lee and
Sung (2008). This algorithm proved to be most efficient than
Lee and Sung (2008). All of these studies assume that the
subcontractor has a large enough capacity so that the main
decision is to determine which jobs will be outsourced, with-
out the need of explicitly scheduling the outsourced jobs.
Other paper within this category is Chen and Li (2008). Qi
(2008) relax this assumption, considering the scheduling of
the outsourced jobs on the subcontractor′s machine. This
author deals with the single machine scheduling problem,
modeling the problem for four different objective functions
and solving them with dynamic programming.

Regarding parallel machines considering outsourcing,
only three papers were found. Bartal et al. (2000) consid-
ered a parallel machine scheduling problem in which the
objective is to minimize the sum of makespan and the total
outsourcing costs. Ruiz-Torres et al. (2006) develop several
heuristics for solving the parallel-machine scheduling prob-
lem with outsourcing aiming at minimizing the number of
late orders and the total outsource machine time. Mokhtari
and Abadi (2013) addresses a single-stage scheduling prob-
lemwith outsourcing allowed. Themanufacturer has an unre-
lated parallel machine system, and each subcontractor has its
own single machine. The objective is to minimize sum of the
total weighted completion time and total outsourcing cost.
An integer programming formulation is presented and also a
heuristic algorithm. The present research, on the other hand,
focuses on the minimization of the sum of the total outsource
cost and the sum of weighted tardiness of all tasks (delay
costs) on a parallel machine manufacturing environment.

Research on scheduling with outsourcing allowed in
complex shop environments is very limited (Qi 2011).

Lee et al. (2002) develops an Advanced Planning and
Scheduling model with outsourcing option with the objec-
tive ofminimizing late orders. Thismodel is solved bymeans
of a genetic algorithm. Chung et al. (2005) study a job shop
scheduling problemwith outsourcing option. Qi (2009) deals
with two-stage flow shop scheduling problem with outsourc-
ing option for stage one. Qi (2011) extends this work to
include other forms of outsourcing. Other papers which deal
with the two-stage flow shop scheduling problem with out-
sourcing option are Lee andChoi (2011) andChung andChoi
(2012). TavaresNeto andGodinhoFilho (2011) extendedLee
and Sung (2008) problem, proposing an ACO algorithm to
solve the scheduling problem of minimizing makespan in a
permutational flow shop environment with the possibility of
outsourcing certain jobs.

Problem definition

The problem studied in this paper can be explained as fol-
lows:

The following elements are inputs to the problem:

• A set J containing the jobs to be processed
• A constant n representing the number of elements of J
• A constant m representing the number of machines
• A constant Budget representing the maximum value of
the total outsource cost

Each job Ji is composed by:

• A processing time pi

• A due-date di

• An outsourcing cost oi

• An outsourcing lead time li
• A cost of each the tardiness of each time period wi

(m+1) subsets of J are used to compose the final solution:

• An unordered set Oπ containing the jobs that will be
executed

• m ordered sets Sk
π , k ∈ m, containing the jobs

sequenced on the k parallel machines

Finally, the following performance measures can be calcu-
lated:

• Ci is the completion time if the job i
• Mk is the makespan of a sequence of the machine k,

defined as maxi∈Skπ{Ci}
• Ti is the tardiness of the job, defined as max{0, Ci − di }

The goal is to minimize the value of the Eq. 4:∑
i∈Oπ

oi +
∑
i∈Sk

π

wi · Ti k = 1 . . . m (4)

123

532 J Intell Manuf (2015) 26:527–538

There is one constrain, represented in Eq. 5:∑
i∈Oπ

oi ≤ Budget (5)

This problem can be stated as Pm/Budget/oc +∑
wi Ti ,

using a notation based on Graham et al. (1979). To solve this
problem, two approaches are stated: In “Amathematical pro-
gramming approach for the problem” section, a mathemati-
cal programming approach is proposed. In the section “The
proposed algorithm,” a technique based on the Ant Colony
Optimization meta-heuristic is proposed. In “Computational
Results,” the results of the application of both optimization
strategies are presented.

