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Abstract This paper proposes a hierarchical hybrid par-
ticle swarm optimization (PSO) and differential evolution
(DE) based algorithm (HHPSODE) to deal with bi-level pro-
gramming problem (BLPP). To overcome the shortcomings
of basic PSO and basic DE, this paper improves PSO and
DE, respectively by using a velocity and position modu-
lation method in PSO and a modified mutation strategy in
DE. HHPSODE employs the modified PSO as a main pro-
gram and themodifiedDE as a subprogram. According to the
interactive iterations of modified PSO and DE, HHPSODE
is independent of some restrictive conditions of BLPP. The
results based on eight typical bi-level problems demonstrate
that the proposed algorithmHHPSODE exhibits a better per-
formance than other algorithms. HHPSODE is then adopted
to solve a bi-level pricing and lot-sizing model proposed in
this paper, and the data is used to analyze the features of the
proposed bi-level model. Further tests based on the proposed
bi-level model also exhibit good performance of HHPSODE
in dealing with BLPP.

Keywords Bi-level programming problem · Hierarchical ·
Particle swarm optimization ·Differential evolution · Pricing
and lot-sizing

Introduction

Bi-level programming techniques aim to deal with decision
problems involving two decision makers with a hierarchical
structure (Calvete and Galé 2011). Both of these twodecision
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makers seek to optimize their individual objective functions
and control their own set of decision variables. The leader at
the upper level of the hierarchy first specifies a strategy, and
then the follower at the lower level of the hierarchy speci-
fies a strategy so as to optimize the objective functions with
full knowledge of the action of the leader. Bi-level program-
ming techniques have been successfully applied to many dif-
ferent areas (Gao et al. 2011), such as mechanics, decen-
tralized resource planning, electric power markets, logistics,
civil engineering, and road network management and so on.

Bi-level programming problem (BLPP) has been proved
to be a NP-hard problem (Jeroslow 1985) which is very dif-
ficult to solve. However, the bi-level programming is used so
widely that there are many researchers focusing on BLPP,
and several different kinds of methods have been devel-
oped to solve this problem. The main methods for solving
linear bi-level programming problems can be divided into
the following four categories (Hejazia et al. 2002): Meth-
ods based on vertex enumeration; methods based on Kuhn–
Tucker conditions; fuzzy approach and methods based on
meta-heuristics, such as genetic algorithm based approaches,
simulated annealing based approaches, and so on. It needs to
be pointed out that methods based on vertex enumeration and
Kuhn–Tucker conditions have some limitations for solving
BLPPs as they rely on the differentiability of the objective
function, the convexity of search space, etc. Methods based
on meta-heuristics, however, are independent of these limit-
ing conditions and are suitable for solving highly complex
nonlinear problems which traditional search algorithms can-
not solve. In reality, most BLPPs are not merely linear prob-
lems. There are much more complex bi-level programming
problems: nonlinear bi-level decision problems, multi-leader
bi-level decision problems, multi-follower decision bi-level
problems, multi-objective bi-level decision problems, fuzzy
bi-level decision problems (Gao et al. 2011), and so on. Thus,
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it is important to develop effective and efficient methods to
solve these problems.

Because of their inherent merits, meta heuristics have
been widely applied to solve BLPPs. Genetic algorithms
have been developed in Calvete et al. (2008), Hejazia et al.
(2002), Li et al. (2010), tabu search is applied in Lukač et
al. (2008), Rajesh et al. (2003), Wen and Huang (1996), sim-
ulated annealing is applied in Sahin and Ciric (1998) and
neural network approach is proposed in Lan et al. (2007),
Shih et al. (2004). Bi-level differential evolution algorithms
are developed in Vincent et al. (2012). Particle swarm opti-
mization algorithm is developed for solving bi-level pro-
gramming problem in Gao et al. (2011), Kuo and Huang
(2009), Li et al. (2006).

Supply chain is a complex hierarchical system, which
contains many different interest participants, such as suppli-
ers, manufacturers, distributors, retailers and end customers.
These members compose a long and hierarchical chain. Each
of the members in the chain independently controls a set
of decision variables, disjoint from the others, and need to
make decisions based on their own interests, while still con-
sidering the choice of the others, as the others’ decisions
will have an influence on their own interests. Therefore, it is
especially suitable to adopt BLPP to deal with supply chain
management (SCM) problems. As two of the most important
problems in SCM, the decision of pricing and lot-sizing play
important roles in optimizing profits in a supply chain. There
are many studies that have focused on pricing and lot-sizing
problems (Abad 2003; Guan and Liu 2010; Kébé et al. 2012;
Li and Meissner 2011; Lu and Qi 2011; Raa and Aghezzaf
2005; Yıldırmaz et al. 2009). The literature considers pric-
ing and lot-sizing problems by using the traditional modeling
methods, which may neglect the fact that a supply chain is
a hierarchical system, and there is little literature on pric-
ing and lot-sizing policies based on BLPP. Marcotte et al.
(2009) considered the characterization of optimal strategies
for a service firm acting in an oligopolistic environment, and
the decision problem is formulated as a leader-follower game
played on a transportation network. Dewez et al. (2008) and
Gao et al. (2011) also established bi-level models for pricing
problems.

