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Abstract In order to develop remote welding process
methodologies, it is first important to develop computational
methodologies employing soft computing techniques for pre-
dicting weld bead width and depth of penetration using a real
time vision sensor during welding. Welding being a thermal
processing method, sensing using infra-red (IR) camera is
most extensively employed for monitoring and control of
welding process. In the present work, attempt has been made
to develop predictive methodologies using hybrid soft com-
puting techniques for accurately estimating the weld bead
width and depth of penetration from the IR thermal image
of the weld pool. IR thermal images have been recorded in
real time during A-TIG welding of 6 mm thick type 316 LN
stainless steel weld joints with varying current values to pro-
duce different depth of penetration. From the acquired IR
images, hot spot was identified by image segmentation using
the cellular automata image processing algorithm for the first
time. The current and the four extracted features from the hot
spot of the IR thermal images were used as inputs while the
measured bead width and depth of penetration were chosen
as the output of the respective adaptive neuro fuzzy inference
system and artificial neural network based models. Indepen-
dent models were developed for estimating weld bead width
and depth of penetration respectively. There was good cor-
relation between the measured and estimated values of bead
width and depth of penetration using the developed models.
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Introduction

As most of the structural components of the operating nuclear
reactors are fabricated by welding and life extension or
modifications to its structural component require remote
repair welding to ensure that nuclear plant can continue
to run safely and efficiently without exposing personnel to
the radiation environment. Hence, it is essential to develop
remote repair welding process methodologies for carrying
out remote repair welding of structural components. The
welding processes most widely used for repair welding in
nuclear power plants include tungsten inert gas (TIG) weld-
ing, metal active gas (MAG) welding and shielded metal arc
welding (SMAW) processes. TIG welding process can be
used remotely however it does not produce deep penetration
welds. The process is slow and requires quite a number of
welding passes to complete single welded joint. The TIG
welding process is prone to variable weld penetration due to
minor variations in the chemical composition of austenitic
stainless steels and also requires a separate wire feeder sys-
tem. The use of MAG welding process is limited to C-Mn
steel components only. New processes which find application
in remote repair welding include high power Nd:YAG laser
and TIG welding with activated fluxes which all have poten-
tial for improved performance. Nd:YAG lasers offer delivery
of the beam through fiber optics which allows flexible manip-
ulation of welding head to deliver single pass deep penetra-
tion welds. TIG welding with activated fluxes also offers
potential for producing deep penetration welds for remote
repair welding applications.

Low carbon austenitic stainless steel types 304 and 316
alloyed with nitrogen, designated as 304L(N) and 316L(N)
stainless steels are finding application as structural materials
for nuclear reactors. Type 316LN stainless steel is chosen
as high temperature structural material for the fabrication

123



60 J Intell Manuf (2015) 26:59–71

of structural components of prototype fast breeder reactor
(PFBR). Activated fluxes have been developed in-house for
enhancing the penetration performance of TIG welding of
austenitic stainless steel by 300 % (Vasudevan 2007). A-TIG
welding of austenitic stainless steels was found to mitigate
the variable weld penetration during autogenous TIG weld-
ing. A-TIG welding process has been developed to achieve
penetration up to 12 mm in single pass welding of type 316LN
austenitic stainless steel (Vasudevan 2007). A-TIG welding
process is one of the candidate process chosen for remote
repair welding of nuclear structural components made of
austenitic stainless steels.

In order to employ the above welding processes for remote
repair welding applications, the use of sensing technology
and adaptive control must also be considered. Vision sens-
ing, in-process control and offline programming techniques
are under development or currently employed for robotic
remote repair welding. In manual welding process, the welder
ensures the quality of the weld by monitoring and suitably
manipulating the process parameters according to the chang-
ing environment based on his knowledge and experience. In
the case of adaptive welding vision system, sensors play the
role of welder. Several sensing techniques have been devel-
oped to monitor weld bead profile and depth of penetration
which include acoustic sensors, ultrasonic sensors, optical
sensors, vision sensors etc. (Sun and Kannatey-Asibu 1999).
Acoustic sensor have been successfully developed to mon-
itor laser welding of steels (Huang and Kovacevic 2009).
It was possible to ascertain the status of the molten weld
pool, the generated plasma, the vaporized metal, the key
hole by monitoring the acoustic signals produced during the
laser welding process. To improve the quality of acoustic
signals in a noisy and hostile environment, it was neces-
sary to apply noise reduction methods. After improving the
quality of acoustic signals, it was feasible to monitor and
control the laser welding process to achieve full penetration
welds. Ultrasonic technique has been successfully used in
directly measuring the weld pool geometry by employing
non-contact laser based and electromagnetic acoustic trans-
ducers (Graham and Ume 1997). The authors found that the
large temperature gradient within the heat affected zone can
reflect ultrasonic waves thus limiting the accuracy of mea-
suring the weld pool dimensions. Most of the optical sens-
ing methods used have involved the use of laser/solid state
camera and/or photo diode combination for seam tracking
and weld pool geometry control (Wei Huang and Radovan
Kovacevic 2011). Image processing was used to extract the
weld pool size and joint configuration and neural network
processed the information very fast. Therefore, cost effec-
tive weld inspection systems could be developed using opti-
cal sensors. Vision systems use the charge-coupled device
(CCD)/infra-red (IR)/complementary metal oxide semicon-
ductor (CMOS) cameras for monitoring weld pool size and