A mathematical programming approach for the
problem

Based on the mathematical model for the problem Pm//
∑

(Ei + Ti) well known in the literature (e.g. Arenales et al.
2007), this section presents a mathematical model to solve
the problem Pm/Budget/oc+∑

wi Ti problem. This model
is presented on Eqs. 6–12:

min
n∑

i=1

wi · Ti +
∑

i∈Oπ

oi (6)

m+1∑
k=1

n∑
i=0

xi jk = 1 j = 1 . . . n (7)

n∑
j=0

x0 jk ≤ 1 k = 1 . . . m + 1 (8)

n∑
i=0,
i �=h

xihk −
n∑

j=0,
j �=h

xhjk = 0
h = 1 . . . n,

k = 1 . . . m + 1
(9)

C jk ≥ Cik − M + (
p jk + M

) ∗ xi jk i = 1 . . . n
j = 1 . . . n
k = 1 . . . m

(10)

C j (m+1) ≥ l j · xi j (m+1) i = 0 . . . n,

j = 1 . . . n
(11)

Ti ≥ Cik − di i = 0 . . . n,

k = 1 . . . m + 1
(12)

Where:

• Cik is the completion time of the job i on machine k
• xi jk

=
⎧⎨
⎩
1 if job j is executed immediately after job

i at machine k
0 otherwise

• M is a large number

• A “ghost” machine m+1, representing the outsourcing
option, is created.

The model represented by Eqs. (3)–(10) can be explained as
follows:

– Equation (6) is the objective function;
– Equation (7) imposes that each job j contains a single

job i executed immediately before;
– Equation (8) guarantees that each machine k contains a

single processing sequence;
– Equation (9) assure that each job i is executed just after

a single job j, excluding the job 0, that establishes the
beginning and the end of the sequences;

– Equations (10, 11) determines the completion time of the
jobs;

– Equation (12) determines the tardiness of each job;

Based in this model, the following modifications were per-
formed to solve the Pm/Budget/oc + ∑

wi Ti problem:
On the next section, an ACO approach for this problem

will be presented.

The proposed algorithm

The same concept presented previously is now applied to
solve the Pm/Budget/oc+∑

wi Ti problem using the ACO
technique. This algorithm is based on the idea of merge three
decisions: (i) what is the sequence of the jobs; (ii) in which
machines each job must be processed; (iii) if each job must
be outsourced or not. To do so, the proposed algorithm uses
two sets of pheromones, instead of the single one presented
on the original algorithm:

• τ 1i jk, related to the desirability of move job j to posi-
tion i on machine k. This set is named here as sequence-
pheromone matrix.

• τ 2is, s = {0, 1} ,related to the desirability of outsource
job i . τ 2i0 is related to the desirability of process the
job into the parallel manufacturing environment; τ 2i1 is
related to the desirability of outsource the job. This set is
named here as outsource-pheromone matrix.

To embrace the three decisions, the transition rule used in the
proposed algorithm is composed of three sub-rules:

• Transition rule #1, used to determine the next job to be
scheduled;

• Transition rule #2, used to determine in which machine
the next job must be allocated (if it’s not outsourced);

• Transition rule #3, used to determine if a job must be
outsourced or not;

The full pseudo-code of this algorithm is presented in
Algorithm 2.

123

J Intell Manuf (2015) 26:527–538 533

Algorithm 2: The proposed ACO algorithm

1 Initialize pheromones
2 Repeat (at this level, each execution is named iteraction)
3 Each ant is positioned on the initial node
4 Repeat (at this level, each execution is named step)
5 Use a transition rule #1 to choose the next job to be

scheduled
6 Use a transition rule #2 to choose the machine where

the job must be scheduled
7 Use a transition rule #3 to choose if the job must be

outsourced or not
7 Until all ants have built a complete solution
8 Apply the local search procedure at each intervalLocalSearch

iteractions
9 Apply a pheromone global update rule
10 Until a stop criteria is satisfied

As presented in Algorithm 2 and in the Transition Rules
1, 2 and 3, the main goal of this algorithm is to allow the
ant, in a single moment, take the three specified decisions:
the job to be processed, the position of this job in a sequence
and the outsource decision. This is a difference between this
algorithm and the ACO algorithms presented in the classic
literature (such as Dorigo et al. 1996 and Stutzle and Hoos
2000), that usually use this phase to just one decision (e.g.
in the case of the ACO applied to TSP, the only decision is
regarding to choose the next city to be visited).

Pheromone initialization

This phase uses two approaches, both already found in
the ACO literature applied to another problems: the first
one, used in pheromone matrix 1, already initializes the
pheromone matrix using some problem information. This
approach, used in theFastAntColonyOptimizationproposed
by Holthaus and Rajendran (2005), allows a simplification
of the transition rule, as will be presented in the section “The
transition rule #2”. In the case of the pheromone matrix 2,
the problem information is incorporated only at the transition
rule, and the pheromone levels are initialized at themaximum
level. This decision was made to allow the incorporation of
a dynamic makespan value, that changes according the con-
struction of the solution.

