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Abstract Die design process is one of the most com-
plex production design phases in the automotive manufac-
turing sector and it is the primary and important factor
that affects the product development performance. The goal
of this research is to describe how to use intelligent die
design based on shape and topology optimization using a
new improved differential evolution algorithm and response
surface methodology. In the simulation process, not only die
deflection, but also press table deflection is taken into account
in order to achieve more realistic results. The validation of the
present approach is evaluated by a comparison of experimen-
tal test and simulation results. The optimal shape parameters
for the die structure were obtained using response surface
methodology and new improved optimization algorithm. In
the optimization phase differential evolution was handled and
improved with a new mutation strategy which uses the best
vectors in the population as differential vectors was devel-
oped and used in the new developed algorithm (DEBVs).
With the developed DEBVs algorithm better results with
less function evaluation numbers were handled. By using this
intelligent methodology in the design stage of die, significant
results were obtained: the mass was reduced approximately
24 % and the current maximum stress decreased approxi-
mately 72 %.
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Introduction

Sheet metal stamping process is one of the base production
methods in automotive industry. The fundamental compo-
nent of sheet metal process is the die. Designing dies in
shorter time have a key role in the product development
process. In a vehicle designing and manufacturing process
the cost of a die has an important percentage in the total
cost of a vehicle. This cost has a very important role for
an automotive company to compete with other companies.
In order to decrease this cost total manufacturability must
be taken care of. With considering total manufacturability,
also the quality of stamping process is enhanced. At this
point two important factors must be taken care of; improv-
ing the structure integrity of dies and decreasing the weight
of dies. Traditional die design techniques following some
design standards evolved by designer experiences over years
remain incapable in order to meet these two requirements.
Besides, these standards doesn‘t have any flexibility for new
designs and design changes. Further, stoppage of the entire
assembly line due to the breakage of the die, affects the total
cost directly. For this reason beyond the standard techniques,
innovative techniques must be implemented to the die design
process in order to design more robust dies. Building heavy
dies due to the robustness and conservative standards causes
incremental of material, construction and electrical costs.

Structural analyses of dies have been used for both cal-
culating the design changes of existing dies and the forming
loads of new designs. By using structural analyses the cost of
dies has been decreased considerably. To predict the struc-
tural behavior of dies has an important issue for the design
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stage. Research on the deformation of dies and on the spring-
back effect during sheet metal forming has been conducted
widely by researchers; however, only a few of them have
been interested in the die deformation process and optimiza-
tion of the die structure. Elkins and Sturges (1996) developed
a new method for controlling the springback effect happens
in the bending processes. The method utilizes a knowledge of
each workpiece‘s individual strength and thickness charac-
teristics for controlling the bending process and uses simple
measurements of material properties to provide the informa-
tion necessary to estimate springback. Finite element-based
simulation approaches are often used under the assump-
tion that the dies and tools are rigid. Tekkaya (2000) dis-
cusses numerical simulations in the sheet metal forming
industry and possible developments. He has given a com-
parison between bulk and sheet metal forming processes
from the simulation point of view and he has emphasized
on the static explicit and dynamic implicit finite element
procedures.

Intelligent systems pertaining to sheet metal parts and die
design processes have been used successfully in recent years.
Vosniakos et al. (2005) developed an intelligent system for
a sheet metal part and process design that stores knowledge
and prescribes ways to use this knowledge according to the
programming in logic paradigm. In some cases uncertainty
problems come up in the complex die design stage have been
solved by using fuzzy set theory. Lin and Chang (1994) used
fuzzy set theory in the die design process to find out the
definite design attributes by categorizing and managing the
uncertainty design parameters. Garcia (2005) designed an
integrated automatic control algorithm uses sensors, artifi-
cial vision, and neural networks based on fuzzy logic for the
diagnosis and the prediction of any disturbance in sheet metal
forming process.