to control the welding parameters (Zhang 2008). The pur-
pose is to capture real data from practical welding situations,
which can then be used as input to computational simula-
tion of welding manufacturing operations. Optical sensing
techniques have been used for joint tracking and fill control
(Kovacevic et al. 1995), weld pool width and profile control
(Kovacevic and Zhang 1997). Most of these sensing tech-
niques can supervise only one welding parameter efficiently.
Therefore extensive control of several welding parameters
using the available sensing techniques would result in the
use of multiple sensors or commonly known as multisensory
systems. Use of a single sensor to monitor several welding
parameters minimizes these problems. Investigations have
suggested that infrared thermography may be such a sen-
sor. Welding, inherently being a thermal processing method,
infrared sensing is a natural choice for weld process informa-
tion (Farson et al. 1998). The basis for using infrared imaging
lies in the fact that an ideal welding condition would pro-
duce surface temperature distribution that shows a regular
and repeatable pattern. Any variation or perturbation should
result in discernible change in the thermal profiles (Chen and
Chin 1990; Nagarajan et al. 1992; Banerjee et al. 1995). IR
sensing is not without its difficulties, such as the interference
of arc radiation and welding electrode emissions, these inter-
ferences are mitigated by using either mechanical or optical
means to filter the unwanted thermal emissions (Farson et al.
1998; Menaka et al. 2005; Vasudevan et al. 2010).

To ensure reliable weld quality during remote repair weld-
ing, weld bead width and depth penetration are the two key
variables to be sensed and controlled. The estimation of weld
bead shape parameters such as weld bead width and depth of
penetration of the weld pool from the IR thermal video of a
welding process is an intermediate step towards online con-
trol of the welding process. Many attempts have been made to
develop computational methodologies using soft computing
techniques for estimating the weld bead shape parameters as
a function of welding process parameters (Ghanty et al. 2007;
Gowtham et al. 2011; Nagesh and Datta 2010; Edwin Raja
Dhas and Kumanan 2007; Hyunsung Park and Sehun Rhee
1999) as well as from the acquired IR thermal image (Nagesh
and Datta 2010; Nagarajan et al. 1992). Major problem in the
analysis of IR thermal images is to accurately identifying the
hot spot by image segmentation and edge detection. Image
segmentation algorithms such as fuzzy c-means (Ghanty et
al. 2008) and k-means clustering algorithm (Subashini and
Vasudevan 2012; Chokkalingham et al. 2012) have been used
for identifying the hot spot in IR thermal images. However,
Image segmentation by cellular automata (CA) is more popu-
lar and suitable for complex segments. CA image processing
algorithm has been successfully employed for image seg-
mentation and edge detection on medical images (Kazar and
Slatnia 2011; Kumar and Sahoo 2010; Hamamci et al. 2010).
CA method supports two-dimensional and multiple structure
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Fig. 1 Moore’s neighborhood pattern

categories where the number of segments does not increase
computational time or complexity. This ability makes it suit-
able for segmenting weld pool IR thermal images with com-
plex cluster structures. Since CA is a simple to implement
and an accurate method where each cell uniformly follows a
set of or individual rules, this naturally makes it an efficient
algorithm. However, no segmentation method is suitable for
all kinds of images, and further there is no common algorithm
accepted by all.