The pheromone sets are initialized as shown in Eqs. 13
and 14:

τ 2is = τmax i = 1 . . . n,

s = 0, 1
(13)

τ 1i jk =
{

τmax , if the sequence i j exists in the MDD sequence k = 1 . . . m
τmin , otherwise

(14)

Where:
• τmax and τmin are algorithm parameters

• The MDD sequence is a sequence of jobs obtained
based on the well-known MDD dispatch rule. To per-
form it, the jobs are ordered following the value of
(max {T + pi , di } − T)/wi . In this case, T is the sum
of the processing times of the jobs previously selected.

The transition rule #1

The first transition rule is used to determine which job will
be the next one scheduled. To perform this task, it is applied
a transition rule with no visibility rule associated. The tran-
sition rule, very similar to the one proposed by Holthaus and
Rajendran (2005), is presented in Eq. 15:

r A
i jk = τ 1i jk∑

h∈Allowed H τ 1ihk

(15)

The transition rule #2

Once the next job to be scheduled is known, the transition
rule #2 is applied. This rule determines in which machine
the job must be scheduled in the case of this jib not to be
outsourced. The transition rule #2 is presented in Eq. 16:

r B
i jk = τ 2i jk · η

β
ik∑m

h=1

(
τ 2i jh · η

β
ih

) (16)

Where the visibility rule η
β
ik is defined in Eq. 17:

η
β
ik = 1

(Mk · pi) · wi
(17)

The transition rule #3

The last choice is to determine if a job must be outsourced
or not. To perform this task, the transition rule #3 is applied.
This rule is composed by: (i) an equation to calculate the
probability of the job be performed in the parallel machine
environment (Eq. 18) and (ii) an equation to calculate the
probability of outsourcing the job (Eq. 19). The terms a and b
of Eqs. 18 and 19 are shown in Eqs. 20 and (21), respectively.
Note that this step is just a weighted random rule, and no
memory (pheromone) effect was used.

rC
i0 = a

a + b
(18)

rC
i1 = b

a + b
(19)

a =
(

oi

wi
+ max{0, li − di }

pi

)β

(20)

b =
⎛
⎝ pi(

oi
wi

)
+ max{0, li − di }

⎞
⎠

β

(21)

123

534 J Intell Manuf (2015) 26:527–538

The local search procedure

The local search used refines the solution, moving jobs from
the parallel machine sets to the outsource set if this improves
the objective function. The behavior of this algorithm is pre-
sented in Algorithm 3.

Algorithm 3: The proposed local search algorithm

1 At each nI teractionsLocalSearch iteractions
2 Find the jobs Jik ∈ Sk

π , that, when moved from Sk
π to Oπ ,

promote the higher increase on the objective function on
each machine k = 1, . . . , m.

3 Outsource the jobs found previously

The pheromone update rule

The strategy used to update the pheromone rules of the
sequence-pheromone matrix, used by a large number of the
ACO algorithms presented in the literature (e.g., see Dorigo
et al. 1996) is presented Eq. 22:

τ 1i jk (t + 1) = ρ · τ 1i jk (t) + �τ 1i jk (22)

Where �τ 1i jk is defined in Eq. 23.

�τ 1i jk =
{

τadd If job i is at position j and in machine k
0 otherwise

(23)

Where τadd is a constant value added to the pheromone
value.

The strategy used to update the outsource-pheromone
matrix is presented in Eq. 24:

τ 2is(t + 1) = ρ · τ 2is (t) + �τ 2is (24)

Where �τ 2is is defined in Eqs. 25 and 26:

�τ 2i0 =
{

τadd If job i is processed in the machines
0 otherwise

(25)

�τ 2i1 =
{

τadd If job i is outsourced
0 otherwise

(26)

Computational results

Parameters used

Both solution strategies (mathematical model and ACO)
were implemented and their results compared. The relevant
technical details of the implementations are:

• For each n number of jobs, n={10, 20, 30, 40, 50, 60
and 70} (resulting in 7 problem classes), 20 problem

instances were generated. The problems are specified
as follows: the processing time of the jobs are sampled
from an interval [1,10], the due dates from [0.3*sump,
0.7*sump], where sump is the sum of processing times
of all tasks in the set; the outsourcing costs from [1,40],
the outsource lead times from [1,30] and the available
budget from [50,150]. The number of available machines
was set to m=2. This problem generation setting is very
similar to the one used in a lot of previous works (for
example Tavares Neto and Godinho Filho 2011)

• The mathematical model was implemented in GAMS
2.0.33.5, with solver CPLEX 10, and run in a Core 2 Duo
P8700@2.53GHz processor, with 4GB RAM and exe-
cuting Windows 7. The execution of each instance was
limitated by 1h (3,600s), regardless if the solver could
prove the optimal solution or not. For each instance i , the
best value of the objective function fG AM S(i) and the
time required to obtain this value tG AM S(i) was stored.