The expectation of carrying out the production in mini-
mum cost and maximum quality has expanded with the rais-
ing customer satisfaction. In order to meet this expectation,
the necessity of using optimization methods has increased
especially in making brand new designs and solving prob-
lems appeared. In recent years, the use of simulation in die
design process has increased significantly to prevent costly
shop trials. Topology design searches for the best conceptual
die structure on a predefined design domain. By coupling the
simulation and topology design, optimal die design structure
is defined at the early stages of the die design to produce high
quality car bodies with reduced development time and cost.
The researcher who generates the design or tries to solve the
problems appear during the die design process needs a reli-
able and efficient optimization algorithm when solving the
optimization problems appeared. Sun et al. (2011) proposed
a multi-objective particle swarm optimization for fracture
and wrinkling criteria in sheet metal forming design. Liew
et al. (2004) presented an evolutionary algorithm that is capa-

ble of handling a relatively simple springback minimization
process design optimization problem. In this respect, Hou
et al. (2010) proposed a stochastic analysis and an optimiza-
tion approach where finite element simulation and response
surface methodology are used to construct a meta-model
based on which Monte–Carlo simulation is performed to pre-
dict the quality of input parameters of a deck lid inner panel
stamping. Muhammad et al. (2012) used response surface
methodology to develop a mathematical model for predicting
the weld zone development problem and they investigated the
effect of parameters in resistance spot welding on the prob-
lem using Taguchi method. Chiu et al. (2012) designed a
radial basis function neural network for time series forecast-
ing using both an adaptive learning algorithm and response
surface methodology. They used response surface to deter-
mine the network parameter values and formulate improved
design criteria for neural networks. Lu et al. (2011) developed
direct search methods for die shape optimization problems
and evaluated the efficiency and robustness of these meth-
ods for net-shape forming problems. They evaluated three
different types of direct search methods (a modified simplex
method, a random direction search and an enhanced Pow-
ell’s method) to explore the simplicity and flexibility. They
developed a new localised response surface method combin-
ing linear response surface approximation and direct search
for minimization of the objective function to improve the
robustness.

Storn and Price (1995) developed a new robust, versa-
tile and easy to use global optimization algorithm and pub-
lished it with the name differential evolution (DE) algorithm
in 1995. Since then researches have been trying to enhance
the algorithm with their own original inspirations. DE was
used in solving various optimization problems occurring in
mechanical systems, aerodynamics and aeronautics, control
algorithms of various systems, agriculture and etc. Except
the developers of DE algorithm, the performance of DE has
been evaluated firstly by Brutovsky et al. (1995) using 15 test
functions. Montes et al. (2005) developed a differential evo-
lution algorithm containing a diversity mechanism for solv-
ing the constrained optimization problems. They tested the
algorithm performance by solving 13 different test functions
found in the literature. Chakaravarthy et al. (2012) devel-
oped a DE–PSO (Partical Swarm Optimization) algorithm
for solving m-machine flow shops with lot streaming to min-
imize the makespan, total flow time of all jobs in a flow shop
and found better and optimal solution for the optimization
problem. Vincent et al. (2012) employed four variants of
DE (DE/rand/1/bin, DE/targetto-best/1, DE/best/1/bin, and
DE/best/2) to schedule three kinds of flexible assembly line
scheduling problems. Besides they developed a metaheuris-
tic algorithm to solve these problems by optimizing two
processes: the assignment of operations to workstations and
the timing and sequence in which the orders are processed.
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They found promising results in terms of higher mean fit-
ness and fast convergence speed using bi-level DE algo-
rithms.

Shi et. al. proposed a comprehensive approach to make
die shape optimization for sheet metal forming processes by
maximizing the stamping quality at the same time minimiz-
ing the risk of rupture, wrinkles and unstretched areas on
the sheet metal part. Xu et al. (2012) proposed a topology
optimization methodology for advanced high strength steels
stamping die. They took into account the interaction behav-
ior of tools during stamping process simulation modeling in
order to obtain more accurate boundary force condition for
die structure optimization.

In this study, it is aimed to develop a new algorithm that is
user-friendly, global, reliable in converging the real optimum
value and also consuming as short time as possible from the
beginning to the end of the optimization process in the die
design process. A simulation and topology based die struc-
ture design approach with differential evolution using the
best vectors (DEBVs) is presented for sheet metal stamp-
ing process in the automotive industry. Differential evolu-
tion was handled and improved with a new mutation strategy
which uses the best vectors in the population as differen-
tial vectors was developed and used in the new developed
algorithm (DEBVs) in the optimization process. Constraint
test problems which were frequently used as a test tool
for many new algorithms were solved with the developed
DEBVs algorithm and better results with less function eval-
uation numbers were handled when comparing the results of
other algorithms. The approach is validated through physi-
cal tests applied to an example die for a vehicle body part. A
comparison between numerical simulation results and mea-
surements showed that the present approach is quite accept-
able for use as a design frame tool at the early stages of
die design. The developed algorithm can be very helpful as
an assistant tool for engineers during vehicle die design and
manufacturing process in terms of time, cost, quality and
convenience.