This paper proposes a hierarchical hybrid particle swarm
optimization (PSO) and differential evolution (DE) based
algorithm (HHPSODE) to deal with BLPP. Unlike most
problem-dependent algorithms designed for specific versions
or based on specific assumptions, the proposed algorithm
HHPSODE is a hierarchical algorithm, which solves BLPP
iteratively by a modified PSO and a modified DE. On the one
hand, in each iterative process of PSO, the particles some-
times may move too far away from the problem’s feasible
region, and this may lead to a local optimal solution. In the
modified PSO, a velocity and position modulation method is
applied to the movement of particles in order to guide them

within the region of interest, which can help the PSO main-
tain a faster convergence speed and global convergence. On
the other hand, to overcome the shortcomings of basic DE,
this paper adopts a modified mutation strategy. Combining
the advantages of DE/rand and DE/best, the modified muta-
tion strategy has the properties of fast convergence property
and not falling easily into premature convergence. Accord-
ing to the interactive iterations of themodifiedPSOalgorithm
and DE algorithm, HHPSODE can solve the BLPP without
any specific assumption or any transformation of the objec-
tive or constraints functions. Then eight benchmark bi-level
problems from the related literature are employed to test the
performance of the proposed algorithm HHPSODE, and the
results demonstrate that the proposed algorithm HHPSODE
shows better performance than other algorithms.

Because there is little literature on pricing and lot-sizing
policies based on BLPP, this paper establishes a bi-level pric-
ing and lot-sizing model. Then HHPSODE is employed to
solve the bi-level model, and the features of the model are
analyzed based on the data solved by HHPSODE. Finally,
based on the proposed bi-level model, we do a further test
to illustrate the performance of HHPSODE, and the results
also exhibit good performance of HHPSODE in dealing with
BLPP.

Following the introduction in “Introduction” section, the
rest of this paper is organized as follows. “Background” sec-
tion briefly describes the basic concept of BLPP, PSO and
DE. “Algorithm design” section develops a hybrid algorithm
HHPSODE for solving BLPP. Numerical experiments are
shown in “Numerical experiments” section to demonstrate
the performance of HHPSODE. “An application on pric-
ing and lot-sizing decisions” section gives an application of
BLPP on SCM and also analyzes the features of the pro-
posed bi-level model. Finally, the conclusions are given in
“Conclusion” section.

Background

Basic model of BLPP

In the BLPP, two decision makers are involved. The lower
level decision maker optimizes his objective function under
the given parameters from the upper level decision maker.
General model of BLPP can be formulated as follows:

min
x∈X f1(x, y)

s.t. G(x, y) ≤ 0

where, for given x, the vector y solves

min
y∈Y f2(x, y)

s.t. g(x, y) ≤ 0 (1)

123



J Intell Manuf (2015) 26:471–483 473

where, x ∈ X ⊂ Rn1, y ∈ Y ⊂ Rn2 . x is the vector of
variables controlled by the leader (upper level variables), and
y is the vector of variables controlled by the follower (lower
level variables). f1(x, y) and f2(x, y) are the leader’s and
the follower’s objective functions, respectively. G(x, y) ≤ 0
and g(x, y) ≤ 0 are corresponding constraints of the upper
and lower level problems.

In formal terms, the bi-level programming problems are
mathematical programs in which the subset of variables y is
required to be an optimal solution of another mathematical
program parameterized by the remaining variables x .

Basic PSO

As a typical model of swarm intelligence (SI) and a new
evolutionary algorithm based on SI, PSO has gained wide
attention among SI researchers since it was proposed by
Kennedy and Eberhart (1995). Because PSO is easy to imple-
ment with only a few parameters to adjust, it has been applied
successfully to many different areas, such as combinatorial
problems (Belmecheri et al. 2012), electric power systems
(Sadeghierad et al. 2010), neural network systems (Gaitonde
and Karnik 2012), fuzzy systems control (Bingül and Kara-
han 2011), industry fields (Chu and Hsieh 2012) and many
other various applications (Chan and Tiwari 2007).

Particle swarm optimization consists of a swarm of parti-
cles without quality and volume. Each particle represents a
candidate solution. In each iteration, the particle will track
two extreme values: One is the best solution of each parti-
cle gained so far, which represents the each particle’s cog-
nition level; the other is the overall best solution gained
by any particle in the population so far, which represents
society’s cognition level. PSO supposes that there are N
particles in the D dimensions. xi = (xi1, xi2, . . . , xiD)

and vi = (vi1, vi2, . . . , vi D) represent the particle’s posi-
tion and velocity, respectively. pi = (pi1, pi2, . . . , piD)

denotes the best position that the particle has visited.pg =
(pg1, pg2, . . . , pgD) denotes the best position that the swarm
has visited. The particles are manipulated according to the
equations below:

vid(t + 1) = wvid(t) + c1r1(pid(t) − xid(t))

+c2r2(pgd(t) − xid(t)) (2)

xid(t + 1) = xid(t) + vid(t + 1) (3)

where, 1 ≤ d ≤ D, 1 ≤ i ≤ N , c1 and c2 are non-negative
constants, which are called the cognitive and social parame-
ter. r1 and r2 are two random numbers, which are uniformly
distributed in the range (0,1). w denotes the inertia weight,
which plays an important role in balancing global search
ability and local search ability of PSO.

Shi and Eberhart (1999) proposed the linearly decreasing
strategy as follows:

w(t) = wmin + (wmax − wmin) ·
(
Tmax − t

Tmax

)
(4)

where, the superscript t denotes the t th iteration, and Tmax

denotes the iteration’s maximum number. wmin and wmax,
respectively denote the minimum and maximum of original
inertia weight.