• The ACO algorithm was implemented in JAVA, and
run in the same computer using Ubuntu Linux. For
each instance, 10 runs were executed. The algorithm
parameters were established as: τmax = 20, ρ = 0.9,
τadd = 1,β = 1,nI teractionsLocalSearch = 50,
number of ants=100, number of iterations = 300. This
parameters were determined using the following pro-
cedure. For a problem with n = 10, random sampled
from the test instances set, the following values were
tested: τmax = [10, 20, 30], ρ = [0.8, 0.9, 0.95, 0.99],
τadd = (1− ρ) · τmax , β = [1, 2, 5]. The values of num-
ber of ants and number of iterations were set to a larger
value (300 and 600, respectively) and then decreased
until the solution start to deteriorate. Finally, the value
of nI teractionsLocalSearch were set aiming to allow
the local search be executed when the pheromone levels
are stabilized. For each execution e of instance i , the best
value of the objective function f AC O(i, e) and the time
required to obtain this value tAC O(i, e) was stored.

For each execution of each iteration obtained by the ACO,
twomeasurementswere calculated: gap (i, e)=(f AC O (i, e)
− fG AM S (i))/ fG AM S (i) and the average time spent to solve
the instance.

Results

Table 1 presents the average value of gap (i, e) and its stan-
dard deviation, summarized by problem class. A graphical
analysis of such gaps is found on Fig. 2.

Table 2 shows the average time required to process each
instance class. During our experiments, it was found that the
difficulty on solve some instances was higher than in oth-
ers. Table 2 shows the average time required to process each
instance class, as well as the standard deviation. As one can

123

J Intell Manuf (2015) 26:527–538 535

Table 1 Average and standard deviation of the values of gap (i, e)

Number of jobs (n) Gap (Average) (%) Gap (SD) (%)

10 3.9 4.5

20 9.2 14.8

30 8.2 27.0

40 −57.3 14.2

50 −75.4 8.4

60 −81.6 2.3

70 −84.8 2.2

Fig. 2 Graphical analysis of the values of gap (i, e)

notice in this table, when n=10, the time required to solve
using the mathematical programming approach contains a
significantly higher standard deviation than any result from
the ACO. Moreover, the values for the standard deviation for
n>10on themathematical programming is zero, and the aver-
age is 3,600. This means that the upper limit for processing
time of the exact method used is reached in all the instances
with n>10.

From the presented analysis, the following remarks can
be derived:

• For jobs with n=10, 20 and 30, seeing Table 1 (average
gaps), one can notice that themathematical programming
reaches better solution than the ACO algorithm optimal
solution. These average gaps are small, ranging from 3.9
to 9.2. Still regarding these instance sets, Fig. 2 shows
that the dispersion of the gaps for n=10 are significantly
shorter than the ones found for n=20 and n=30. In addi-
tion, the data presented in Fig. 2, allows one to conclude
that the mathematical programming approach shows bet-
ter results thanACO formostly of the instances sets when

Table 2 Time required for processing each problem class (seconds)

Number of
jobs (n)

ACO approach Mathematical
programming approach

Average
time (s)

SD Average
time (s)

SD

10 0.2 0.01578711 1,815 1, 499

20 0.6 0.02555255 3,600 0

30 1.2 0.06094313 3,600 0

40 2.0 0.09435019 3,600 0

50 3.0 0.07265782 3,600 0

60 4.1 0.12696584 3,600 0

70 5.4 0.22329482 3,600 0

n=10 (positive gaps). On the other hand, when n = 20 and
30, the ACO approach shows better results for mostly of
the instances sets.

• For larger instances (n=40, 50, 60 and 70) the mathe-
matical programming strategy could not find the optimal
solution in the time specified (3,600s). For these prob-
lems, the ACO algorithm presented better results than the
mathematical programming approach, with low standard
deviation.

• For medium-sized instances (n= 20 and 30), the ACO
results contain a larger standard deviation. This occurs
mainly because of the high proportional impact of small
changes on the solution (e.g., the relative impact of switch
the position of two tasks in a 20-size problem used to be
larger than the same operation in a 70-size problem). For
instanceswith n=40, 50, 60 and 70, the standard deviation
decreases.