The CA approach was originally invented by Ulam and
Von Neumann to evaluate the behavior of natural complex
systems (Wolfram 1986). The CA is a computer algorithm
that is basically discrete in space and time and operates on a
lattice or grid of cells. It consists of a two-dimensional array
of cells. Each of these cells can be in one of a finite number of
possible states, updated in parallel according to a state tran-
sition function. In the past few years, the application of CA
in image processing to extract the segmentation information
has grown. The research shows that, it can be applied in var-
ious simulation contexts, for example, physical simulations,
fire propagation, artificial life and medical image processing
(Kazar and Slatnia 2011; Kumar and Sahoo 2010). There-
fore, it appears as a natural tool for image processing due
to its local nature and simple Moore’s neighborhood imple-
mentation. The Moore’s neighborhood pattern is as shown in
Fig. 1.

The present work aims at developing hybrid intelligent
models combining image processing with soft computing
techniques such as adaptive neuro fuzzy inference system
(ANFIS) and artificial neural network (ANN) for estimat-
ing the weld bead width and the depth of penetration from
the IR thermal image of the weld pool. First time, attempt
is being made to apply CA image processing algorithm to
identify hot spot in the IR thermal image of the weld pool.
IR thermal image of the weld pool is acquired online dur-
ing A-TIG welding of 6 mm thick type 316LN stainless steel
plate. An IR camera is made to move along with the torch
during welding and capture the weld pool image in real time.
From the recorded thermal image video, hot spot is identi-

Fig. 2 GTAW setup with IR camera

fied using CA image processing algorithm for the selected
frames. Four image features are extracted and are used along
with current values as input to the ANFIS and ANN models
while the measured weld bead width and depth of penetration
are used as output of the respective models. The predictive
performance of the ANFIS and ANN models is compared in
terms of the RMS errors.

Experimental

The A-TIG welding was carried out on 6 mm thick 316LN
austenitic stainless steel plates of dimension 300 mm long ×
250 mm width to make square butt joint sat various current
values to achieve different depth of penetration values. The
experimental setup for TIG welding is attached with an IR
camera to facilitate real time monitoring of the weld pool
during welding as shown in Fig. 2. The surface temperature
distribution of the plate being welded is measured by the IR
camera. The arc radiation and the radiation from hot tungsten
electrode during TIG welding has been reported to occur
in the spectral range of 0.34–1.8µm (Huang et al. 2007).
In the present study, the IR thermography system measures
temperature distribution by sampling portions of the emitted
energy within a wavelength of range of 4.99–5.1µm using
band pass filter, thereby suppressing the interference from the
arc light and hot tungsten electrode on the image quality. The
camera is capable of measuring temperature within the range
of 473–1973 K, with an accuracy of ±1 % over the entire
range. After welding, the weld joints were cut, samples were
prepared and polished sequentially by automatic polishing
machine to measure the actual weld bead width (BW) and
depth of penetration (DOP) using a microscope. Welding
process parameters used for making weld joints is given in
Table 1. Thirty data points were generated from five different
weld joints with different depth of penetration values. The
samples were cut at specified locations of 60, 100, 140, 180,
220 and 260 mm respectively from the beginning of each of
the weld joint.
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Table 1 GTAW welding parameters used for experiment

Process parameters Range

Current 150–170 A

Welding speed (mm/min) 120 mm/s (constant)

Electrode Tungsten electrode with 2 %

Electrode diameter 3.2 mm

Arc gap 1.5 mm (constant)

Shielding gas Argon

Gas flow rate 10 l/min

Electrode tip angle 45◦

Fig. 3 Flow chart for hybrid intelligent technique based model devel-
opment

Methodology of intelligent model development

The steps involved in the hybrid intelligent based model are
given as flow chart in Fig. 3. The methodology involves image
processing of the IR thermal images to identify the hot spot
followed by feature extraction from the segmented images.
CA image processing algorithm is proposed to be used to
identify the hot spot region in the IR thermal image. After
the image segmentation, the hot spot image is used for fea-
ture extraction. The extracted image features and the current
used for welding will form the input variables of the ANFIS
and ANN models. The measured weld bead width and depth
of penetration will form the output variables of the respective
models. During ANFIS model development, three member-
ship functions namely triangular, Gaussian and bell shaped
are used. The ANFIS model with a membership function
producing minimum RMS test error is chosen for estimating

the weld bead width and depth of penetration. During ANN
model development using back propagation neural network,
L–M algorithm is proposed to be used. Independent models
will be developed for estimating weld bead width and depth
of penetration. Finally validation of the models will be car-
ried out and the performance of the models in terms of the
predicted RMS error will be assessed.

