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Abstract This paper presents a novel approach for optimal
key characteristics-based sensor distribution in a multi-
station assembly process, for the purpose of diagnosing vari-
ation sources responsible for product quality defects in a
timely manner.. Current approaches for sensor distribution
are based on the assumption that measurement points can be
allocated at arbitrary locations on the part or subassembly.
This not only presents challenges in the implementation of
these approaches but additionally does not allow required
product assurance and quality control standards to be inte-
grated with them, due to lack of explicit relations between
measured features and geometric dimensioning and toler-
ancing (GD&T). Furthermore, it causes difficulty in cali-
bration of measurement system and increases the likelihood
of measurement error due to the introduction of measure-
ment points not defined in GD&T. In the proposed approach,
we develop methodology for optimal sensor allocation for
6-sigma root cause analysis that maximizes the number of
measurement points placed at critical design features called
Key Characteristics (KCs) which are classified into: Key
Product Characteristics and Key Control Characteristics and
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represent critical product and process design features, respec-
tively. In particular, KCs have defined dimensional and
geometric tolerances which provides necessary design ref-
erence model for process control and diagnosis of prod-
uct 6-sigma variation faults. The proposed approach allows
obtaining minimum required production system 6-sigma
diagnosability. A feature-based procedure is proposed which
includes Genetic Algorithm-based approach (allowing pre-
defined KCs as the measurement points) and state-of-the-
art approaches (unrestricted location of measurement points)
to iteratively include arbitrary measurement points together
with KCs in the final sensor layout. A case study of auto-
motive assembly processes is used to illustrate the proposed
feature-based approach.

Keywords Assembly process · Optimization · Sensitivity

Introduction

Dimensional quality control is a major challenge within dis-
crete part manufacturing processes. For instance, in the auto-
motive industries, two-third of all quality related engineering
changes in the automotive and aerospace industries are
caused by dimensional variation related failures (Ceglarek
and Shi 1995). Hence, automatic in-process sensing and data
collection techniques are employed in complex multi-station
manufacturing processes in an effort to identify the root
causes of 6-sigma variations.

In automotive assembly processes, end-of-line or distrib-
uted sensing are generally used to diagnose process variation
sources (Khan et al. 1998,1999;Ding et al. 2003; Khan and
Ceglarek 2000). Distributed sensing is more effective than
end-of-the-line sensing as it can identify more critical vari-
ation sources (Ding et al. 2003). The effective root cause
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diagnosis of product 6-sigma variation faults relies on opti-
mal sensor distribution in multi-station assembly process.
Poor sensor distribution often produces large amounts of
conflicting and vague information. The problem pertain-
ing to optimal sensor distribution in multi-station assembly
processes involves the determination of: (i) location of mea-
surement stations; (ii) number of sensors required at each
measurement station; and, (iii) the location of sensors within
the measurement station. The term “location of sensor” can
be interpreted as either: (i) the location where a sensor is
actually installed; or, (ii) the location of a point or a feature
on a given part or subassembly that the sensor measures. The
latter, i.e., the point which is measured, is commonly used in
quality control research. Hence, using this specification, sen-
sor distribution may be defined as the selection of points or
features to be measured on different measurement stations.
In particular, measurement of a selected set of points leads to
an inference about the root cause(s) of product 6-sigma vari-
ation faults (Mandroli et al. 2006). Several researchers in the
area of manufacturing have focused on the sensor networks
(Levi et al. 2010) and fault diagnosis and prediction in case
of assembly systems (Jeremy et al. 2011; Baydar and Saitou
2004). Levi et al. (2010) deals with the sensor networks in
terms of its security performance in real world applications.
Fixture faults monitoring using auto regressive models in
automotive assembly processes are discussed in Jeremy et
al. (2011). Error prediction, diagnosis, and recovery for dis-
crete part manufacturing using Monte Carlo simulations and
genetic algorithm are discussed in Baydar and Saitou (2004).

Research on sensor distribution can be classified in terms
of selection of objective function, optimization approach,
and type of process considered (see Table 1). Objectives
such as diagnosability index, A-optimality, D-optimality,
E-optimality and pattern distance have been predominantly
used in the literature to characterize sensor distribution. The
A-optimality maximizes the summation of all eigenvalues
of Fisher information matrix, D-optimality maximizes the
determinant of Fisher information matrix, and E-optimality
maximizes the smallest eigenvalue of Fisher information
matrix. However, these objectives are known to be computa-
tionally complex due to their non-linear characteristics.

The sensor distribution problem becomes even more com-
plex when these objectives are evaluated in a high dimen-
sional search space (Ding et al. 2003; Liu et al. 2005). This
paper selects the E-optimality objective for evaluating the
sensor layouts as it subsumes other objectives (Liu et al.
2005). Furthermore, the existing optimization algorithms for
sensor distribution have been tested only on the problems
of lower dimensions; mostly in a production systems with
a single assembly station (see Table 1). Table 1 classifies
methodologies for sensor distribution approaches used in lit-
erature based on the type of objective used and optimiza-
tion approach. Additionally, there are also some studies that

conducted analysis of sensor distribution problem without
proposing optimization approach and using objectives such
as diagnosability (Ding et al. 2002b; Zhou et al. 2003), pat-
tern distance (Ding et al. 2002a), A-optimality (Djurdjanovic
and Ni 2003), D-optimality (Djurdjanovic and Ni 2003), and
E-optimality (Djurdjanovic and Ni 2003).