Basic DE

Differential evolution algorithm, proposed byStorn andPrice
(1997), has become a popular and effective algorithm for its
many attractive characteristics, such as compact structure,
ease of use, fast convergence speed and robustness. Thanks
to these features, DE has been applied to solve problems
in many scientific and engineering fields (Plagianakos et al.
2008), such as technical systemdesign (Storn 1999), schedul-
ing problem (Vincent et al. 2012), pattern recognition (Ilonen
et al. 2003) and so on.

Assume that the population of the standard DE algorithm
contains ND-dimensional vectors. Then the i th individual in
the population could be presented with a D-dimensional vec-
tor. The basic operators in classical DE include the following
five steps (Price et al. 2005):

1. Initialization: Input the population size N , the scaling fac-
tor F ∈ [0, 2] and the crossover rate CR ∈ [0, 1]. Then
individuals in first generation are generated randomly:

yi (0) = (yi1(0), yi2(0), . . . , yiD(0))

2. Evaluation: For each individual yi (t), evaluate its fitness
value f i t (yi (t)).

3. Mutation: The most frequently used mutation strategies
implemented in the basic DE are (Zhao et al. 2011):

DE/rand/1 : vyid(t) = yr1d(t) + F · (yr2d(t)

−yr3d(t))

DE/best/1 : vyid(t) = ybestd(t) + F · (yr1d(t)

−yr2d(t))

DE/rand − to − best/1 : vyid(t) = yr1d(t)

+F · (ybestd(t) − yr2d(t)) + F · (yr3d(t) − yr4d(t))

DE/best/2 : vyid(t) = ybestd(t) + F · (yr1d(t)

−yr2d(t)) + F · (yr3d(t) − yr4d(t))

DE/rand/2 : vyid(t) = yr1d(t) + F · (yr2d(t)

−yr3d(t)) + F · (yr4d(t) − yr5d(t))

where, d = 1, 2, . . . , D. The indices r1, r2, r3, r4, r5 ∈
{1, 2, . . ., N } are mutually exclusive integers randomly
generated, which are also different from the index i .
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4. Crossover: Crossover operator is designed to increase
the diversity of the population. First, an integer drand ∈
{1, 2, . . ., D} is generated randomly. Then, we have the
trail vector uyi (t) = (uyi1(t), uyi2(t), . . . , uyi D(t)) by
the following equation:

uyid(t) =
{
vyid(t), if rand[0, 1] ≤ CR or d = drand
yid(t), otherwise

d = 1, 2, . . . , D
(5)

5. Selection: Selection operates by comparing the individ-
uals’ fitness value to generate the next generation popu-
lation:

yi (t + 1) =
{
yi (t), if f i t (yi (t)) < f i t (uyi (t))
uyi (t), otherwise

(6)

Algorithm design

Similar to other intelligent algorithms, both basic PSO and
DE have some shortcomings: stagnation and premature con-
vergence. Therefore, one of the most important topics is to
designmore effective search strategies to enhance the perfor-
mance of basic PSO and DE. Many researchers have made
many attempts to solve these problems. For PSO, Janson
and Middendorf (2005) arranged the particles in a dynamic
hierarchy according to the quality of their so-far best-found
solution, and the resultwas improved performance onmost of
the benchmark problems considered. García-Nieto and Alba
(2011) proposed a velocity modulation method and a restart-
ing mechanism to enhance scalability of PSO. Belmecheri et
al. (2012) proposed a PSO with a local search strategy, and
the approach has shown its effectiveness on several combi-
natorial problems. For DE, Zhao et al. (2011) proposed an
improved self-adaptive DE to solve large-scale continuous
optimization problems. Vincent et al. (2012) developed dif-
ferent variants of the bi-level differential evolution (BiDE)
algorithms. Cai et al. (2012) proposed a learning-enhanced
DE (LeDE) that encourages individuals to exchange infor-
mation systematically.

In this section, we introduce a modified velocity and posi-
tion modulation of PSO and a modified mutation strategy
of DE to improve performance of basic PSO and DE. Then,
a constraint handling mechanism is presented. Lastly, the
framework of HHPSODE for solving BLPP is given. Note
that all the pseudo-codes used in the following algorithms
are designed for the minimization problem.

A modified PSO

This section employs a velocity and position modulation
method to guide the particles within the region of interest
(García-Nieto and Alba 2011). In each iterative process of

PSO, the particles sometimes move too far away from the
problem’s feasible region, and this may lead to a local opti-
mal solution. To enhance scalability and ensure global con-
vergence of PSO, this paper restricts the particle’s movement
to the feasible region of the problem by using velocity and
position modulation as shown in Algorithm 1.

In Algorithm 1, xdlow and xdupp denote the dth dimension
lower and upper bound of the decision variable x . vidnew and
xidnew denote the new velocity value and the new position of
i th particle in dth dimension.

The procedure can be explained as follows:
After calculating the new velocity value vidnew accord-

ing to Eqs. (2) and (4) in “Basic PSO” section, the veloc-
ity vector magnitude is bounded (line 2–6), which prevents
the given particle from moving far from the area of interest.
Then, once the new velocity vid(t + 1) is obtained, the new
particle position xidnew is calculated according to Eq. (3) in
“Basic PSO” section, and the new position xidnew should not
exceed the problem limits (xdlow, xdupp). If xidnew exceeds
(xdlow, xdupp), the new position is recalculated by subtract-
ing the newvelocity from the old particle position (line 7–12).