Image acquisition and feature identification

To capture thermal images, JADE, CEDIP IR camera was
used. It captures the image in a frame of size 320 × 240
at a speed of 25 frames per second. It consists of built-in
medium wave filter of the wave length range of 4.99–5.1µm
to suppress beyond band width noises from infrared radiation
during experiment and permits discrete intensities within the
portion of the band width. The captured analog infrared mag-
nitude is converted into discrete intensities by 14 bit analog
to digital converter built in the camera. The captured inten-
sity converted into temperature in the Altair software by fac-
tory calibrated block body setup files. These files are loaded
for every experiment. The temporary stored current frames
in the camera are communicated to PCI frame grabber in
the higher-end personal computer by GPIB cable. The Altair
software records the real time IR thermal images at a rate
of 25 frames per second and saves into computer hard disk
for further processing. The camera is mounted at an angle
of 45◦ on the automatic TIG welding machine in the torch
assembly. The mounted camera moves with the torch during
welding to capture the weld pool image in real time. From the
acquired IR thermal video, the video frame corresponding to
the particular cut section is identified and called as the key
frame at a particular time (which is shown in Fig. 6a). These
key frames can be identified from the torch speed and the
video frame rate. For example, for the welding experiment
with torch speed of 2 mm/s and frame rate of 25 frames/s, the
video frame corresponding to the cut section at 60 mm will
be (60/2)×25 = 750th frame. Therefore, for each cut section,
the corresponding key frame is identified. The extracted key
frames were used further for image processing using CA to
identify the hot spot.

Image processing using cellular automation

The steps involved in the algorithm involve first capturing
the weld pool IR image as a frame in real time by IR camera.
Next the captured images were processed for filtering the
noises in the captured image for further implementation of
CA algorithm. The sources of noise in the weld pool image
are due to background noises, unstable information and ran-
dom disturbances. It does not reflect the true intensity value
of pixel in magnitude of IR image. In order to achieve better
quality image without losing valuable details, average filter
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Fig. 4 CA mapping formats for selection of central cell

is used for removing such noises. In our algorithm to filter
noises a two dimensional average filter was used by ’fspe-
cial’ Matlab command to enhance the smoothness of the seg-
mented boundary region and thereby improve the quality of
the IR thermal image of the selected key frame. During image
processing the processed IR key frame is analyzed into pix-
els. With IR key frame images as gray scale images, each
pixel indicates the magnitude of brightness to the image in
a particular spot (0 indicates black, 255 indicate white). The
main idea for using CA algorithm is to use the neighborhood
relation of weld pool image matrix to make a better decision
and thus to improve the accuracy of hot spot identification.

In the process of CA algorithm, a null value of an empty
row and column were padded around the above filtered IR
image matrix to facilitate propagation of CA mapping matrix.
The CA mapping matrix were created equivalent to dimen-
sions of the Moore’s neighborhood option and then it was
allowed to propagate around the entire image. The CA map-
ping matrix approach is equivalent to Moore’s neighborhood
pattern, contains nine neighborhood cells (P1–P8) and central
cell is (P) as shown in Fig. 1. Each cell contains the magni-
tude intensity of IR image. Selection or de-selection of the
central cell is based on its neighborhood states and transition
rule. The transition rule is based on comparison criteria of
a sum and difference between A and B set of variables to a
threshold value as shown in Fig. 4. The threshold value was
calibrated precisely to get accurate results of the segmented
image. If the central cell is meeting the above criteria then
it is selected as a hot spot region otherwise it is deselected.
Figure 4 shows the various formats considered for selection
of central cell. Applying these steps on overall image, the
central cell converges and helps in identifying the hot spot
segment region on the weld pool image and the algorithm
stops. The proposed flow chart of CA algorithm is as shown
in Fig. 5. The Fig. 6a shows a sample IR key frame and the
typical extracted hot spot segment for the gray scale IR ther-
mal image using CA is shown in Fig. 6b. The proposed CA
algorithm programming code was developed in Matlab envi-
ronment, and analytical results were processed in the Origin
software.