As illustrated in Table 1, the state-of-the-art approaches
such as exchange algorithm, SQP, random search, direct
search; provides optimal sensor layout where the measure-
ment points are arbitrarily selected on the part or subassem-
bly (unrestricted search), rather than selecting KCs which
are free from measurement difficulties. That is, the state-of-
the-art approaches does not consider the ease for calibration
of measurement gauges, feature based measurement error
(Huang et al. 2004), and lack of explicit relations between
measured features and geometrical dimensioning and tol-
erancing (GD&T) characteristics (Meadows 1995). Hence,
the solution provided by existing approaches often becomes
costly or difficult to implement in industrial applications as
they cannot be easily integrated with the required product
assurance and quality control standards. Increasingly, there
is a need to develop an effective and efficient methodology to
obtain optimal sensor layouts which can maximize produc-
tion system diagnosability and simultaneously maximize the
number of measurement points placed at various KPCs and
KCCs, which are specifically selected for product assurance
and quality control standards during the design phase of prod-
uct and process validation, respectively. However, since there
are a large number of KCs with various complex interactions
defined by the GD&T, and it is economically not justifiable
to measure all of the KCs in multi-station assembly process.
Therefore, optimal sensor distribution is a very relevant and
challenging problem.

A feature-based sensor distribution approach is proposed
in this paper that maximizes the number of measurement
points that are placed at critical design features called Key
Characteristics (KCs) available as part of the product and
process design information (CAD/CAM), and classified into:
Key Product Characteristics (KPCs) and Key Control Char-
acteristics (KCCs) as to represent critical product and process
design features, respectively. The feature-based approach
starts with the GA-based approach, which considers only
KCs as candidates for measurement point selection for sensor
layout. In particular, GA are used because of the huge search
space in which to search, owing to the large number of KCs
and their combinations, to create sensor layouts with various
complex interactions defined by the GD&T. The resulting
sensor layout from GA allows having measurements with the
best alignment to the product design requirements (GD&T).
However, restrictions to select measurement points only from
the predefined set of KCs can lead to a decrease of the over-
all 6-sigma variation faults diagnosability level (i.e., sensi-
tivity of sensor layouts). Therefore, an iterative procedure is
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Table 1 Methodologies used in literature for sensor distribution problem and its classification based on single and multiple station assembly system

Sensor distribution methodologies Assembly systems with

Objective used Optimization approach Location of measurement
points

Single station Multiple station

Diagnosability Direct search Anywhere on parts/
subassemblies

– –

SQP – –

Exchange algorithms – Ding et al. (2003)

Random search – Shukla et al. (2009)

Pattern distance Direct search – –

SQP Khan et al. (1999) Khan et al. (1998)

Exchange algorithms – Khan and Ceglarek (2000)

Random search – –

A-optimality Direct search – –

SQP – –

Exchange algorithms Zhu et al. (2004) –

Random search – Djurdjanovic and Ni (2004)

D-optimality Direct search Wang and Nagarkar (1999) –

SQP – –

Exchange algorithms
Wang and Nagarkar (1999),

Camelio et al. (2003b)

–

Random search – –

E-optimality Direct search – –

SQP – –

Exchange algorithms Liu et al. (2005) Ding and Apley (2007)

Random search – –

Feature-based approach
based on genetic
algorithm (GA)

GD&T driven (KCs) Proposed in this paper

employed, which uses sensor layout possessing all measure-
ment points as KCs (obtained by GA) to search for sensor
layout having higher sensitivity. The procedure iteratively
replaces KC(s) present in the sensor layout obtained by GA
with arbitrary point(s) based on state-of-the-art approaches.
This procedure is repeated until the sensitivity value of
the sensor layout is greater than the predefined thresh-
old value. Thus, the proposed feature-based optimal sensor
distribution approach integrates both (i) traditional sensor
distribution approaches such as random search, exchange
algorithms, and direct search (unrestricted selection of mea-
surement points) and (ii) GA-based approaches (pre-defined
KCs as candidates for measurement points selection) to maxi-
mize the number of KCs selected as measurement points sub-
ject to minimum required production system diagnosability.

The remainder of this paper is organized as follows: Sec-
tion “Information required for sensor distribution problem in
multi-station assembly” presents a brief discussion on rele-
vant challenges and complexity pertaining to the sensor dis-
tribution problem. In Section “Sensor distribution problem
formulation”, a mathematical formulation of the objective

function and related constraints are discussed. Section
“Feature-based approach for sensor distribution” details the
GA-based procedure for optimal sensor distribution problem
taking into consideration predetermined KCs as the measure-
ment points. Further, the feature-based approach for sensor
distribution based on GA-based procedure and the state-of-
the-art approaches based on the random search, exchange
algorithms, and direct search, is discussed in Section “GA-
based approach for sensor distribution from predetermined
KCs”. Section “Case Study” details the application of the
proposed methodology for a case study of cab assembly
process. Finally, Section “Summary and Conclusions” pro-
vides summary and conclusions along with a discussion on
future research directions.