• As expected, the computational times required for the
ACO approach increases accordingly to the size of the
problem. However, this time is significantly lower than
the time required for the mathematical programming
approach (only for n=10, the optimal value was found
within 3,600s)

Conclusions

This paper aims at proposing, implementing and evaluating
an ACO algorithm for the parallel machine scheduling prob-
lem with outsourcing allowed. The goal is to minimize the
sum of outsource and delay costs. The problem can be stated
as Pm/Budget/oc+∑

wi Ti , using a notation based on Gra-
hamet al. (1979). To the best of our knowledge, this is the first
paper to dealwith this problem. Such problemcan be found in
practice in operations management field. Such examples are:

– an environment with parallel machines being bottlenecks
of the production system: in these cases, some jobs can be

123

536 J Intell Manuf (2015) 26:527–538

outsourced in order to relieve some load from the parallel
machines

– a distribution center which performs some activities in
a parallel machine environment and that these activities
can also be outsourced in order to reduce lead time and
prevent delays.

Firstly, a mathematical programming approach was devel-
oped. After this, an ACO algorithm was proposed. This
algorithm is composed of three sequential transition rules,
each one responsible for one different decision: the first one
decides the next job to be scheduled; the second decides the
machine to schedule a job (if the job is performed in-house);
the third decides if the job must be outsourced or not.

The results showed that this algorithm, for instances of
size larger or equal to 20 jobs, could reach better solutions
than the ones found using the mathematical programming
method when this was limited by 1h execution time. More-
over, the times required to reach a solution were significantly
smaller when the ACO is executed. This result, where the
output of natural inspired algorithms reaches better results
than exact mathematical methods (when those are bounded
by time and/or computational resources), is also presented
in the literature. Some examples are: ACO (Tavares Neto
and Godinho Filho 2011), Genetic Algorithms (Chen and Ji
2007), among others (Jin et al. 2013).

Besides the proposition of a NP-Hard scheduling prob-
lem and the proposal of two implementation techniques (a
MIP model and an ACO algorithm), this paper brings an
industrial relevance on the field of operational level decisions
when discuss the problem of allowing partial outsourcing on
a scheduling problem. This issue is a rising trend in the liter-
ature, that is demanding for studies that aims on the formal
definition of the problem (discussed here in the MIP formu-
lation) and optimization techniques that allows one to obtain
results relevant to practical applications.

Some future work that can be developed in the algorithm
itself, especially regarding future advances on the algorithm,
specially aiming to find a pheromone initialization proce-
dure of stages two and three to allow their transition rules be
simplified to Eq. 15.

From the point of view of the problem itself, there are sev-
eral future trends that can be pursued: following the schedul-
ing literature, maybe the logical next step is to add sequence-
dependent setups for the tasks, as well as different character-
izations of the outsourcing problem (e.g., adding a capacity
limit to the supplier, or logistic boundaries).

References

Ali Berrichi, A., & Yalaoui, F. (2013). Efficient bi-objective ant
colony approach to minimize total tardiness and system unavail-

ability for a parallel machine scheduling problem. International
Journal of Advanced Manufacturing Technology,. doi:10.1007/
s00170-013-4841-0.

Antelo, M., & Bru, L. (2010). Outsourcing or restructuring: The
dynamic choice. International Journal of Production Economics,
123, 1–7.

Arenales, M., Armentano, V., Morabito, R., & Yanasse, H. (2007).
Pesquisa operacional. [S.l.]. Amsterdam: Elsevier.

Arnaout, J. (2013). Ant colony optimization algorithm for the Euclid-
ean location-allocation problem with unknown number of facilities.
Journal of Intelligent Manufacturing, 24(1), 45–54.

Arnaout, J., Musa, R., & Rabadi, G. (2008). Ant colony optimization
algorithm to parallel machine scheduling problem with setups. In
4th IEEE Conference on Automation Science and Engineering.

Arnaout, J., Musa, R., & Rabadi, G. (2012). A two-stage ant colony
optimization algorithm to minimize the makespan on unrelated par-
allel machines-part II: Enhancements and experiments. Journal of
Intelligent Manufacturing. doi:10.1007/s10845-012-0672-3.

Arnaout, J., Rabadi, G.,&Musa, R. (2009). A two-stage ant colony opti-
mization algorithm to minimize the makespan on unrelatedparallel
machines with sequence-dependent setup times. Journal of Intelli-
gent Manufacturing.

Arnaout, J., Rabadi, G.,&Musa, R. (2010). A two-stage ant colony opti-
mization algorithm to minimize the makespan on unrelated parallel
machines with sequence-dependent setup times. Journal of Intelli-
gent Manufacturing, 21(6), 693–701.