Fig. 5 Flow chart of CA algorithm

Feature extraction

Length Lwp(t) and width Wwp(t) of the weld pool, bead width
computed from the first derivative curve of the Gaussian
approximation temperature curve and thermal area (AT)

under the Gaussian approximation of temperature profile are
the image features extracted from the hot spot. The line scan is
drawn on the segmented hot spot thermal images and adjusted
until there is a better point of inflection in the thermal pro-
file. The thermal intensity profile containing the tempera-
ture distributions throughout the line scan is extracted from
the MATLAB software and analyzed in Origin software.
The temperature distribution data profiles were processed
in the Origin software for the feature identification. With
advanced features of origin software, first derivative curve
and Gaussian distribution curve were obtained. From the first
derivative curve in Fig. 7a, the weld bead width was com-
puted as the number of pixels between the inflection points
B1 and B2 in the graph. Bead width computed as pixels was
then converted to a linear dimension based on calibration
using a measuring scale. It was found that one pixel corre-
spond to 0.24 mm. To take into account the angle effect of IR
camera on the bead width measurement, the computed weld
bead width in linear dimension was multiplied by cos45. The
computed weld bead width from the segmented IR image
was compared with that of the actual measured bead width.
There was good linear relationship between the computed
and the actual bead width values with a minimum corre-
lation coefficient of 0.8. Earlier work also reported similar
accuracy values (Chen and Chin 1990; Banerjee et al. 1995;
Menaka et al. 2005). So, CA algorithm accurately extract the
molten weld pool image. It is found that the temperatures
of the line of scan fits as a Gaussian like distribution and
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Fig. 6 a Sample key frame. b
Segmented image extracted
using CA

Fig. 7 a First derivative curve of temperature profile. b Thermal area using Gaussian approximation

temperature profile is approximated by a Gaussian function.
By plotting the Gaussian distribution curve with tempera-
ture as Y -axis and number of pixels as X -axis, the thermal
area (AT) was obtained. The thermal area computed under
a Gaussian fit approximated curve of the temperature pro-
file is shown in Fig. 7b. The thermal area depends on the
amount of heat input during welding and therefore the ther-
mal area, length and width of the weld pool measured from
the segmented image can be correlated with the measured
depth of penetration. The extracted features were used as
input variables for developing ANFIS and ANN based hybrid
models. The Fig. 3 shows that the flow chart for the hybrid
modeling.

Data preparation

Ninety data sets were prepared using three lines of scans on
each of the segmented image frame corresponding to thirty
data points. These datasets were used to develop ANFIS and
ANN models independently for predicting weld bead width
(BW) and depth of penetration (DOP) during A-TIG weld-
ing of 6 mm thick 316LN austenitic stainless steel plates. The

extracted four image features along with current were corre-
lated with the measured bead width and depth of penetration.
The length Lwp(t) and width Wwp(t) of the hot spot region,
distances between pixels of inflection point on the first deriva-
tive curve of Gaussian approximation temperature and weld-
ing current were correlated with physically measured weld
bead width. Similarly, the length Lwp(t) and width Wwp(t)
of the weld pool, and thermal area (AT) under the Gaussian
approximation temperature profile and the welding current
were correlated with the physically measured depth of pene-
tration. Table 2 gives the input and output variables used for
developing the weld bead width and the depth of penetration
models.

Development of ANFIS based models for estimating
bead width and depth of penetration

The objective of ANFIS is to combine the best features of
Fuzzy Systems and Neural Networks. The mechanism used
in a FIS is mapping a given set of inputs to an output space
using fuzzy logic. The FIS comprises (a) fuzzy sets and
membership functions (b) fuzzy implication operator and
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Table 2 Input and output variables used for developing ANN and ANFIS models

Extracted image features considered for development of model (input variables) Correlated with physically measured value (output variables)

1. Length of weld pool (Lwp) Depth of penetration (DOP)

2. Width of weld pool (Wwp)

3. Thermal area (AT)

4. Welding current

1. Length of weld pool (Lwp) Weld bead width (BW)

2. Width of weld pool (Wwp)

3. Distance between B1 and B2 of first derivative curve ((B2 − B1)*0.24*Cos45)

4. Welding Current

Fig. 8 Five layer ANFIS architecture

(c) linguistic if-then rules. A membership function (MF) is a
curve that defines mapping of each point in the input space
to a membership value between 0 and 1 called the degree of
membership. There are several types of membership func-
tions viz. triangular, trapezoidal, Gaussian, generalized bell,
sigmoidal, etc., of which triangular, Gaussian and general-
ized bell are considered in the present work, and their relative
performance is compared. The typical ANFIS architecture is
as shown in Fig. 8. The system architecture consists of five
layers namely fuzzy layer, product layer, normalized layer,
de-fuzzy layer and total output layer. The description of the
computation involved in each layer is discussed in detail in
our earlier paper (Nagesh and Datta 2010; Nagarajan et al.
1992).