Information required for sensor distribution problem in
multi-station assembly

The problem of sensor distribution for process control and
quality improvement is a complex issue which requires

123



46 J Intell Manuf (2015) 26:43–58

L

K 55

J

51 I

53 54

I2H I1

42 43 4439 40 41G

F35

15 16 17

C ED3332 3431

D1 D2 E3 E4C1 B

1312 1411 D3 D4 21 22

18 19 20

A 10

A1 9

A2 A3

32 41 5 6 7 8

23 24 25

29 30 E1 E2

26 27 28

36 37 38

Level 1

Level 2

Level 3

Level 4

Level 5

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

52

I4I3

48 49 5045 46 47

A. Dash Sub-assembly
A1. Dash sub1: Plenum lower and Dash and cowl 
sides subassembly
A2. Dash sub2: Plenum lower subassembly
A3. Dash sub3: Dash and cowl sides subassembly
B. Dash / Underbody subassembly
C. Under body Complete
C1. UB sub1: Hydro-form motor compartment
D. Body Side Right
D1. Body Side Panel & Roof Rail Sub assembly
D2. Quarter Outer Sub assembly 
D3. Body Side Panel Sub assembly
D4. Roof Rail Sub assembly
E. Body side Left
(same as body side right)
F. Framing
G. Weld re-spots station
H. Roofing Station
I. Doors
I1.   Right rear cargo door
I2.   Right front door
I3.   Left rear cargo door
I4.   Left front door
J. Hood Hinges
K. Fenders
L. Hood

1. Plenum lower panel
2. Right plenum end panel 
3. Left plenum end panel 
4. Right hood hinge gusset 
5. Left hood hinge gusset
6. Dash panel 
7. Right cowl side
8. Left cowl side
9. Cowl Bar 
10. Underbody sub-assembly 
11. Right front fender tube
12. Left front fender tube.
13. Radiator X-Member SA
14. Lower tube 
15. Body side panel 
16. Side extension reinforcement 
17. Reinforcement C-Pillar
18. Roof Side IntExt Cab Rail Assembly 
19. A Pillar Inner Panel 
20. A –Pillar Lower
21. Reinforcement assembly cargo door
22. Rear Quarter Outer
23-30 (Same as 15-22)
31. Front roof bow

32. Middle roof bow
33. Rear roof bow
34. Cab rear inner panel
35. Cab rear outer panel
36. Roof
37. Left side of the roof
38. Right side of the roof
39. Rear right  Cargo Door
40. Lower right  rear door hinge
41. Upper right rear door hinge
42. Front right  Cargo Door
43. Lower right  front door hinge
44. Upper right  front door hinge
45. Rear left Cargo Door
46. Lower left rear door hinge
47. Upper left rear door hinge
48. Front left Cargo Door
49. Lower left front door hinge
50. Upper left front door hinge
51. Left Hood Hinge
52. Right Hood Hinge
53. Left Fender
54. Right Fender
55. Hood

Fig. 1 The process tree of a body-in-white

design information to model all critical intricacies involving
products and processes, inherent for control of multi-station
assembly processes. The information required for sensor dis-
tribution can be explicitly divided into: product information;
process information; and information related to interactions
between process and product. These required design infor-
mation creates a significant challenges due to its complexity
as outlined below.

Product information complexity

Early design evaluation of multi-station assembly processes
is very important for new product development and also for
designing a robust manufacturing system to improve prod-
uct quality. Common automotive product assembly consists
of 200–300 sheet metal parts and subassemblies which are
to be assembled on 55–75 assembly stations (Ceglarek and
Shi 1995). Therefore, the complexity arises when selecting
measurement points for sensor layout from the large com-
binations KPCs in multiple parts and their subassemblies in
several stations. The assembly process of body-in-white is
represented in the form of process tree as shown in Fig. 1.

Each KPC on parts/subassemblies can be represented as a
design feature such as in automotive body assembly process
there are four major features measured on the product:
(i) points; (ii) edges; (iii) holes; and, (iv) slots. It is important
to use/measure KPCs as they directly represent product per-
formance evaluation. However, the KPCs are selected with
different objectives in mind and thus not all can be measured
(see Table 2).

Process information complexity

Multi-station assembly process generally refers to the
processes involving more than one assembly station to man-
ufacture a complex product. For example, automotive body
assembly processes include multiple stations where parts are
assembled to produce complex product. For example, a com-
mon assembly process for automotive product consists of
55–75 stations (Ceglarek and Shi 1995).

To evaluate the dimensional quality of the assembled
product, measurement points are selected on parts. Figure 2
illustrates a 3-D fixture layout for plenum lower subassem-
bly restrained during assembly operations by set of 4-way,
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Table 2 Classification of KCs and measurement points based on design requirements, goal, and purpose

Key Product Characteristics (KPCs) 

F/A & U/D: 4-Way Hole 
to Fixture pin 

U/D: 2-Way Slot 
to Fixture pin 

CC: Datum A1 Pad 
to Fixture pad 

CC: Datum A4 Pad 
to Fixture pad 

CC: Datum A8 Pad 
to Fixture pad 

Key Control Characteristics (KCCs) 

Measurement Points  

Design 
Requirements 

Geometric Dimensioning and Tolerancing 
(GD&T) 

Geometric Dimensioning and Tolerancing 
(GD&T)  

Reproducibility & 
Repeatability (R&R) 

Goal Product performance evaluation Process performance evaluation 
Product and process 

performance evaluation 

Use Used for product inspection 
Used for tooling calibration and root cause analysis 

of process failures 

Used for inspection, 
root cause analysis, and 

tooling adjustments 

Fig. 2 Fixture layout on a 3-D
Plenum lower subassembly;
F/A—Fore/Aft, CC—Cross Car,
U/D—Up/Down

U/D: Datum A1 
Pad to Fixture pad 
(Bottom Surface) 

F/A & CC: 4-Way Hole 
to Fixture pin 

CC: 2-Way Hole 
to Fixture pin U/D: Datum C1 

Pad to Fixture pad 
(Bottom Surface) 

U/D: Datum C1 
Pad to Fixture pad 
(Bottom Surface) 

2-way fixture pins and three datum fixture pads. These types
of fixtures are used throughout assembly stations to con-
straint part/subassembly movements (≥1,000 possible vari-
ation sources). Thus, there are large number of fixtures
(KCCs) controlling the variations in assembly operations.
In parts/subassemblies, these KCCs are defined as various
design features such as points, holes, edges, and slots. Each
of the design features are defined by GD&T characteris-
tics, which is important for estimation of process capability.
Hence, KCCs on parts/subassemblies have to be measured
for fault root cause identification. However, not all KCCs
can be measured due to visibility & accessibility of measure-
ment points and associated costs. Therefore, there is a need
for selection of measurement points, which can maximize
the sensitivity of sensor layouts to detect variations. More

information about the sensitivity of sensor layouts is detailed
in Section “Sensor distribution problem formulation”.