The goal of this research is to describe how to use intel-
ligent die design based on shape and topology optimization
using enhanced differential evolution and response surface
methodology. With the developed DEBVs algorithm bet-
ter results with less function evaluation numbers were han-
dled. By using this intelligent methodology in the design
stage of die, significant results were obtained: the mass was
reduced approximately 24 % and the current maximum stress
decreased approximately 72 %. Using this methodology in
the design stage of die and sheet metal stamping, major
improvements to the vehicle development process can be
made, such as reducing the weight and the cost of die, reduc-
ing the labor costs during pattern practice and reducing the
environmental damage or CO2 emissions by reducing the
amount of cast iron.
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Fig. 1 a Differential vector in the developed DEBVs algorithm, b the
convergence speeds of DEBVs and DE

Differential evolution using the best vectors (DEBVs)

Storn and Price (1995), developed a new robust, versatile and
easy to use global optimization algorithm and published it
with the name differential evolution (DE) algorithm in 1995.
This algorithm like other evolutionary algorithms (EAs) has
a population-based structure and it attacks the starting point
problem using real-coded system. In this study a new differ-
ential mutation strategy using the best vectors in the popu-
lation (DEBVs) was developed. With developed algorithm
the global optimum point was reached at reduced function
evaluations and the best results were handled with the same
function evaluation numbers.

Here the new developed mutation strategy has a key role
shown in Fig. 1a. The properties of population (initial pop-
ulation, crossover and reproduction) are the same as in the
other evolutionary algorithms. In the developed algorithm
differential vector is created from the best vectors in the pop-
ulation. But every generation the random vector and the best
vector are replaced between each other (Fig. 1a).

Developed DEBVs algorithm is created the population
around the global optimum point from the first generation.
This property is the distinctive property of DEBVs with
regards to the performance criterion. When using devel-
oped DEBVs algorithm for solving different test functions,
DEBVs converges to the global optimum points faster than
DE and at the same generation numbers DEBVs gives better
results (Fig. 1b).

DEBVs algorithm like other evolutionary algorithms
(EAs) has a population-based structure and it attacks the
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starting point problem using real-coded system and a new
differential mutation operator. DEBVs consists of two fun-
damental phases: initialization and evolution (Karen 2011).
In the initialization phase just like in other evolutionary algo-
rithms, an initial population (P0) is generated. After that P0

population evolves to P1, P1 evolves to P2. In this way evo-
lution of new populations is continued until termination con-
ditions are fulfilled. While evolving from Pn population to
Pn+1 population three evolutionary operations are executed
to the individuals in the current population. These operations
are; differential mutation, crossover and selection.

Initial population P0 is created from Np number of indi-
viduals randomly:

x0,i
j = bLj + αi

j

(
bUj − bLj

)
, 1 ≤ j ≤ N (1)

where 0 means initial population, i is the sequence of popu-
lation, j is the number of individuals in the population, αi

j is
the real random number generator in the i th population and
j th individual. bLj , is the lower value of j th individual and

bUj , is the upper value of j th individual.

In mutation a mutant (vn+1,i ) and a mutant vector
(xn+1,v,i ) is created for each pn,i individual called mother
in Pn population. It should not be forgotten that x is a vec-
tor which represents all individuals in the current population
(x = x1, x2, . . . , xN ). Mutant vector xn+1,v,i is created by
two different formulations as follows:

First formulation : xn+1,v,i = xn,best,i

+
∑
y≥1

Fy

(
xn,p1y − xn,best

)
,

Second formulation : xn+1,v,i = xn,best,i

+
∑
y≥1

Fy

(
xn,best − xn,p2y

)
,

1 ≤ i �= p1y �= p2y ≤ NP (2)

where xn,best,i is the best vector (best) selected for the new
individual that will be created for i th old individual in nth
population, xn,p1y is the P1y th individual selected randomly
from between [1, NP ] integers, similarly xn,p2y is the P2y th
individual selected randomly from between [1, NP ] integers,
Fy is the scale factor for yth vector difference in the range
of [0,1].