Among the generated 90 data, 70 data were used for
training, 10 data for checking and 10 data for testing the
FIS. Two individual ANFIS models were developed each
for predicting the weld bead width and depth of penetra-
tion. Takagi–Sugeno type FIS of zero order is used for model
development. Three types of membership functions namely
triangular (trimf), Generalized bell (gbell) and Gaussian
(gaussmf) were selected and the degrees of membership is
fixed as three representing the linguistic variables like low,
medium and high. The membership function parameters are
initially assigned by ANFIS. Then, FIS is generated imple-
menting grid partitioning technique, which clusters all the
data sets and creates the rules accordingly. Some of the basic
rules extracted from the model for predicting the depth of
penetration are as follows:

Table 3 Parameters of the FIS developed

S. No. Parameters Numbers

1 Nodes 193

2 Nonlinear parameters 36

3 Training data pairs 70

4 Fuzzy rules 81

5 Linear parameters 81

6 Total parameters 117

7 Checking data pairs 20

If (current is high) and (Lwp is low) and (Wwp is low) and
(A is high), then (DOP is r25)
If (current is low) and (Lwp is high) and (Wwp is high)
and (A is high) then (DOP is r55)
If (current is low) and (Lwp is low) and (Wwp is high) and
(A is low) then (DOP is r74)

where r25, r55, r74 are the linear/consequent parameters of
the respective rules which is nothing but the output of the
fuzzy rules. If-then rules are evaluated as given above and the
output is expressed as linear equation. The entire operation
is done in the ANFIS tool box. The parameters are shown in
Table 3.

The back propagation and the least square technique were
combined for training the FIS. Combination of back propaga-
tion and least square technique facilitate faster convergence
and accurate results. The Error tolerance value chosen was
0.001. In order to select the optimized epoch number for the
three types of membership functions used, the data set were
trained with different epoch numbers and maximum epoch
number below which over fitting of the model does not occur
was chosen. The models were developed independently for
predicting weld bead width and depth of penetration, the gen-
eralized bell and the triangular membership functions showed
good membership function parametric tuning. For example,
membership function parametric tuning observed before and
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Fig. 9 Parametric tuning of membership function for triangular, General-bell and Gaussian functions. a Before, b after for predicting the BW

Table 4 Comparison of RMS error values for training and testing data
of the bead width model

Membership function RMS error value for prediction
of bead width

Training Testing

trimf 0.0102 0.0823

gbellmf 0.0149 0.023

gaussmf 0.0103 0.0516

after training of FIS for predicting weld bead width using the
three membership functions is shown in Fig. 9a, b.

Prediction of weld bead width

The comparison of RMS error values for training and testing
data for predicting weld bead width using ANFIS models is
given in Table 4.

From the above Table 4, it can be seen that the FIS using
generalized bell (gbellmf) membership function produces the
minimum RMS test error value of 0.023. It shows that bell
membership function undergoes good membership function
parametric tuning during the learning process. The RMS
error using generalized bell MF is highest in training but
least for testing because the generalization ability of the bell
MF is better compared to the other two membership func-
tions. The bell membership function is best for correlating
the non-linear relation between the set of input and output
variables for the dataset on bead width. Similarly for the
dataset on depth of penetration, triangular membership func-
tion exhibits better generalization ability.

Fig. 10 Plot between actual and predicted BW obtained using gener-
alized bell function

The Fig. 10 clearly shows that there is a good correlation
between the actual measured values and the predicted values
of weld bead width. ANFIS model using bell membership
function is saved into hard disk for further validation of the
model.

Prediction of depth of penetration

The comparison of the RMS error values obtained during
training and testing data for the predicting depth of penetra-
tion using ANFIS models using different membership func-
tions are given in Table 5. The ANFIS model with triangular
member ship function exhibited minimum RMS test error
and hence saved to hard disk for validation of the model.
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Table 5 Comparisons between training and testing of RMS error values
for DOP model

Membership function RMS error value for prediction
of depth of penetration

Training Testing

trimf 0.0107 0.0341

gbellmf 0.0044 0.0404

gaussmf 0.0038 0.0390

Fig. 11 Plot between actual versus predicted DOP obtained using trimf

The Fig. 11 clearly shows that there was good agreement
between the actual values and the predicted values of depth
of penetration.