Information complexity related to interactions among
product and process (KPCs and KCCs)

In order to deliver the intended dimensional accuracy of
each product as defined by KPCs & their tolerances, dozens
of fixtures are used to constraint all parts and intermediate
subassemblies throughout the production line. Each fixture
restricts movements of a part/subassembly by using loca-
tors, which are in contact with parts/subassemblies at KCC
locations. The direct calibration of tooling is a time consum-
ing process conducted by using theodolites or laser trackers
which frequently requires stopping the production.
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Fig. 3 Diagram of
multi-station assembly process
with N stations

Table 3 Interpretation of the SOVA matrices (Ding et al. 2003)

Symbol Name Relationship Interpretation Assembly task

A(·) Dynamic matrix X(k − 1)
A(k−1)−→ X(k) Change of fixture layout between two adjacent stations Assembly transfer

B(·) Input matrix P(k)
B(k)−→X(k) Fixture/mating layout at station k Part positioning

C(·) Observation matrix X(k)
C(k)−→Y(k) Sensor layout at station k Inspection

�(·) State transition matrix X(i)
�(k,i)−→ X(k) Change of fixture layout among multiple stations Assembly transfer

Therefore, fixtures used in production are not frequently
calibrated by using direct measurement of the locators, but
rather indirectly by using measurement of KCC points on
the parts/subassemblies if available; or measurement of sur-
rogate points (key measurement point) for which the rela-
tion between them and KCC(s) can be estimated accurately
(for example, stream-of-variations analysis (SOVA) model
described below). Therefore, the process of distributing the
sensors needs to (i) maximize number of measured KCCs is
subject to cost constraints, such as a limited number of mea-
surement stations and number of measurement points; and
then (ii) select additional points which minimize uncertainty
in model estimating relation between measurement points
and KPCs and simultaneously maximize production system
diagnosability. This approach will be discussed in Section
“Sensor distribution problem formulation”.

In multi-station assembly processes, the propagation of
fixture variation generated from each station and its impact on
product quality are mathematically described by the assem-
bly response function such as SOVA model. The SOVA
model is developed for multi-station assembly processes as
illustrated in Fig. 3 (Jin and Shi 1999; Huang et al. 2007).
Mathematically it is represented as

X (k) = A (k − 1)× X (k − 1)

+B (k)× P (k)+ E (k) , k = 1, 2 . . .N (1)

Y (k) = C (k)× X (k)+W (k) , {k} ⊂ {1, 2, 3 . . .N} (2)

where, k is the station index and N is the number of sta-
tions. X(k) represents the dimensional deviations that occur

randomly as a result of assembly process on station k. The
input vector P(k) represents the random deviations associ-
ated with fixture locators on station k. Process errors and
unmodeled higher order terms are represented by E(k). Y(k)
and C(k) represents product measurements and observation
matrix at station k. W(k) is white noise representing mea-
surement noise.

Equation (1) suggests that part deviation X(k), at the kth
station is influenced by the accumulated deviation up to sta-
tion k − 1, i.e., X(k − 1) and deviation contribution at sta-
tion k, i.e., P(k). Whereas, in Eq. (2), observation vector
Y(k),is obtained at measurement station k. When sensors are
installed on one or more stations in a production line, the
index for the observation equation (Eq. 2) is actually a sub-
set of {1,2,3, …,N}, whereas the index for the state equation
is complete set. In case of end-of the line sensing k = N only,
i.e., all the measurement points are present at the end of pro-
duction line. Whereas, in case of distributed sensing, k for
Eq. 2 is subset of {1, 2, 3,…,N}, i.e., measurement points are
selected on parts assembled at multiple stations.

The matrices A(k) and B(k) in the state space model repre-
sent process design such as change of fixture layouts at each
station, as well as the effect of fixture layout change across
stations (see Table 3). The matrix C(k), can be interpreted
as, sensor layout at kth station (number of measurement
point and its locations, see Table 3). The aforementioned
matrices are determined by utilizing the information about
product and process (CAD/CAM) and thus tend to become
large in dimensions. Furthermore, the mathematical indices,
which are formulated for sensor distribution based on these

123



J Intell Manuf (2015) 26:43–58 49

Fig. 4 a Automotive assembly station; and, b Measurement station

matrices, becomes computationally complex. The interpre-
tation of the system matrices A, B, and C is illustrated in
Table 3.

The sensor distribution problem in case of distributed
sensing can be divided into: (i) determining measurement
stations (i.e., determining values of k in Eq. 2); and, (ii) loca-
tion of measurement points on parts or subassembly at the
measurement station. Generally, restriction is imposed on
the number of measurement stations in multi-station assem-
bly process due to high capital investment in constructing
measurement stations and installing measurement sensors.
Figure 4, shows the assembly and measurement station of an
assembly line.

After measurement stations are identified, the selection of
the set of measurement points located on parts/subassemblies
at measurement stations are identified from a large number
of candidate measurement points. Furthermore, the combi-
nation of measurement points that can occur in sensor layouts
adds to the complexity of sensor distribution problem. The
following section discusses the mathematical formulation of
the sensor distribution problem, which is used in feature-
based approach to obtain optimal sensor layout.