In the crossover process a new child individual (cn+1,i )

is created by mating the new individual (xn+1,i ) which is
created in the mutation process with the current individual
(pn,i ) in the population according to the crossover probability
Cr . Here pn,i is referred to as mother and xn+1,i is referred
to as father (Fig. 2).

There is a competition between mother and child in the
selection operation. They compete with each other according
to objective function values to survive in the next generation

(Karen 2011). This competition is formulated mathemati-
cally as follows;

pn+1,i =
{
cn+1,i , i f

(
cn+1,i > pn,i

)
pn,i , otherwise

(3)

Equation (1) is used for creating the initial population,
Eq. (2) is used for creating the mutant vector in DEBVs algo-
rithm and Eq. (3) is used for the selection stage of proposed
algorithm in the following engineering problems and in the
die design optimization problem.

Die design phase, simulation, physical tests and
correlation

In this research, first, the solid models of dies were defined
using computer-aided tools. Then, finite element codes for
the parts including boundary conditions and loads were
designed. Although many researchers have used finite ele-
ment codes for simulation of the die design process, signifi-
cant consideration is given to defining the simulation model
and the boundary conditions and to defining test procedures
to verify the simulation technique in this research. Test proce-
dures were defined, and test tools, such as a 16-channel data
acquisition unit, are used to measure displacements. Then,
experimental and numerical results were compared to evalu-
ate the process conditions and to check the correlation of the
results. Very good correlation was obtained between the test
and simulation results (Karen et al. 2012).

Design performance is highly dependent on the initial
design intent, which is based on the experience and intu-
ition of the designer. The traditional design procedure is an
iterative process. It starts with an initial concept design that
is based on the experience, knowledge and intuition of the
designer. Analysis and redesign steps are carried out to eval-
uate and modify the product layout. This is a time-consuming
and inefficient procedure that can create sub-optimal struc-
ture layouts because the starting topology is not optimal.
Topology optimisation has been proven very effective in
determining the topology of the initial design structure for
component development in the conceptual design phase. The
aim of design optimisation is to find the best possible or opti-
mal structure layout for a product without sacrificing func-
tionality and manufacturability conditions. The flowchart of
the proposed approach is shown in Fig. 3.

The present approach includes eight steps; in the first step,
the current state of the die design and sheet metal stamping
process in literature is searched to identify recent develop-
ments and shortcomings of the present procedures regarding
future research directions. At the next step, the physical tests
to evaluate the simulation results are defined regarding the
measurement of displacement and the stress and strain val-
ues on die surface. A sample die for which the results could
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Fig. 2 The crossover operation of DEBVs
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Fig. 3 The flowchart of the present approach

be immediately applied to the production line is chosen to
employ the proposed approach. After that, maximum pres-
sure values on the die surfaces and restrictions due to die

fastening systems are examined. Before the finite element
analyses, bad surfaces on the solid model are corrected. In
order to find the optimal mesh distribution, various mesh
techniques are tested, and a mesh convergence process is
carried out. At verification step, the results of simulations
and tests are compared to verify the finite element model.
In topology optimization step, various die designs based on
desired objectives and constraints are generated using the
topology optimisation approach. Finally, alternative optimal
structures acquired from the previous step are evaluated to
define the outlines of the best die structure in terms of man-
ufacturability and applicability issues (Fig. 3).

The computer aided design (CAD) geometry of the die and
the press table have very complex and small surfaces (Fig. 4a,
b), so transformation of the model to the analysis software
(ABAQUS) was done very carefully for the pre-processing of
the finite element (FE) analysis (Simulia 2008). Redundant
geometric objects causing defective mesh are debugged and
prepared for meshing. As the boundary conditions of the
bottom surfaces of the press table are fixed, forces are applied
to the contact surfaces on the die matrix at two stages. In
the first stage, a blank holder force is applied on the surfaces
shown in Fig. 4c. In the second stage, a punch force is applied
on the surfaces shown in Fig. 4d.