A modified mutation in DE

Themost frequently usedmutation strategies implemented in
the basicDEhave some shortcomings. For example, DE/rand
may have slower convergence than DE/best, while DE/best
may fall easily into premature convergence. For this rea-
son, this paper adopts a modified mutation strategy named
”DE/rand-to-best” by combining the advantages of DE/rand
and DE/best, which has a fast convergence property and does
not easily fall into premature convergence. The proposed
modified mutation strategy first establishes an archive in the
operation process of DE (Zhao et al. 2011). The archive is
initiated as empty, then, after eachgeneration, the parent solu-
tions that fail in the selection process are added to the archive.
If the archive size exceeds the population size N , then some
solutions are randomly removed from the archive to keep the
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archive size at N . The archive provides information about
the evolution path and improves the diversity of the popula-
tion. Compared with DE/rand and DE/best, DE/rand-to-best
benefits from its fast convergence and strong global search
ability by incorporating best solution information in the evo-
lutionary search and keeping the diversity of the population.
The proposed mutation strategy is generated as follows:

vyid(t) = yr1d(t) + F · (ybestd(t) − yr2d(t))

+F · (yr3d(t) − ỹr4d(t)) (7)

where, yr1d , yr2d and yr3d are individuals randomly selected
from the current population, ybestd is the best individual of the
current population. ỹr4d is randomly chosen from the union
of the current population and the archive. The pseudo-code
of the modified mutation strategy is below:

4

∼

Constraint handling mechanism

For BLPP (1), both the upper and the lower level pro-
gramming problems are standard constraint optimization
problems without considering the information interaction
between the leader and the follower. However, the constraint
handlingmechanism is very important for the constraint opti-
mization problem. To this end, we adopt a penalty function
based technique to deal with the constraints.

Considering the constraint optimization problem below:

min f (x)

s.t. gi (x) ≤ 0, i = 1, 2, . . . p

where, S denotes search space, x ∈ S, S ⊆ Rπ .
By using a penalty factor, the above problem can be trans-

formed into the following problem:

min F(x) = f (x) + M ·
p∑

i=1

(max{gi (x), 0})2

where, M is a pre-set and sufficiently large positive constant
called penalty factor.

Without loss of generality, we take the lower level pro-
gramming problem as a single independent constraint opti-
mization problem to describe the constraint handling tech-
nique. We suppose that there are p inequality constraints
in the lower level programming problem, and the deci-
sion variable of the upper level programming problem, x ,
is given. In the search space, a particle which satisfies
the constraints is called a feasible particle, otherwise it is
called an infeasible particle. In this condition, we can cal-
culate all particles’ fitness according to the following equa-
tions

fit(x, y) =
{
f (x, y), if y ∈ �(x)
F(x, y), if y ∈ S\�(x)

(8)

F(x, y) = f (x, y) + M ·
p∑

i=1

(max{gi (x, y), 0})2 (9)

where, S is the search space, and �(x) is the feasible set of
the lower level programming problem.

The steps of HHPSODE to solve BLPP

This section presents the solution procedure of HHPSODE
for solving BLPP. HHPSODE is consisted of amodified PSO
algorithm based main program and a modified DE algorithm
based subprogram.Algorithm2 andAlgorithm3 are themain
program and the subprogram. In addition, Fig. 1 is a flow
chart of themain program to illustrateHHPSODE intuitively.
Details are shown below.
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Fig. 1 Flow chart of HHPSODE

4

∼

Example

To explain the hybrid algorithmHHPSODE, we have chosen
to apply HHPSODE on an example (take the test problem T5
for example) where the data are presented in Tables 6 and 7.
The details of solving process are as follows:

Numerical experiments

To illustrate the performance of HHPSODE, we adopt eight
typical bi-level problems including four bi-level linear pro-
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Table 1 Parameters setting of
GA, PSO and HPSOBLP (Kuo
and Huang 2009; Li et al. 2006)

Algorithm GA PSO HPSOBLP

Parameter Population: 20 Population: 20 Population: 20, 40

Crossover rate: 0.8 vmax : 10 c1 = c2 = 2.0

Mutation rate: 0.1 Inertial weight: 1.2 − 0.2 Inertial weight: 1.2 − 0.1

Generations: 200 Iterations: 200 Generations: 120, 30

Table 2 Comparisons of the
best-found results of T1–T4
based on three different
algorithms

Test problems Upper level’s objective f1 Lower level’s objective f2

HHPSODE GA PSO HHPSODE GA PSO

T1 85.6727 85.0551 85.0700 −48.9591 −50.16937 −50.1745

T2 11.0032 10.9968 10.9998 −11.0032 −10.9968 −10.9998

T3 15.9958 15.9917 16 −3.9996 −3.94636 −4

T4 29.2059 29.1480 29.1788 −3.3295 −3.1930 −3.1977

Table 3 Comparisons of the
average-found results of T1–T4
based on three different
algorithms

Test problems Upper level’s objective f1 Lower level’s objective f2

HHPSODE GA PSO HHPSODE GA PSO

T1 85.2632 84.65781 84.85119 −49.9931 −50.03023 −50.0781

T2 10.9932 10.8082 10.9961 −10.9932 −10.8082 −10.9961

T3 15.9729 15.82567 15.98811 −3.9965 −3.946363 −3.99634

T4 27.2975 21.52948 24.81256 −3.1844 −3.39072 −3.1977

gramming problems (Kuo and Huang 2009) and four bi-level
nonlinear programming problems (Li et al. 2006) to test the
algorithmHHPSODE, and thenwecompareHHPSODEwith
other algorithms.