Baker, K. R., & Bertrand, J. W. M. (1982). A dynamic priority rule for
scheduling against due-dates. Journal of Operations Management,
3, 37–42.

Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., & Stougie,
L. (2000). Multiprocessor scheduling with rejection. SIAM Journal
on Discrete Mathematics, 13, 64–78.

Bauer, A., Bullnheimer, B., Hartl, R. F., & Strauß, C. (1999). Applying
ant colony optimization to solve the single machine total tardiness
problem. Report Series SFB “Adaptive Information Systems and
Modelling in Economics andManagement Science”, 42. SFBAdap-
tive Information Systems andModelling in Economics andManage-
ment Science, WU Vienna University of Economics and Business,
Vienna.

Behnamian, J., & Zandieh, M. (2009). Parallel-machine scheduling
problems with sequence-dependent setup times using an aco, sa
and vns hybrid algorithm. Expert Systems with Applications, 36(6),
9637–9644.

Bertrand, J. W. M., & Sridharan, V. (2001). A study of simple rules for
subcontracting in make-to-order manufacturing. European Journal
of Operational Research, 128(3):509–531.

Boulaksil, Y.,&Fransoo, J. C. (2009). Order release strategies to control
outsourced operations in a supply chain. International Journal of
Production Economics, 119, 149–160.

Brucker, P. (2007). Scheduling algorithms. [S.l.] (5th ed.). Berlin, Hei-
delberg: Springer.

Bullnheimer, B., Hartl, R., & Strauss, C. (1999). An improved ant sys-
tem algorithm for the vehicle routing problem. Annals of Operations
Research, 89, 319–318.

Chang, P.-T., Lin, K.-P., Pai, P.-F., Zhong, C.-Z., Lin, C.-H., &
Hung, L.-T. (2008). Ant colony optimization system for a multi-
quantitative and qualitative objective job-shop parallel-machine-
scheduling problem. International Journal of Production Research,
46(20), 5719–5759.

Chen, K. J., & Ji, P. (2007). Development of a genetic algorithm for
scheduling products with a multi-level structure. International Jour-
nal of Advanced Manufacturing Technology, 33, 1229–1236.

Chen, Z.-L., & Li, C.-L. (2008). Scheduling with subcontracting
options. IIE Transactions, 40, 1171–1184.

Chung, D., Lee, K., Shin, K., & Park, J. (2005). A new approach to
job shop scheduling problems with due date constraints considering

123

http://dx.doi.org/10.1007/s00170-013-4841-0
http://dx.doi.org/10.1007/s00170-013-4841-0
http://dx.doi.org/10.1007/s10845-012-0672-3

J Intell Manuf (2015) 26:527–538 537

operating subcontracts. International Journal of Production Eco-
nomics, 98, 238–250.

Chung, D., & Choi, B. (2012). Outsourcing and scheduling for two-
machine ordered flow shop scheduling problems. European Journal
of Operational Research, 226(1), 46–52.

Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed optimiza-
tion by ant colonies. Paris: European Conference of Artificial Life.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Opti-
mization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics-Part B, 26, 29–41.

Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. A bradfort
book. Cambridge: MIT Press.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A
survey. Theoretical Computer Science, 344(2–3), 243–278.

Dowsland, K. A., & Thompson, J. M. (2005). Ant colony optimization
for the examination scheduling problem. Journal of the Operational
Research Society, 56, 426–438.

Engels, D. W., Karger, D. R., Kolliopoulos, S. G., Sengupta, S., Uma,
R. M., & Wein, J. (2003). Techniques for scheduling with rejection.
Journal of Algorithms, 49, 175–191.

Gajpal, Y., & Rajendran, C. (2006). An ant-colony optimization algo-
rithm for minimizing the completion-time variance of jobs in flow-
shops. International Journal of Production Economics, 101, 259–
272.

Gambardella, L. M., & Dorigo, M. (2000). An ant colony system with
a new local search for the sequential ordering problem. INFORMS
Journal on Computing, 12, 237–255.

Gonzalez, R., Gasco, J., & Llopis, J. (2006). Information systems out-
sourcing: A literature analysis. Information and Management, 43,
821–834.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R.
(1979). Optimization and approximation in deterministic machine
scheduling: A survey. Annals of Discrete Mathematics, 5, 287–
326.

Holthaus, O., & Rajendran, C. (2005). A fast ant-colony algorithm for
single-machine scheduling to minimize the sum of weighted tardi-
ness of jobs. Journal of the Operational Research Society, 56, 947–
953.

Huang, R., Yang, C., & Cheng,W. (2013). Flexible job shop scheduling
with due window—a two-pheromone ant colony approach. Interna-
tional Journal of Production Economics, 141(2), 685–697.