Finite element simulation of the die process was per-
formed using 3D simulation models, including models of the
die matrix, drawbead and press table. The effect of a blank
holder was also taken into account. The maximum displace-
ment values of the die components were calculated using
finite element codes. The calculation time can be different
for each analysis because of factors such as simulation def-
initions, the solver used and the hardware properties. In this
study, it can be seen that the pre-processing stage and the
solver properties have had a very important role in the process
performance of FE simulations of die components. Experi-
mental shop floor tests were performed for the purpose of
obtaining the necessary acceleration and displacement data
for the die model. As a first step, the sensor location points
were investigated. Therefore, the maximum stress and the
displacement contours of the dies were observed using finite
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Fig. 4 a The CAD geometries of dies with press table, b mesh struc-
ture, c blank holder force surfaces and, d punch force surfaces

Fig. 5 Accelerometer locations on the die and the signal collector with
16 channels

element codes. This process helped in the process of locat-
ing the accelerometers and strain gauges. A signal collec-
tor with 16 channels was used for collecting accelerator and
strain values on certain points of the die. The experimental
test results were collected for further comparisons against
simulation results. Then, the measured numerical data from
certain points were transformed to obtain the displacement
and stress values (Fig. 5).

Fig. 6 Simulation results with maximum displacement and stress

Experimental tests were performed to verify the present
approach and the model definitions against FE analysis
results (Fig. 6). A very good correlation for the present study
was obtained for this case. The difference between the maxi-
mum displacement value calculated from the simulation and
the test was approximately 1%.

Evaluation of DEBVs with the engineering optimization
test problems

The most practical way to show the accuracy of a new devel-
oped algorithm is solving the test functions and engineer-
ing optimization problems which were solved earlier by
other algorithms. Generally finding the best results using the
new developed algorithm is expected. In this study when
choosing the engineering optimization problem to show the
DEBVs‘s efficiency, two important points were taken care
of; (1) engineering optimization problem was not chosen
randomly and (2) enough information (singularity, modality,
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Fig. 7 Design variables of pressure vessel engineering design opti-
mization problem (Kannan and Kramer 1994)

Fig. 8 Design variables of welded beam design optimization problem
(Rao 2009)

noise, dimensionality, differentiability, etc.) about engineer-
ing optimization problem was obtained. In addition to all
these, the selected test problem was solved 30 times for effi-
ciency and robustness. Also the same population numbers,
crossover rates and differential scale factors were used in the
problem.

To strengthen the perfect performance of DEBVs, the
pressure vessel engineering design optimization problem
and welded beam design optimization problem which were
solved by other algorithms to show their performance were
handled (Figs. 7, 8).

A cylindrical pressure vessel is capped at both ends by
hemispherical heads as shown in Fig. 7. The total cost includ-
ing the cost of material, cost of forming and welding, is to
be minimized (Kannan and Kramer 1994). The design vari-
ables are; the thicknesses of the shell (Ts), the head of the
shell (Th), the inner radius (R), the length of the cylindrical
section (L). The variables R and L are continuous while Ts

and Th are integer multiples of 0.0625 inch which are the
available thicknesses of rolled steel plates (Fig. 7).

In the mathematical model of pressure vessel, Ts, Th ,
R and L parameters are represented by x1, x2, x3 and x4,
respectively. The objective function is to minimize the total
cost including the cost of material, cost of forming and
welding:

Objective Function (Minimization) (Kannan and Kramer
1994):

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1 x4

+19.84x2
1 x3 (4)

Constraint Functions (Kannan and Kramer 1994):

g1(x) = −x1 + 0.0193x3 ≤ 0

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −πx2
3 x4 − 4

3
πx3

3 + 1296000 ≤ 0

g4(x) = x4 − 240 ≤ 0 (5)

Boundary Constraints (Kannan and Kramer 1994):

0.0625 ≤ x1 ≤ 99 (integer multi ples o f 0.0625)

0.0625 ≤ x2 ≤ 99 (integer multi ples o f 0.0625)

10 ≤ x3 ≤ 200

10 ≤ x4 ≤ 200 (6)

This pressure vessel problem has been solved by Deb (1997)
using a simple genetic algorithm with binary representation,
and a genetic adaptation search algorithm (Table 1).