Sensor distribution problem formulation

In this section, the sensor distribution problem for distributed
sensing is formulated using the SOVA model (Jin and Shi
1999; Huang et al. 2007) for modeling multi-station assem-
bly processes (see Section “Information required for sensor
distribution problem in multi-station assembly”). Based on
the SOVA model (Eqs. 1, 2), numerous performance mea-
sures for optimal sensor placement have been introduced in
the current literature such as: maximum distance between the

variation patterns (Khan et al. 1999); diagnosability index (μ)
(Ding et al. 2003); and, sensitivity index (Sm) (Liu et al.
2005). The diagnosability condition does not makes distinc-
tion between diagnosable systems even though some sensor
systems may have a superior performance compared to others
in that they can easily detect a small change in the variation
sources. This difference of detection capability is character-
ized by the concept of “sensitivity”. It is desirable that a sen-
sor system not only has full diagnosability but also is sensitive
to the underlying changes of variation sources. Hence, this
paper will go beyond diagnosability, aiming to maximize sen-
sitivity indices. The non-zero values of the sensitivity index,
as developed in this paper, guarantees full diagnosability.
The sensitivity index differentiates among the diagnosable
systems and thus is a tougher objective.

The linear input-output relations between observation vec-
tor Y(k), and variation sources P(k), is illustrated based on the
SOVA model as shown in Eqs. (1) and (2). The input-output
model is

Y = J · P + J (0) · X (0)+ D (3)

where, YT = [YT(1)YT(2) . . . . . . . . .YT(N)],DT = [DT(1)

DT(2) . . . . . . . . .DT(N)] and D(k) ≡
k∑

i=1
C(k)�(k, j)E(i) +

W(k).�(i, j) is interpreted as change of fixture layout among
multiple stations (from i th to j th station).

The coefficient of first term of Eq. (3) J can be defined as:

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C(1)B(1) 0 . . . . . . 0
C(2)�(2, 1)B(1) C(2)B(2) . . . . . . 0
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.

C(N)�(N, 1)B(1) C(N)�(N, 2)B(2) . . . . . . C(N)B(N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)
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and coefficient of X(0) term as:

J(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C(1)�(1, 0)
C(2)�(2, 0)
...
...

C(N)�(N, 0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)

The deviations due to stamping processes X(0) are ignored as
only deviation of parts during assembly processes are consid-
ered. Thus, the linear diagnostic model can be represented as:

Y = J · P + D (6)

In root cause diagnosis, inferences can be made about P based
on a sample of measurements of Y.

In the model represented by Eq. (6), the J matrix is deter-
mined by system design parameters such as locator and
sensor locations. The J matrix is called system matrix in engi-
neering systems design. Also, the P matrix is not the vector
of parameters but a vector of unknown random inputs. In fact,
Eq (6) can be represented as a linear mixed model with both
fixed and random effects.

Y = J · μ+ J · P̃ + D (7)

where μ is the mean vector of P and P̃ is the zero-mean
random part of the variation sources. Hence, μ corresponds to
the fixed effects and P̃ corresponds to the random effects. For
root cause diagnosis, one needs to detect abnormal variations
of the mean components μ = [μ1 . . . μp]T and the variance
components θ = [σ 2

1 . . . σ
2
p]T . If mY and �Y represents the

mean and covariance matrix of Y, then the model represented
by Eq. (7) can be

mY = J · μ (8)

vec (�Y) = π(J)θ+ σ 2
Dvec(I) (9)

where π(.)is a matrix transform defined on matrix Z =
[z1 · · · zk · · · zn]T having Zk as its kth row vector, k =
1, 2….n.

π(Z) =
[
(z1 ∗ z1)T · · · (z1 ∗ zn)T · · · (zn ∗ z1)T · · · (zn ∗ zn)T

]

(10)

and ‘*’ represents the Hadamard product of the two vec-
tors. In defining the diagnosability, sensitivity for detecting
changes in mean and variance components can be defined as
the ratio of the change in the mean or variance of Y over a
perturbation of the mean and variance of the input sources.
Hence, given measurements Y, the mean-detecting sensitiv-
ity (Sm) and variation-detecting sensitivity (Sv) is defined
as:

Sm = min
δμ�=0

(δmY)
T (δmY)

(δμ)T (δμ)
(11)

Sv = min
δθ�=0

tr
(
(δ�̃Y)

T (δ�̃Y)
)

(δθ)T (δθ)
(12)

where, δ�̃Y is the covariance matrix obtained from the
process variation sources.

Since a linear relation exists in Eqs. (8) and (9) and using
the eigen value property of symmetric matrix, the abovemen-
tioned sensitivity indices can be expressed in terms of JT J
as:

Sm = λmin(JT J) and Sv = λmin(π(J)Tπ(J)) (13)

Where, λmin(.) denotes the smallest eigenvalue of a matrix.
An inequality relationship between Sm and Sv is identified;
for same J, the lower bound for Sv is S2

m . That is

S2
m ≤ Sv, for same J (14)

From Eq. (14), it can be inferred that maximization of Sm

will certainly increase the value of Sv. Hence, Sm can be
considered as a unified criterion for the problem of sensor
distribution in multi-station assembly processes. Therefore,
the design variables for sensor distribution problem are the
number of sensors and their location on parts at different
measurement stations represented by vector ψ(s), where ‘s’
is the number of sensors. The number of sensors ‘s’ is divided
into ‘n’ measurement stations as s1, s2. . ., sn ; where, sk rep-
resents the number of sensors allocated to kth measurement
station. Hence,

s =
n∑

k=1

sk (15)

�(s) consists of the X, Y and Z coordinate of measurement
points on parts/subassemblies at measurement station. Now,
�(s) is represented as:

�(s) = [X1
1Y 1

1 Z1
1 · · · X1

s1
Y 1

s1
Z1

s1
: · · · : Xn

1 Y n
1 Zn

1 · · · Xn
sn

Y n
sn

Zn
sn
]

(16)

where,X j
i ,Y j

i and Z j
i is the coordinate of i th sensor placed

on the j th station. The sensor distribution approach in this
paper is based on the sensitivity index Sm (�(s)), which char-
acterizes the quality of sensor layout �(s).