Parameters setting of HHPSODE: Iterations Tmax1 =
Tmax2 = 100; population size N1 = N2 = 20; learning fac-
tors c1 = c2 = 2.0;maximum inertiaweightwmax = 0.9 and
minimum inertia weightwmin = 0.4; scaling factor F = 0.5;
crossover rateCR=0.9; penalty factorM =100,000. The para-
meters setting of related algorithms proposed in the literature
(Kuo and Huang 2009; Li et al. 2006) are given in Table 1.

GA and PSO are different algorithms mentioned in Kuo
and Huang (2009). HPSOBLP, TRM (trust region method)
and Original are different algorithms mentioned in Li et
al. (2006). All computational experiences for the examples
were implemented on the IBM E420 laptop with Windows 7
(Intel�CoreTM i3 Duo CPU, 2GB of RAM).

For each BLPP, we execute HHPSODE 20 times inde-
pendently, and record the best and the average results. Note
that BLPPs always take the leader’s interest as a priority. In
addition, the goals of the four linear BLPPs (T1–T4) are to
maximize their objective functions, and the goals of the four
non-linear BLPPs (T5–T8) are to minimize their objective
functions. Thus for T1–T4, the larger realization of f1 (the
upper level objective function) the better results we have,

and for T5–T8, the smaller realization of f1 (the upper level
objective function) the better results we have.

Comparisons of the best and average-found results of T1–
T4 based on three different algorithms (HHPSODE, GA,
PSO) are respectively given in Tables 2 and 3. Correspond-
ing best and average decision variables’ solutions are given
in Tables 4 and 5, respectively.

Tables 2 and 3 show that, compared with GA and PSO,
HHPSODE shows higher accuracy on the best and the aver-
age results of T1–T4. Take T1 for example, the best-found
value of f1(upper level objective) based on HHPSODE,
85.6727, is larger than that ofGAandPSOwhich are 85.0551
and 85.0700, respectively. In addition, the average-found
values of f1 based on HHPSODE are also larger than the
average-found values of f1 based on GA and PSO. Simi-
larly, for T2 and T4, the best values of f1 based on HHP-
SODE are larger than the best values of f1 based on GA and
PSO, and the average values of f1 based on HHPSODE are
larger than the average values of f1 based on GA. For T3, the
best value of f1 solved by HHPSODE is slightly less than
the best value of f 1 solved by PSO, but larger than that of
GA.

Table 6 shows the best and average-found results of T5–
T8 based on HHPSODE. Table 7 gives corresponding deci-
sion variables’ solutions of T5–T8. Comparisons of the best-
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Table 4 Corresponding best-found solutions of decision variables based on three algorithms

Test problems Best-found solutions of decision variables

HHPSODE GA PSO

T1 (16.5607, 10.7995) (17.4582, 10.9055) (17.4535, 10.9070)

T2 (15.8092, 11.0032) (15.9984, 10.9968) (15.9999, 10.9998)

T3 (3.9970, 3.9996) (3.9994, 3.9974) (4, 4)

T4 (0.0700, 0.8016, 0.0998, 0.5980, 0.4793) (0, 0.898, 0, 0.599, 0.399) (0.0004, 0.8996, 0, 0.5995, 0.3993)

Table 5 Corresponding average solutions of decision variables based on three algorithms

Test problems Average-found solutions of decision variables

HHPSODE GA PSO

T1 (17.3020, 10.8970) (17.4329, 10.8659) (17.4535, 10.9070)

T2 (15.7734, 10.9932) (15.9041, 10.8082) (15.9999, 10.9998)

T3 (3.9834, 3.9965) (3.98658, 3.94636) (4, 4)

T4 (0.0282, 0.8676, 0, 0.5462, 0.4374) (0.15705, 0.86495, 0, 0.4719, 0.51592) (0.0004, 0.8996, 0, 0.5995, 0.3993)

Table 6 The best and
average-found results of T5–T8
based on HHPSODE

Test problems Upper level’s objective f1 Lower level’s objective f2

Best-found values Average-found values Best-found values Average-found values

T5 −14.0566 −13.7010 −0.4584 −0.4999

T6 62.3814 62.4139 −24.4936 −24.4163

T7 2.0000 2.0019 24.0183 24.0135

T8 1.7980 2.1306 −0.3319 0.0586

Table 7 Corresponding
solutions of decision variables
based on HHPSODE

Test problems Best-found solutions of decision variables Average-found solutions of decision variables

T5 (0.2508, 1.9628, 2.4796, 1.3465) (0.1641, 1.8829, 2.4128, 1.2750)

T6 (1.4873, 2.2431) (1.4806, 2.2397)

T7 (4.0000, 0) (3.9995, 0)

T8 (1.2086, 0, 0.8873) (1.5546, 0, 1.0259)

found results of T5–T8 based on HHPSODE and the other
three algorithms are shown in Table 8.