It has also been solved by Kannan and Kramer (1994)
using an augmented Lagrange multiplier based method.
Sandgren (1988) has also solved this problem using a branch
and bound technique. The first constraint of the problem is not
satisfied when using the Kannan and Kramer (1994) method.
Similarly the third constraint of the problem is not satis-
fied when using the Sandgren‘s (1988) branch and bound
technique. Coello and Montes (2002) has solved the prob-
lem using dominance-based tournament selection mecha-
nism with 30 runs and they have handled the best results
with 80,000 function evaluations so as to satisfy all con-
straints. All results were compared against those produced
by the approach DEBVs proposed in this paper, and are
shown in Table 1. The solutions shown in the Table 1 are
the best solutions produced after 30 runs. When the prob-
lem was solved by differential evolution (DE) algorithm, a
good result (6059.719052) was handled with 5,000 function
evaluations compared to other methods. When the problem
was solved by DEBVs proposed in this paper, the best result
(6059.714337) was handled with 5,000 function evaluations
and with 0.000035 standard deviation thereby satisfying all
constraints.

Welded beam design optimization problem was first han-
dled by Ragsdell and Phillips (1976) and Rao (2009) was
redesigned it for minimum cost subject to constraints on shear
stress in weld (τ ), bending stress in the beam (σ ), buckling
load on the bar (Pc), end deflection of the beam (δ), and side
constraints. The mathematical model of this problem is as
follows;

Objective Function (Minimization) (Ragsdell and Phillips
1976):

f (x) = 1.10471x2
1 x2 + 0.04811x3x4 (14.0 + x2) (7)
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Table 1 The best results for the
pressure vessel engineering
design optimization problem

Bold value indicates the new
best result

The best results x1(Ts) x2(Th) x3(R) x4(L) f (x)

Sandgren (1988) 1.125000 0.625000 47.700000 117.701000 8,129.103600

Kannan and Kramer (1994) 1.125000 0.625000 58.291000 43.690000 7,198.042800

Deb (1997) 0.937500 0.500000 48.329000 112.679000 6,410.381000

Coello (2000) 0.812500 0.437500 40.323900 200.000000 6,288.744500

Coello and Montes (2002) 0.812500 0.437500 42.097398 176.654047 6,059.946341

Karen (2005), Karen et al. (2008) 0.812500 0.437500 42.098436 176.637341 6,059.730000

DE 0.812500 0.437500 42.098422 176.636968 6,059.719052

DEBVs 0.812500 0.437500 42.098446 176.636596 6,059.714337

Table 2 The best results for the
welded beam engineering
design optimization problem

Bold value indicates the new
best result

The best results x1(h) x2(l) x3(t) x4(b) f (x)

Deb (1991) 0.248900 6.173000 8.178900 0.253300 2.433116

Ragsdell and Phillips (1976) 0.245500 6.196000 8.273000 0.245500 2.385937

Siddall (1972) 0.244400 6.218900 8.291500 0.244400 2.381543

Rao (2009) 0.244400 6.217700 8.291500 0.244400 2.381000

Ray et al. (2002) 0.167880 4.645894 8.928757 0.219162 1.900000

Coello (1999) 0.208800 3.420500 8.997500 0.210000 1.748309

DE 0.2015340 3.558397 9.056079 0.206152 1.736723

Coello and Montes (2002) 0.205986 3.471328 9.020224 0.206480 1.728220

DEBVs 0.205730 3.470489 9.036624 0.205730 1.724852

Constraint Functions (Ragsdell and Phillips 1976):

g1(x) = τ(x) − τmax ≤ 0

g2(x) = σ(x) − σmax ≤ 0

g3(x) = x1 − x4 ≤ 0

g4(x) = 0.10471x2
1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0

g5(x) = 0.125 − x1 ≤ 0

g6(x) = δ(x) − δmax ≤ 0

g7(x) = P − Pc(x) ≤ 0 (8)

where the stress values are defined by Yokota et al. (1999) as
follows (Ragsdell and Phillips 1976);

τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x2

2R
+ (τ ′′)2

τ ′ = P√
2x1x2

τ ′′ = MR

J

R =
√
x2

2

4
+

(
x1 + x3

2

)2

P = 6000 lb

M = P
(
L + x2

2

)

J = 2

{√
2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

L = 14 in

τmax = 13600 psi

σ(x) = 6PL

x4x2
3

σmax = 30000 psi

δ(x) = 4PL3

Ex3
3 x4

E = 30000000 psi

δmax = 0.25 in

Pc(x) = 4.013E
√

x2
3 x

6
4

36

L2

(
1 − x3

2L

√
E

4G

)

G = 12000000 psi (9)

When the problem was solved by DEBVs proposed in this
paper, the best result (1.724852) was handled with 0.000035
standard deviation thereby satisfying all constraints (Table 2).