Artificial neural network model development
for estimating bead width and depth of penetration

The datasets prepared with 90 data consists of extracted fea-
tures from IR thermal images and current as input variables
and physically measured bead width and depth of penetra-
tion as output variables for development of two independent
models. The dataset was fully randomized before the gen-
eration of the model. Among the available 90 data, 70 data
were used for training and 20 were used for testing the neural
network models. The randomized 90 data points were nor-
malized between 0 and 1 by the transformation formula given
below.

XN = (X − Xmin)/(Xmax − Xmin); Data normalization

The new Feed Forward back propagation neural network was
created with one hidden and one output layer using a MAT-
LAB neural network tool box. The entire neural network fea-
tures used for the model development are as shown Fig. 12.

Fig. 12 Neural network architecture parameters

Table 6 Performances of the proposed neural networks for bead width
model

Network architecture Root mean square error

Training Testing

4-4-1 0.0585 0.06

4-5-1 0.0906 0.0968

4-6-1 0.0322 0.0389

4-7-1 0.0958 0.1018

4-8-1 0.0533 0.0991

4-9-1 0.0638 0.0771

Artificial neural network model on bead width

The four input variables consist of current, length and width
of the weld pool and the bead width estimated from the first
derivative curve. The output consists of measured weld bead
width. The network was trained with various hidden neu-
rons. The performance of the neural network models with
various numbers of hidden neurons in terms of training and
testing based RMS error values is compared Table 6. The
neural network model with six hidden neurons was found to
exhibit minimum RMS test error. Therefore, the neural net-
work model with 4-6-1 network architecture was chosen with
all its weights and biases for further validation. The finalized
neural network input, output layer weights and biases are
given in Tables 7 and 8.

The Fig. 13 shows that the comparison between predicted
and measured bead width of both the training and the test
data. There was excellent agreement between the predicted
and measured values.

Artificial neural network model on depth of penetration

The input variables consists of current, length and width
of the weld pool and the thermal area under the Gaussian
approximation of the temperature profile and the output vari-
able consist of measured depth of penetration. The neural
network models were developed with varying number of hid-
den neurons and their performance were compared in terms
of the training and testing RMS error values as given in
Table 9.
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Table 7 Weight values from input layer to hidden layer Lw(1,1) for bead width

Node number Input parameters (input weights(1,1))

Current Length of
weld pool

Width of
weld pool

Distance pixels from
first derivative curve

1 −0.21533 −1.6577 −2.57 −1.3028

2 −0.31753 −0.06218 −3.2824 −0.27353

3 −4.8595 4.1587 −0.18945 −0.23357

4 1.1397 0.66855 −6.6301 −0.29776

5 −1.068 −0.20999 −1.7039 −0.12676

6 −1.3525 2.7325 −1.4262 −2.0808

Layer weight Lw(2,1) Lw(3,2)

Node number 1 2 3 4 5 6

Weight values −0.13169 −2.1846 −0.19761 0.39153 2.2786 0.18486 −2.168

Table 8 Weight and bias values from hidden layer to output layer for bead width

Bias Layer 1 Layer 2 Layer 3

Node number 1 2 3 4 5 6

Weight values 2.356 −1.1578 −1.3909 −1.4755 −0.97746 −1.4228 −0.0065751 −0.41228

Fig. 13 Plot between predicted and measured bead width

Among all the trained network architecture, the network
with six hidden neurons was found to produce RMS test error
value of 0.0138. Therefore, the model with 4-6-1 network
architecture was chosen for predicting depth of penetration.
The finalized neural network input and output layer weight
and bias of optimized network architecture of 4-6-1 are given
in Tables 10 and 11. The comparison of the predicted and
measured values is shown in Fig. 14. There was excellent
agreement between the measured and predicted values of
depth of penetration.

Table 9 Performances of neural networks for predicting depth of
penetration

Network architecture Root mean square error

Training Testing

4-4-1 0.0548 0.0885

4-5-1 0.0278 0.0648

4-6-1 0.0306 0.0138

4-7-1 0.0053 0.0198

4-8-1 0.0369 0.0685

4-9-1 0.0579 0.0825

Validation of the ANFIS and ANN models

To check the performance of the developed ANFIS and ANN
models, validation experiments were conducted. The perfor-
mance of both the ANFIS and ANN models in predicting the
weld bead width is presented below (Fig. 15).