Jin, X., Li, K., & Sivakumar, A. I. (2013). Scheduling and optimal
delivery time quotation for customers with time sensitive demand.
International Journal of Production Economics, Article in Press.

Keskinturk, T., Yildirim, M. B., & Barut, M. (2012). An ant colony
optimization algorithm for load balancing in parallel machines
with sequence-dependent setup times. Computers and Operations
Research, 39(6), 1225–1235.

Kumar, R., & Allada, V. (2007). Scalable platforms using ant colony
optimization. Journal of Intelligent Manufacturing, 18(1), 127–
142.

Lee, Y. H., Jeong, C. S., & Moon, C. (2002). Advanced planning and
scheduling with outsourcing in manufacturing supply chain. Com-
puters and Industrial Engineering, 43, 351–374.

Lee, I. S., & Sung, C. S. (2008a). Minimizing due date related measures
for a single machine scheduling problem with outsourcing allowed.
European Journal of Operational Research, 186, 931–952.

Lee, I. S., & Sung, C. S. (2008b). Single machine scheduling with
outsourcing allowed. International Journal Production Economics,
111, 623–634.

Lee, K., & Choi, B. (2011). Two-stage production scheduling with an
outsourcing option.European Journal of Operational Research, 213,
489–497.

Lee, H.-Y. (2012). Renovation scheduling to minimize user impact of
a building that remains in operation. Automation in Construction,
22(1), 398–405.

Leung, J. Y.-T., & Anderson, J. H. (2004). Handbook of scheduling:
Algorithms, models, and performance analysis (1224 p) Chapman
& Hall/CRC.

Liao, C.-J., & Juan, H.-C. (2007). An ant colony optimization for single-
machine tardiness scheduling with sequence-dependent setups.
Computers & Operations Research, 34(7), 1899–1909.

Lin, C.-W., Lin, Y.-K., & Hsieh, H.-T. (2013a). Ant colony opti-
mization for unrelated parallel machine scheduling. International
Journal of Advanced Manufacturing Technology, doi:10.1007/
s00170-013-4766-7.

Lin,B., Lu,C., Shyu, S.,&Tsai,C. (2008).Development of new features
of ant colony optimization for flowshop scheduling. International
Journal of Production Economics, 112(2), 742–755.

Liu, X.-J., & Yi, Hong. (2013b). Application of ant colony optimization
algorithm in process planning optimization. Journal of Intelligent
Manufacturing, 24(1), 1–13.

Marimuthu, S., Ponnambalam, S. G., & Jawahar, N. (2009). Thresh-
old accepting and ant colony optimization algorithms for schedul-
ing m-machine flow shops with lot streaming. Journal of Materials
Processing Technology, 209, 1026–1041.

Merkle, D., & Middendorf, M. (2000). An ant algorithm with a
new pheromone evaluation rule for total tardiness problems. In S.
Cagnoni, R. Poli, Y. Li, B. Paechter, & T. C. Fogarty (Eds.), Real-
world applications of evolutionary computing. EvoWorkshops 2000:
EvoIASP, EvoSCONDI, EvoTel, EvoSTIM, EvoROB, and EvoFlight
(pp. 287–296). London, UK: Springer-Verlag.

Mokhtari, H., & Abadi, I. N. K. (2013). Scheduling with an outsourc-
ing option on both manufacturer and subcontractors. Computers &
Operations Research, 40(5), 1234–1242.

Monch, L. (2008). Heuristics to minimize total weighted tardiness of
jobs on unrelated parallel machines. In 4th IEEE international con-
ference on automation science and engineering, Washington DC,
USA, August 23–26.

Pinedo, M. L. (2009). Planning and scheduling in manufacturing and
services. [S.l.], 2nd edition. Berlin: Springer p. 555.

Pinedo, M. L. (2012). Scheduling: Theory, algorithms and systems, 4th
Edition (693 p), Berlin: Springer.

Prakash, A., Tiwari,M. K., & Shankar, R. (2008). Optimal job sequence
determination and operation machine allocation in flexible manufac-
turing systems: An approach using adaptive hierarchical ant colony
algorithm. Journal of Intelligent Manufacturing, 19(2), 161–173.

Qi, X. (2008). Coordinated logistics scheduling for in-house produc-
tion and outsourcing. IEEE Transactions on Automation Science and
Engineering, 5(1), 188–192.

Qi, X. (2009). Two-stage production scheduling with an option of out-
sourcing from a remote supplier. Journal of Systems Science and
Systems Engineering, 18(1), 1–15.