These two constraint test problems which were frequently
used as a test tool for many new algorithms were solved
with the developed DEBVs algorithm and better results with
less function evaluation numbers were handled when com-
paring the results of other algorithms. So developed DEBVs
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Fig. 9 Design space (green
volume) and material
distribution after topology
optimization (Color figure
online)

algorithm can be used confidently in the die design optimiza-
tion problem.

Solving die design optimization problem with DEBVs

In this study, topology optimisation for a die design of a
vehicle panel part was performed in accordance with the
determination of target parameters (minimum volume and
maximum stiffness). During the topology optimisation, the
shape and size of the structure can be changed, but the topol-
ogy of the structure is not changed. Therefore, optimisation
techniques have to be considered in the conceptual design
phase to create an optimal initial design layout. In the conven-
tional process, the designer may consider many alternative
topologies, and one of them is chosen as the final component
layout. It is a trial-and-error approach and highly depends
on the designer’s experience, creativity and heuristics. This
procedure may result in a final component layout that is non-
optimal. However, in the topology optimisation approach,
the designer does not have to choose the optimal topology
among alternatives, and no prior knowledge about the topol-
ogy is required.

The design space must be defined for the part while taking
into account the functionality. For this reason, a definition of
the design space as the region in the inner side of the die
(green part of the model) is applied, as shown in Fig. 9. The
optimal material distribution has been acquired using a topol-
ogy solver for the design space. The objective of topology
optimisation is to determine the material distribution for the
desired stiffness and desired volume. For the topology opti-
misation model, the objective function and the constraints
are defined, and the compliance is selected as the objective
function with decreasing volume as a constraint (Altair Engi-
neering Inc 2008). It can be seen that material has accumu-
lated in the middle and along the sides of the part. There is
no material at the corners of the part, as shown in Fig. 9.

After topology optimization different die structures are
generated based on topology design approach considering
the manufacturability and cost factors (Fig. 10).

Third alternative (A3) is preferred for shape optimization
among four alternative die structures (Fig. 10). About 14 %

Fig. 10 Alternative die models after topology design approach

mass decrease is obtained for this model. At the shape opti-
mization stage of the selected die design, the A3 model was
taken into account to define shape parameters. The first step
for the optimization formulation of the current die model is
the selection of an objective function that represents the pur-
pose of the design exactly. The design objective of the shape
optimization is minimizing the mass. The design variables
of selected model are; the thickness (t) and height (h) of die
stiffener structure (Fig. 11).

In shape optimization process only one analysis takes
about one hour as well, so computational time of overall
optimization process will be very long. Thus design of exper-
iment (DOE) is employed to decrease the computational
time (Karen 2011). DOE method is used for preparation
of the optimization process with certain parameters. Design
parameters of sample die structure change at the range of
10 < t < 100 and 100 < h < 500 mm. It is decided to
do 50 experiments for well-defining the design space. Three
analysis of variance plans (ANOVA) are created for volume,
stress and maximum displacement.
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Fig. 11 Parameters of A3 die design model for shape optimization

During the optimisation process intermediate values of
experiments are needed and to acquire the values of inter-
mediate values in the experiments, functions must be cre-
ated to denote volume, stress and maximum displacement
(Kaya et al. 2010). Response surface methodology (RSM)
introduced by Box and Wilson (1951) investigates the rela-
tionships between input variables and one or more output
variables. In this method, polynomials are fitted to the data
created using design of experiments as follows;

Fourth-degree approximation (quartic) for volume (Karen
2011):

fv(h, t) = 110611572.48 + (5090491.53h + 679040.56t)

+ (−26802.61h2 − 24155.66t2 + 11231.04ht)

+ (67.49h3 + 324.58t3 − 0.10552h2t

− 63.79475ht2) + (−0.05560h4 − 1.47364t4

+ 0.00118h3t + 0.31135ht3 − 0.00906h2t2)

(10)

Fourth-degree approximation (quartic) for stress (Karen
2011):

fs(h, t) = 163.72 + (−0.19361h − 5.92460t) + (0.00064h2

+ 0.12783t2 − 0.00160ht) − 0.000002h3

− 0.00136t3 + 0.000004h2t + 0.00005ht2)