Feature-based approach for sensor distribution

In this section, the feature based approach for sensor dis-
tribution is discussed in detail. This section details the
feature-based approach for sensor distribution by involving
GA-based approach (see Section “GA-based approach for
sensor distribution from predetermined KCs”) and state-
of-the-art approaches such as random search, exchange
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Fig. 5 Illustration of the error
in the Y direction caused by a
part mislocation in Z direction.
A—nominal position of the
measurement point;
A∗—mislocated position of the
measurement point caused by
part mislocation in Z direction;
A∗∗—point measured (Huang et
al. 2004)
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algorithms, and direct search. The feature-based approach
tries to maximize the number of KCs in the sensor layout
thereby maintaining high sensitivity (Sm) of sensor layouts.
In feature-based approach, initially only KCs are analyzed
by using GA for getting the sensor layouts with high sensi-
tivity value. If the sensitivity index of the solution obtained
is lower than the predefined threshold, then state-of-the-art
approaches are used to select the measurement points on
the entire regions on the parts. More information about the
approach is provided in the latter half of this section. Fol-
lowing text first discusses about the problems in selecting
arbitrary points as measurement points.

As mentioned in the introduction, the sensor placement on
arbitrary points usually incurs different types of problems:

i. Ease of calibration: It means that the measurement points
selected should be in the regions which are easily accessi-
ble to the measurement device. This is done to avoid time
consuming setups by the measuring device during mea-
surement, which increases the overall inspection time of
the assembly processes.

ii. Measurement error associated with the measurement
point on the part: The measurement devices have inher-
ent errors caused by the lack of feature traceability for
some of the points on the part. The lack of feature trace-
ability means that instead of measuring a given point,
the measurement device may actually measure the area
around the selected point (Huang et al. 2004). This causes
measurement errors corresponding to each measurement
point which can have significant impact on the measure-
ment accuracy and hence on the process control and the
diagnostic algorithms currently used in manufacturing.
Figure 5 has been used to illustrate the concept of mea-
surement errors related to some points on the part. The
nominal position of a point on part is A and when it is mis-
located due to the part positioning error in Z direction, its

position becomes A∗. The measurement error arises when
the measurement device measures point A∗∗ instead of
A∗. The measurement error in Y direction is illustrated
in Fig. 5. The features such as a point on a plane can
be measured with full accuracy in one direction which
is known as feature tracing direction. The measurement
error associated with the measuring devices is mainly
depends upon: (i) the direction of measurement; (ii) the
geometry of the features; and (iii) the direction of the
pattern variation. The relations for estimating the errors
in each direction are detailed in Appendix A.

iii. Tolerance values of the measurement points: Before
assembly operations are actually performed, design engi-
neers use the geometric dimensioning and tolerancing
guidelines for most of the design operations. Based on
these guidelines, the tolerance values are assigned to the
predetermined critical features/points (Meadows 1995).

Following text discusses about the feature based approach
in detail.

The overall approach for feature-based approach for the
decision making is presented in Fig. 6. The feature based
methodology starts with the arrangement of CAD data, and
design information about KCs. The CAD data provides the
geometric and dimensional information (GD&T) of the parts,
subassemblies and the final product including all KCs: KPCs
& KCCs and their tolerances. The design information pro-
vides the details about the different KCs, in the form of fea-
tures and points on the parts, which are easy to calibrate, free
from feature based measurement errors and have defined tol-
erances at the design stage. Then, GA-based procedure is
applied in terms of selecting the measurement points from
available KCs. GA based procedure is employed first for solv-
ing sensor distribution problem after getting the design infor-
mation and CAD data as measurement points are selected
solely from available KCs.
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Fig. 6 Feature-based approach to identify optimal sensor layout in multi-station assembly processes; ζ is the % of KCs in sensor layout as
measurement points

The GA-based approach finds best sensor layout with
all measurement points as KCs and having highest sensi-
tivity value for given number of sensors. Detailed descrip-
tion about the GA-based approach is discussed in Section
“GA-based approach for sensor distribution from predeter-
mined KCs”. Intuitively, it may be noted that the sensor
layouts obtained from the GA-based approach may not be
as sensitive as the layouts from state-of-the-art approaches.
This is due to the fact that all the state-of-the-art approaches
consider entire regions on the part for measurement point
selection. Therefore, the decision regarding accepting the
sensor layout from GA-based approach as the final solu-
tion is made based on threshold value (T) of the sensi-
tivity index. Hence, a threshold value (T) is defined to be
τ % of potential sensitivity value (Sp), which is attained if
the restriction for measurement point selection from KCs is
removed. The sensor layout from the GA-based approach
is accepted if its sensitivity index (Sm) is greater than T,
otherwise, an iterative procedure of removing KC(s) from
the sensor layout and a search procedure based on the state-
of-the-art approaches such as exchange algorithms, random
search, and direct evaluation techniques is employed. The
iterative procedure of sensor distribution is illustrated in
Fig. 7.