From Table 8 we can see that, for T5, although there are
slight gaps between HHPSODE and HPSOBLP for the best-
found value of f1, HHPSODE exhibits higher accuracy than
TRM and Original. For T6 and T8, the best-found results
of f1 solved by HHPSODE are much better than the results
solved by HPSOBLP, TRM and Original. For T7, the best-
found value of f1 based on HHPSODE, 2.000, is equal to
that of the other three algorithms. Additionally, for the best-
found values of f2 of T5–T8, HHPSODE also outperforms
HPSOBLP, TRM and Original.

The test problems’ average computation time based on
HHPSODE are given in Table 9. From Table 9 we can see
that the maximum average computation time of T1–T8 is

less than 28s, and this indicates that the average time spent
to find the solutions is acceptable. Note that we do not com-
pare the computation time based on HHPSODE with other
algorithms. This is because different authors may code their
algorithms in different structures and implement their algo-
rithms on different computers. In a word, for most of the test
problems, HHPSODE outperforms other algorithms.

An application on pricing and lot-sizing decisions

As an application of the proposed HHPSODE, we pro-
vide a bi-level pricing and lot-sizing model in a sin-
gle manufacturer-single retailer system facing retail price-
sensitive market demand in this section. The pricing and lot-
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Table 8 Comparisons of the
best-found results based on four
different algorithms

Test Problems Upper level’s objective f1 Lower level’s objective f2

HHPSODE HPSOBLP TRM Original HHPSODE HPSOBLP TRM Original

T5 −14.0566 −14.7578 −12.68 −12.68 −0.4584 0.2067 −1.016 −1.016

T6 62.3814 88.7757 88.79 88.79 −24.4936 −0.7698 −0.77 −0.77

T7 2.0000 2.0000 2 2 24.0183 24.0190 24.02 24.02

T8 1.7980 2.7039 2.75 2.75 −0.3319 0.5602 0.57 0.57

Table 9 Average computation time based on HHPSODE

Test problems Average computation time (s)

T1 27.565000

T2 26.435000

T3 27.768000

T4 27.333000

T5 26.286000

T6 25.459000

T7 26.255000

T8 27.222000

sizingmodel derives from themodel developed byYıldırmaz
et al. (2009), but differs from the model in the literature. In
this system, the manufacturer, as the leader, first purchases
raw materials from the supplier, and then the raw materials
are transformed into end products. Finally, the end products
are sold from the manufacturer to the retailer. As a follower,
the retailer reacts, bearing in mind the selection of the man-
ufacturer, making a decision after the manufacturer.

Model formulation

To formulate themathematical bi-levelmodel, some assump-
tions are given: The demand of the market is a monotonic
decreasing function of the retail price; both manufacturer
and retailer are aiming to maximize their own profits, and
both of them have the right to make decisions; one unit of
product is produced by one unit of raw material; and a 1year
planning horizon is considered.

The following symbols are used to model the problem:
Decision variables are as follows:

pm : Retailer’s unit purchase cost (or wholesale price).
pr : Product selling price to end customer (or retail price).
α: Number of retailer’s lot size.
Q: Retailer’s lot size.

Other related parameters are as follows:

C : Maximum load that can be placed in a truck.
D(pr ): Annual demand for the product, D(pr ) = b−a · pr .

hm : Manufacturer’s annual holding cost rate.
hr : Retailer’s annual holding cost rate.
Mc: Production cost of unit product.
Om : Manufacturer’s ordering cost per order.
Or : Retailer’s ordering cost per order.
ps : Manufacturer’s purchase cost.
R: Truckload charge

The manufacturer’s annual revenue, holding cost and
ordering cost are denoted by Rm, Hm and Cm as follows:
⎧⎪⎨
⎪⎩

Rm = (pm − ps − Mc)D
Hm = hm · (ps + Mc) · Q(α−1)

2 = (ps+Mc)(α−1)hmQ
2

Cm = Om
αQ

The manufacturer’s annual profit is denoted by �m as fol-
lows:

�m = Rm − Hm − Cm = (pm − ps − Mc)D

− (ps + Mc)(α − 1)hmQ

2
− OmD

αQ
(10)

The retailer’s annual revenue, holding cost and ordering cost
are denoted by Rr , Hr and Cr as follows:

⎧⎪⎪⎨
⎪⎪⎩

Rr =
(
pr − pm − F(Q)

Q

)
D

Hr = hr
(
pm + F(Q)

Q

)
· Q
2 = hr (pmQ+F(Q))

2

Cr = (Or+F(Q))D
Q

The retailer’s annual profit is denoted by �r as follows:

∏
r

= Rr − Hr − Cr =
(
pr − pm − F(Q)

Q

)
D

−hr (pmQ + F(Q))

2
− (Or + F(Q))D

Q
(11)

We suppose that the retail price is a multiple of the wholesale
price, that is

pr = kpm (12)

where, k denotes the ratio of the retail price to the wholesale
price, and k ≥ 1.
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Table 10 Different results
based on different combinations
of demand coefficients
(k∗ = 2, p∗ = 10)

a =2, b=1,000 a =4, b=1,000 a =6, b=1,000 a =8, b=1,000 a =10, b=1,000

pm 9.9989 9.9886 9.9979 9.9912 9.9901

α 1 1 2 2 2

k 2 2 2 2 2

pr 19.9978 19.9772 19.9958 19.9824 19.9802

Q 960 920 440 420 400

�m 2,799 2,590 2,397.2 2,192.3 1,992.1

�r 8,394 7,985.6 7,196.1 6,791.8 6,391.9

Average computation
time (s)