+ (0.000000002h4 + 0.000005t4

− 0.000000004h3t − 0.0000003ht3

− 0.00000001h2t2) (11)

Fourth-degree approximation (quartic) for maximum dis-
placement (Karen 2011):

fmd(h, t) = 0.77062 + (0.00013h − 0.01888t)

+ (0.000002h2 + 0.00055t2 − 0.00004ht)

+ (−0.000000002h3 − 0.000007t3

+ 0.000000002h2t + 0.0000006ht2)

− (0.0000000000004h4 + 0.00000003t4

+ 0.00000000001h3t − 0.000000003ht3

− 0.00000000007h2t2) (12)

The coefficient of determination, R2 values for each of
those 3 approximation response functions are 0.999991,
0.993063 and 0.995027, respectively. Thus, three quartic
fourth-degree approximation response functions for volume,
stress and maximum displacement. Eqs. (10), (11) and (12)
were employed for the optimisation process.

In the optimisation process, the objective is to minimise
the volume, in other words, to find the optimal values of h
and t that minimize the volume formulated in Eq. 10. The
DE and DEBVs algorithms are used to search the optimal
design parameters. Two constraints, such as stress (Eq. 11)
and maximum displacement (Eq. 12), must be less than 50
and 0.33, respectively.

The optimisation problem is solved by DE and DEBVs
with the number of populations set to 10 and with the num-
ber of generations set to 25. For both algorithms the function
evaluation number is 250 and for the robustness the die design
optimization problem was solved with 30 runs using differ-
ential scale factor as 0.85 and crossover rate as 0.9. The best
results were obtained with DEBVs. The optimal values of h
and t were computed as h = 259.6546 and t = 93.7187 mm.
Significant results were obtained that reduced the mass by

Table 3 The results of die
design optimization problem
using DE and DEBVs

Bold Value indicates the new
best result
* % Variation = Mass of current
model − Mass after
optimization processes

Mass variation
(% *)

Maximum stress
variation (%)

Maximum
displacement
variation (%)

Total run
time (%)

Current model 100 100 100 –

Topology optimization 83 96 149 –

Shape optimization
using DE (Karen et al.
2012)

76.43 28 109 100

Shape optimization
using DEBVs

76.39 28 109 65
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approximately 24 % and that decreased the current stress by
approximately 72 %. After the optimisation process, the max-
imum displacement decreased from 149 % to a negligible
value of 109 % (Table 3). These data are calculated by using
a simple proportion formulation. The most important point
is that the total run time is reduced about 35 % using DEBVs
in comparison with DE (Karen et al. 2012) shown in Table 3.

Conclusions

This paper has introduced a new intelligent die design based
on shape and topology optimization using improved differ-
ential evolution and response surface methodology. The new
approach is based on a methodology that uses the best vectors
in the population as differential vectors (DEBVs) in muta-
tion strategy. The proposed approach performed well in the
engineering optimization problem both in terms of the num-
ber of objective function evaluations required and in terms
of the quality of the solutions found. The results produced
were compared against those generated with other evolution-
ary and mathematical programming techniques reported in
the literature. Using DEBVs algorithm the best results were
handled.

This improved intelligent methodology was used in the
design stage of die, and significant results were obtained: the
mass was reduced approximately 24 %, the current maximum
stress decreased approximately 72 %, and the maximum dis-
placement decreased from 149 % to a negligible value of
109 %. The most important point is that the total run time is
reduced about 35 % using DEBVs in comparison with DE.

Using this methodology in the design stage of die and sheet
metal stamping, major improvements to the vehicle develop-
ment process can be made, such as reducing the weight and
the cost of die, reducing the labour costs during pattern prac-
tice and reducing the environmental damage or CO2 emis-
sions by reducing the amount of cast iron.

The results showed that the present simulation-based
topology design approach integrated with response surface
methodology and differential evolution can be used to sup-
port the designer in designing optimal die models according
to desired objectives and constraints. It is also seen that the
present approach can support the designer in creating inno-
vative die design structures.

As part of our future work, we plan to analyse the crossover
mechanism and additionally, we are considering the exten-
sion of other multi-objective optimization techniques to han-
dle constraints in evolutionary algorithms. Further this devel-
oped method can be implemented to the other kinds of dies
such as bending, cutting, etc. And also overall press models
can be taken into account for calculating the deflections in
order to increase the correlation.
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