The iterative procedure takes CAD data and the sensor
layout obtained by GA-based approach (SLG A) considering
KCs only as measurement points. The state-of-the-art method
(exchange algorithms, random search, and direct evaluation)
resulting in highest Sm is selected for further comparison
with the T value. After each iteration, one KC in the sensor
layout is removed and it is replaced by the arbitrary point is
selected by state-of-the-art method or GA. The resulting Sm

is checked to see if it is greater than T. If the resulting sensor
layout has Sm ≥ T then the layout is considered to be the
final optimal sensor layout. In case Sm ≤ T for the resulting
layout, then number of KC to be replaced (represented as
K) is incremented by 1 and again the procedure is run with
state-of-the-art approaches. Another stopping criteria for this
procedure is when percentage of KCs in sensor layout (ζ )
becomes zero, i.e., when there are no KCs left in the sensor
layout to be replaced.

Figure 8 illustrates the situation when SLG A has Sm < T
and the sensor layout from the best state-of-the-art approach
is greater than T. The sensor layout SLG A has all the measure-
ment points as KCs, i.e., ζ = 100 %. In case of state-of-the-
art approach, ζ < 100 as sensor layout obtained from the
state-of-the-art approaches has measurement points which
can be arbitrary points or KCs. Hence, the sensor layout from
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Fig. 7 Iterative procedure for
optimal sensor layout; ζ is the
% of KCs in sensor layout as
measurement points

SLGA CAD Data
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Fig. 8 The case when Sm from GA-based approach is less than T and
Sm > T for state-of-the-art approach

state-of-the-art approach has the advantage of having greater
Sm values than GA-based approach. But, they are inferior
to GA-based approach as ζ is lower for state-of-the art
approaches.

The proposed feature based approach is applied to sensor
distribution optimization problem; where the objective of the
problem is to maximize ζ (percentage of KCs in resulting
sensor layout) such that the Sm ≥ T. Therefore, the problem
can be formulated as:

Max .ζ (17)

Subject to : Sm ≥ T (18)

The feature based methodology for solving the abovemen-
tioned problem is based on the knowledge developed by
applying the GA-based approach (search for measurement
points in KCs) and the state-of-the-art approaches developed

in this paper. As shown in Fig. 8, the main aim of the method-
ology is to increase the number of KCs in the sensor layout
obtained by state-of-the art approaches and simultaneously
maintaining sensitivity value above threshold T.

The following section discusses in detail the steps involved
in the GA-based approach utilizing KCs as measurement
point.

GA-based approach for sensor distribution from
predetermined KCs

In this section, CAD data and predetermined KCs from
design information are used to obtain the sensor lay-
out (SLG A) with high sensitivity index using GA-based
approach. The steps involved in GA-based approach are
detailed as follows:

Determination of measurement station

In this step, each assembly station of the multi-station
assembly system is classified either as a measurement or a
non-measurement station. The index for identifying mea-
surement station is detailed by Ding et al. (2003). They stud-
ied, variation transmission in multi-station assembly process
and an identified an index for identifying the measurement
stations. The determination of variation transmission index
requires fixture layout geometry B(i) and the fixture layout
changes between stations, as modeled by �(k, i) (Ding et al.
2003). Assuming, pi number of 3-2-1 fixtures on station ‘i’
and each of them physically supports each rigid part. There-
fore, the total number of degrees of freedom to be restrained is

pi · DO F = m(i) = dimension(P(i)), (19)
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where m(i) is the number of independent variation sources
related to pi fixtures. The variation transmission ratio is
defined to quantify the variation transmission between sta-
tions

η

(
i

k

)

≡
ρ

(

π
(
�(k, 1) · B(i))

)

m(i)
, (20)

where η(i/k) = 1 represents the complete information
regarding fixture variation that is transmitted from station
i to k. The detailed analysis of η(i/k) is provided in Ding
et al. (2003). Specifically, if η(i/k) = 1 for all values of ‘i’
then sensor placement on only the last station, i.e., N th sta-
tion is required. Therefore, i th station is designated for taking
measurements, if η(i/k) < 1, i.e. variance information lost
during transmission from station i to station N , is retrieved
if sufficient number of sensors are installed on i th station.
Consequently, a decision variable αi is defined as

αi =
{

1 if η(i/N ) = 1
0 if η(i/N ) < 1

(21)

The variable αi is computed for all the stations of multi-
station assembly processes in order to identify the measure-
ment station.

Input candidate measurement points

The design information about the parts which are to be assem-
bled is utilized to obtain a set of measurement points. The
design information of a part includes the KCs which are
defined at the design stage by the designers as the critical
points or features which are necessary to be measured for
dimensional quality inspection of the products and processes,
i.e., KPCs and KCCs. The measurement points, in case of
GA-based approach, are selected only from KCs (KPCs and
KCCs). Thus, difficulties such as sensor calibration, feature-
based measurement errors and the tolerance allocation are
eliminated. Furthermore, a large number of available KCs
for the process and products make the search space of sensor
distribution problem computationally large.

Measurement point selection on a measurement station

In this subsection, the measurement stations and measure-
ment points obtained from Sections “Determination of mea-
surement station” and “Input candidate measurement points”
are utilized to find the sensor layout with maximum sensitiv-
ity index value. First, a station is classified into a measure-
ment or a non-measurement station based on the decision
variable αi . The possible measurement points, based on the
part information, are available from Section “Input candi-
date measurement points”. These measurement points occur
in large numbers, and their combination to construct sensor

layout, based on the given number of sensors, becomes com-
binatorial optimization problem. Hence, the GA is utilized
for the sensor distribution problem as it comes under the cat-
egory of evolutionary algorithms which are identified as the
efficient techniques for dealing with complex optimization
problems.