Qi, X. (2011). Outsourcing and production scheduling for a two-stage
flow shop. International Journal of Production Economics, 129(1),
43–50.

Raghavan, N. R. S., & Venkataramana, M. (2006). Scheduling parallel
batch processors with incompatible job families using ant colony
optimization. In Proceedings of the 2006 IEEE international confer-
ence on automation science and engineering. Shangai, China, Octo-
ber 7–10.

Raghavan, N. R. S., & Venkataramana, M. (2009). Parallel proces-
sor scheduling for minimizing total weighted tardiness using ant
colony optimization. International Journal of Advanced Manufac-
turing Technology, 41, 986–996.

Ruiz-Torres, A. J., Ho, J. C., & López, F. J. (2006). Generating Pareto
schedules with outsource and internal parallel machines. Interna-
tional Journal of Production Economics, 103, 810–825.

Samrout, M., Kouta, R., Yalaoui, F., Chatelet, E., & Chebbo, N. (2007).
Parameter′s setting of the ant colony algorithm applied in preven-
tivemaintenance optimization. Journal of Intelligent Manufacturing,
18(6), 663–677.

123

http://dx.doi.org/10.1007/s00170-013-4766-7
http://dx.doi.org/10.1007/s00170-013-4766-7

538 J Intell Manuf (2015) 26:527–538

Sankar, S. S., Ponnambalam, S. G., Rathinavel, V., & Visveshvaren, M.
S. (2005). Scheduling in parallel machine shop: an ant colony opti-
mization approach. Proceedings of IEEE International Conference
on Industrial Technology, 2005, 276–280.

Shyu, S., Lin, B., & Yin, P. (2004). Application of ant colony opti-
mization for no-wait flowshop scheduling problem to minimize the
total completion time. Computers and Industrial Engineering, 47,
181–193.

Stutzle, T., & Hoos, H. H. (2000). Max-min ant system. Future Gener-
ation Computer Systems, 16(9), 889–914.

Tavares Neto, R. F., & Godinho Filho, M. (2011). An ant colony opti-
mization approach to a permutational flowshop scheduling problem
with outsourcing allowed. Computers and Operations Research, 38,
1286–1293.

Tavares Neto, R. F., & Godinho Filho, M. (2012). Literature review
regarding ant colony optimization applied to scheduling problems:
Guidelines for implementation and directions for future research.
Engineering Applications of Artificial Intelligence. doi:10.1016/j.
engappai.2012.03.011.

Tavares Neto, R. F., & Godinho Filho, M. (2013). Literature review
regarding ant colony optimization applied to scheduling problems:
Guidelines for implementation and directions for future research.
Engineering Applications of Artificial Intelligence, 26(1), 150–161.

Xu, R., Chen, H., & Li, X. (2012). Makespan minimization on single
batch-processing machine via ant colony optimization. Computers
and Operations Research, 39(3), 582–593.

Yadav, V., & Gupta, R. K. (2008). A paradigmatic and methodological
review of research in outsourcing. Information Resources Manage-
ment Journal, 21(1), 27–43.

Zapfel, G., & Bogl, M. (2008). Multi-period vehicle routing and crew
scheduling with outsourcing options. International Journal of Pro-
duction Economics, 113, 980–996.

Zhou, H., Li, Z., & Wu, X. (2007a). Scheduling unrelated parallel
machine to minimize total weighted tardiness using ant colony
optimization. In Proceedings of IEEE international conference on
automation and logistics, Jinan, China, August 18–21.

Zhou, R., Lee, H. P., & Nee, A. Y. C. (2008). Applying ant colony
optimization algorithm to dynamic job shop scheduling problems.
International Journal of Manufacturing Research, 3(3), 301–320.

Zhuo, X., Zhang, J., & Chen, W. (2007b). A new pheromone design in
acs for solving jsp. In Proceedings of IEEE congress on evolutionary
computation, 25–28 September, Singapore.

123

http://dx.doi.org/10.1016/j.engappai.2012.03.011
http://dx.doi.org/10.1016/j.engappai.2012.03.011

	An ant colony optimization approach for the parallel machine scheduling problem with outsourcing allowed
	Abstract
	Introduction
	Literature review
	An ant colony optimization approach
	The literature about ACO applied to the parallel scheduling problem
	The literature about scheduling problems with outsourcing allowed

	Problem definition
	A mathematical programming approach for the problem
	The proposed algorithm
	Pheromone initialization
	The transition rule #1
	The transition rule #2
	The transition rule #3
	The local search procedure
	The pheromone update rule

	Computational results
	Parameters used
	Results

	Conclusions
	References