Validation for weld bead width models

The Table 12 shows the comparison between physically mea-
sured bead width values and the predicted bead width values
of ANFIS and ANN models. Figures 16 and 17 compare the
measured values with models predicted values. There was
good agreement between the measured and predicted bead
width values. The RMS error for predicting weld bead width
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Table 10 Weight values from input layer to hidden layer for depth of penetration

Node number Input parameters

Current Length of
weld pool

Width of
weld pool

Thermal area (AT)

1 4.4724 −1.1924 −3.8163 −1.8271

2 4.7423 0.66791 −3.4037 −0.47294

3 2.4592 −0.25055 −0.53008 2.4284

4 5.7327 1.0364 −0.31831 2.3887

5 −1.5838 2.0203 0.36914 1.4981

6 4.7475 −4.2643 −2.488 −1.8516

Layer Lw(2,1) Lw(3,2)

Node number 1 2 3 4 5 6

Weight values −1.5952 1.3118 −1.0315 1.2216 0.17953 2.5338 0.65134

Table 11 Weight and bias values from hidden layer to output layer for depth of penetration

Bias Layer 1 Layer 2 Layer3

Node number 1 2 3 4 5 6

Weight values 2.1892 0.35834 0.25403 −1.9211 −3.8359 3.6675 −0.025578 −0.45764

Fig. 14 Plot between predicted and measured depth of penetration

using the ANFIS model was 0.11 while for the ANN model
was 0.15 for the validation data set.

Validation for depth of penetration models

Table 13 shows the comparison between the physically mea-
sured depth of penetration with the ANFIS and ANN pre-
dicted depth of penetration values for the validation data set.
Figures 17 and 18 compare the predicted and measured val-
ues of depth of penetration for the ANFIS and ANN models.

Fig. 15 Plot between physically measured and predicted bead width
using ANN

There was good agreement between the predicted and mea-
sured values of depth of penetration. The RMS error for pre-
dicting the depth of penetration using ANFIS model was
0.07 while for ANN model, it was 0.21 for validation data.
Both the ANFIS and ANN models were found to estimate
the weld bead width and the depth of the penetration accu-
rately for the validation data set. The RMS error values were
lower for ANFIS based models. Also, Generation and exe-
cution of ANFIS based models were taking less time and

123



70 J Intell Manuf (2015) 26:59–71

Table 12 Comparison between the physically measured bead values
and the models predicted values

Physically measured weld
bead width in mm

Predicted weld bead width
in mm

ANN ANFIS

6.444 6.451 6.544

6.693 6.543 6.7052

6.919 7.019 6.769

7.094 6.894 6.958

7.496 7.72 7.581

Fig. 16 Plot between physically measured and ANFIS predicted BW

Fig. 17 Plot between physically measured and ANN predicted DOP

therefore may be beneficial while applying for real time weld-
ing process monitoring and control.

Table 13 Comparison between the measured and models predicted
depth of penetration

Physically measured depth
of penetration in mm

Predicted depth of penetration
in mm

ANN ANFIS

3.984 4.074 3.959

4.219 4.019 4.307

4.393 4.403 4.414

4.480 4.830 4.350

4.692 4.472 4.717

Fig. 18 Plot between physically measured and ANFIS predicted DOP

Conclusions

1. Cellular automata image processing has been success-
fully applied for the first time to identify the hot spot in
the IR thermal image of the weld pool. The algorithm has
been found to be efficient in identifying the hot spot in
the IR thermal image. Therefore, a methodology using
CA has been developed for extracting the hot spot region
from IR thermal images of the weld pool.

2. The ANFIS based models have been developed for esti-
mating the weld bead width and depth of penetration from
the extracted image features and the current values used
for making the weld joint. RMS error of validation data
set for predicting bead width is 0.11 and for predicting
depth of penetration is 0.07.

3. The ANN model with a network architecture of 4-6-1
was chosen for predicting weld bead width and depth of
penetration as it exhibited a minimum RMS error on the
test data set. RMS error of validation data for predicting
the weld bead width was 0.15 and for predicting depth of
penetration was 0.209 by ANN models.
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4. The intelligent model combining image processing with
ANFIS was found to predict weld bead width and depth
of penetration more accurately from the IR thermal
image of the weld pool. The performances of the ANFIS
models in terms of the RMS error on the validation
data set were better compared to ANN models. Also
the model involving ANFIS was found to take lesser
computation time and would by suitable for real time
applications.
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