75.770000 86.926000 71.877000 85.149000 70.508000

Table 11 Different results
based on different combinations
of coefficients
(k∗ = 4, p∗ = 10)

a =2, b=1,000 a =4, b=1,000 a =6, b=1,000 a =8, b=1,000 a =10, b=1,000

pm 9.9988 9.9987 9.9987 9.9995 9.9959

α 1 2 1 2 2

k 4 4 4 4 4

pr 39.9952 39.9948 39.9948 39.998 39.9836

Q 920 420 760 340 300

�m 2,598.9 2,198 1,799.2 1,398.9 997.6

�r 26,392 23,595 21,794 19,198 16,796

Average computation
time (s)

80.651000 83.312000 79.956000 72.589000 74.469000

The relationship between the lot size and the number of
deliveries is

Q = D

α
(13)

To compute F(Q), we assume that the transportation cost is
determined in terms of truck loads; therefore freight cost is
computed as (Yıldırmaz et al. 2009):

F(Q) =
⌈
Q

C

⌉
R =

⌈
D

αC

⌉
R (14)

By combining Eqs. (10) and (11), and substituting Eqs. (12)–
(14) into (10) and (11), we establish a bi-level joint pricing
and lot-sizing model guided by the manufacturer as follows:

max
pm

�m = (pm − ps − Mc)D − (ps + Mc)(α − 1)hmD

2α
− Om

s.t. ps + Mc < pm ≤ p∗

max
α,k

�r =
(
kpm − pm − α

⌈ D
αC

⌉
R

D

)
D

−hr (pmD + α)
⌈ D

αC

⌉
R

2α
− α

(
Or +

⌈
D

αC

⌉
R

)

s.t. α ∈ N+, 1 < k ≤ k∗ (15)

where, p∗ and k∗, respectively represent upper bounds of pm
and k. Because the above bi-level model is a NP-hard prob-
lem, for which there is no solution in the classical method, we

will adopt the proposed algorithm HHPSODE to deal with
this problem in the next section.

Model evaluation and analysis

In this section, we will adopt HHPSODE to solve the bi-level
model (15) proposed in “Model formulation” section. The
parameters in model (15) are set as follows: hm = hr =
0.01; Om = 2000; Or = 200; ps = 4; Mc = 1;C =
200; R = 100. These parameter values are randomly pro-
duced and used to analyze features of the proposed model.

In reality, the wholesale price and retail price should not
be too high, and they should have upper limits. To analyze
themodel, two upper bound groups of k∗ (the upper bound of
the ratio of the retail price to the wholesale price) and p∗(the
upper bound of the wholesale price) are separately consid-
ered: k∗ = 2, p∗ = 10; k∗ = 4, p∗ = 10. The parameter
settings of HHPSODE are the same as in “Numerical exper-
iments” section, and the results are shown in Tables 10 and
11.

The demand function proposed in this paper is a linear
decreasing function of retail price. a denotes price elastic
coefficient, and b represents maximum market demand. In
the following numerical simulation, we fix b (the maximum
market demand) and change a (the price elastic coefficient)
from a lower price sensitivity to a higher price sensitivity to
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Fig. 2 The profit curves of the manufacturer and the retailer under the
condition of a =2, b=1,000; α = 2; pm = 10; k∗ ∈ [1, 50] (Color
figure online)

investigate variations of the manufacturer and the retailer’s
profits when demand’s sensitivity to the retail price changes.

Tables 10 and 11 denote the profits of the manufacturer
and the retailer under different upper bounds of the retail
price and the wholesale price. From these two tables we can
see that the higher demand’s sensitivity to the price, the less
profits earned by the manufacturer and the retailer. In other
words, demand’s sensitivity to price is negatively correlated
with the profits of the manufacturer and the retailer, and this
condition abides by the market’s rule.

Finally, we do a further test to verify the good performance
of HHPSODE, using the following two steps:

(1) On the one hand, without loss of generality, Figs. 2
and 3 are drawn based on condition of a =2, b=1,000. In
these two figurers, Pm (the blue curves) and Pr (the red
curves), respectively represent the profits of the manu-
facturer and the retailer. In Fig. 2, we fix two parameters:
pm = 10 and α = 2. We then draw the profits curves
of the manufacturer and the retailer when k∗ ∈ [1, 50].
From Fig. 2 we can see that when k∗ lies nearby 25, the
retailer’s profit reaches its maximum value. In Fig. 3,
we fix two parameters: k = 2 and α = 2. Then we draw
the profits curves of the manufacturer and the retailer
when p∗ ∈ [1, 250]. From Fig. 3 we can see that when
p∗ is sited near 125, the manufacturer and the retailer’s
profits reach their maximum values.

(2) On the other hand, we employ HHPSODE to solve the
model under the same condition as in Figs. 2 and 3.
Firstly, we set pm ∈ [5, 10] and k∗ ∈ [1, 50]; secondly,
we set p∗ ∈ [1, 250] and k ∈ [1, 2]. Then HHPSODE
is executed to solve the proposed bi-level model under
the two situations. The results of these two conditions

Fig. 3 The profit curves of the manufacturer and the retailer under the
condition of a =2, b=1,000; α = 2; k = 2; p∗ ∈ [1,250] (Color figure
online)

Table 12 Best found-results based on HHPSODE (a =2, b=1,000)

5 < pm ≤ 10, k∗ = 1:50 1 < k ≤ 2, p∗ = 1:250
pm 10 127.5041

α 2 2

k 25.3514 2

pr 253.514 255.0082

�m 464.2299 58,024

�r 118,840 61,259

are shown in Table 12. From Table 12 we can see that
for the first condition, the best-found solution based on
HHPSODE of pm is 10, which is equal to the preset
value of pm in Fig. 2; the best-found solution based on
HHPSODE of k∗ is 25.3514, which is nearby 25. For
the second condition, the best-found solution based on
HHPSODE of k is 2, which is equal to the pre-set value
of k in Fig.3; the best-found solution of p∗ is 127.5041,
which is nearby 125. This shows that the quasi-optimal
solutions obtained by HHPSODE are very close to the
optimal solution of the bi-level model. Therefore, it also
illustrates that HHPSODE is effective and efficient in
solving the model.

Conclusion

This paper proposes a hierarchical hybrid PSO and DE based
algorithm (HHPSODE) to deal with BLPP. To overcome the
shortcomings of basic PSO and basic DE, this paper improve
PSO and DE, respectively by using a velocity and position
modulation method in PSO and a modified mutation strat-
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egy in DE. HHPSODE employs the modified PSO as a main
program and the modified DE as a subprogram. Unlike most
problem-dependent algorithms designed for specific versions
or based on specific assumptions, such as the gradient infor-
mation of objective functions, the convexity of constraint
regions and so on, HHPSODE has solved different classes
of BLPPs directly. The performance of HHPSODE has been
verified by eight benchmark test bi-level problems. Accord-
ing to results compared with other algorithms, HHPSODE
exhibits a better performance.

Additionally, we employ HHPSODE to solve a bi-level
pricing and lot-sizing model proposed in this paper. By ana-
lyzing the data, some managerial insights which abide by
market rule are derived. This demonstrates that the proposed
bi-levelmodel is able to dealwith pricing and lot-sizing prob-
lems in a manufacturer-guided supply chain system. Further
tests of the proposedmodel also exhibit that HHPSODE is an
effective and efficient algorithm to deal with BLPP. There-
fore, HHPSODE is recommended for further application.

In reality, there many problems that are much more com-
plex, such asmulti-objectiveBLPP,multi-level programming
problem and so on. Therefore, future work will focus on
extending the proposed algorithm for solvingmulti-objective
BLPP and multi-level programming problem. In addition,
some improvements, such as combining PSO or DE with
other intelligent algorithms, or modifying the constraint han-
dlingmechanism, could be applied to improve the calculation
accuracy of the algorithm.
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Appendix

Test problems

T1 T 2

max f1 = −2x1 + 11x2 where x2 solves
max f2 = −x1 − 3x2
s.t. x1 − 2x2 ≤ 4
2x1 − x2 ≤ 24
3x1 + 4x2 ≤ 96
x1 + 7x2 ≤ 126
−4x1 + 5x2 ≤ 65,
x1 + 4x2 ≥ 8
x1 ≥ 0, x2 ≥ 0

max f1 = x2 where x2 solves
max f2 = x2
s.t. − x1 − 2x2 ≤ 10
x1 − 2x2 ≤ 6
2x1 + x2 ≤ 21
x1 + 2x2 ≤ 38,
−x1 + 2x2 ≤ 18,
x1 ≥ 0, x2 ≥ 0

T3 T4

max f1 = 3x2 where x2 solves
max f2 = −x2
s.t. − x1 + x2 ≤ 3
x1 − 2x2 ≤ 12
4x1 + x2 ≤ 12
x1 ≥ 0, x2 ≥ 0

max f1 = 8x1 + 4x2 − 4y1 + 40y2 + 4y3
where y solves
max f2 = −x1 − 2x2 − y1 − y2 − 2y3
s.t. y1 − y2 − y3 ≥ −1

−2x1 + y1 − 2y2 + 0.5y3 ≥ −1
−2x1 − 2y1 + y2 + 0.5y3 ≥ −1
x1, x2, y1, y2, y3 ≥ 0

T5 T6

min f1 = −x21 − 3x2 − 4y1y22
s.t. x21 + 2x2 ≤ 4, x1 ≥ 0, x2 ≥ 0
where y solves
min f2 = 2x21 + y21 − 5y2
s.t. x21 − 2x1 + x22 − 2y1 + y2 ≥ −3
x2 + 3y1 − 4y2 ≥ −4, y1 ≥ 0, y2 ≥ 0

min f1 = x2 + (y − 10)2

s.t. x + 2y − 6 ≤ 0,−x ≤ 0
where y solves
min f2 = x3 + 2y3 + x − 2y − x2

s.t. − x − 2y − 3 ≤ 0,−y ≤ 0

T7 T8

min f1 = (x − 5)4 + (2y + 1)4

s.t. x + y − 4 ≤ 0,−x ≤ 0
where y solves
min f2 = e−x+y + x2 + 2xy + y2 + 2x + 6y
s.t. − x + y − 2 ≤ 0,−y ≤ 0

min f1 = (x1 − y2)4 + (y1 − 1)2 + (y1 − y2)2

s.t. − x1 ≤ 0
where y solves
min f2 = 2x1 + ey1 + y21 + 4y1 + 2y22 − 6y2
s.t.6x1 + 2y21 + ey2 − 15 ≤ 0,−y1 ≤ 0, y1 − 4 ≤ 0
5x1 + y41 + y2 − 25 ≤ 0,−y2 ≤ 0, y2 − 2 ≤ 0
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