The GA is a commercially available technique in most of
the standard software’s optimization toolbox. The objective
function of the sensor distribution problem is the sensitiv-
ity index (Sm) formulated in Section “Sensor distribution
problem formulation” (Eq. 13) and the search space is the
predetermined measurement points obtained from Section
“Input candidate measurement points”. The standard value
of tuning parameters in GA, i.e., crossover, mutation proba-
bility and population size has been used for effective search
of the solution space. The GA is stopped when 1,000 suc-
cessive iterations no longer produce better sensitivity index.
The output of the application of GA on sensor distribution is
the sensor layout of a single station with maximum Sm value.

Sensor distribution in case of multi-station assembly
systems

In this subsection, the GA-based procedure has been dis-
cussed for measurement point selection for multi-station
assembly system, which builds on Section “Measurement
point selection on a measurement station”. The available
number of sensors is divided among measurement stations.
Furthermore, with the allocated number of sensors, measure-
ment point selection is carried out on each measurement sta-
tion as discussed in Section “Measurement point selection
on a measurement station”. The overall procedure for opti-
mal sensor distribution in multi-station assembly system is
illustrated in following steps.

Determination of measurement station and possible sen-
sor layout

Step 1: For stations k = 1, 2, 3...N , the correspond-
ing decision variable αk is calculated for determining the
measurement stations. Thereafter, the number of mea-
surement stations is denoted as ‘n’ and the measurement
station index is stored in vector ω of 1× ndimension.
Step 2: The total number of sensors ‘s’, are divided ran-
domly among the ‘n’ measurement stations as s1, s2,

s3 . . . sn such that all sk >=1. Where, sk denotes the num-
ber of sensors available for placement on kth measure-
ment station.

Determination of best sensor layout from the predeter-
mined KCs

Step 3: Apply GA to find optimal sensor layout (�l(s))
having highest sensitivity value (Sl

m).
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Fig. 9 The process tree of the
cab assembly process with 5
stations

Step 4: If Sl
m > SBest

m then SBest
m ← Sl

m,�
Best (s) ←

�l(s). Here,�Best (s) and SBest
m are the best sensor layout

obtained and its sensitivity value.
Step 5: If l < Lmax then procedure is repeated from Step
2 and l = l + 1. Where, Lmax is the maximum number
of iterations (user defined).

Else Stop.
The output from above procedure are �Best (s) and SBest

m .
The following section illustrates the application of the pro-
posed feature based methodology on industrial case study.

Case study

The feature-based approach is illustrated by implementing it
on a case study involving five-station cab assembly process.
The process tree of the product to be assembled on five sta-
tions is provided in Fig. 9. It is illustrated that the process
tree of cab assembly process includes parts/subassemblies
such as underbody, right door frame, left door frame, front
bow, central bow, and rear bow; which are assembled on
five stations (as presented in Ceglarek and Prakash 2012).
The current case study involves assembly of 3-D parts on
five stations; hence, a newly formulated 3-D SOVA model
has been employed to model variation propagation in multi-
station assembly process (Huang et al. 2007).

Therefore, in the case of 3-D part assembly process, the
deviations arising on kth station (X(k)) are due to three trans-
lational and three rotational DOF. The state equations of five
station assembly of parts are

X (k) = B (k)× P (k)+ E (k) , k = 1 (22)

X (k) = A (k − 1)× X (k − 1)+ B (k)× P (k)+ E (k) ,

k = 2, 3 . . . 5 (23)

On the basis of the derivation and analysis carried out in
(Huang et al. 2007), 3-D SOVA matrices (A, B) for five sta-
tion cab assembly process are constructed.

As discussed in Section “Feature-based approach for sen-
sor distribution”, the CAD data and design information about
cab assembly parts are used for applying proposed feature-
based approach for sensor distribution. The feature based
methodology starts by considering only predetermined KCs
(available from CAD and design information) for selecting
the measurement points by GA-based procedure (see Section
“GA-based approach for sensor distribution from predeter-
mined KCs”). The GA-based approach finds a optimal sensor
layout for the given number of sensors (which is 25 in this
case). The values of other parameters used for running GA
based approach are Lmax = 20;α1 = 0, α2 = 1, α3 =
0, α4 = 1, α5 = 1; and n =3 (refer Section “GA-based
approach for sensor distribution from predetermined KCs”
for explanation of these variables). The results of GA-based
approach on a cab assembly have been reported in Table 4.
GA-based approach is computationally efficient than the
state-of-the-art approaches, which is evident from Table 4.
The state-of-the-art approaches, such as simulated anneal-
ing (SA), exchange algorithm and direct evaluation strategy
perform badly in terms of required computational time. How-
ever, the solution found by the state-of-the-art approaches is
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Table 4 Comparison among
various approaches against the
proposed KC-based approaches
when s = 25

Method of optimization Average sensitivity value (Sm) Computational time (S)

GA-based search 33.4382 47.22

Simulated algorithm (SA) 38.0302 529.34

Exchange algorithm 38.6145 234.23

Direct evaluation 38.8786 1642.63

more sensitive than the GA-based approach. This is due to
the fact that the GA-based approach considers only KCs for
measurement point selection as opposed to the unrestricted
search of state-of-the-art approaches. Following paragraph
presents brief descriptions of the search methods used in this
section for comparison.

GA are an inspired search method based on the princi-
ples of natural evolution. The algorithm starts with a random
set of solutions called chromosomes, whose fitness chromo-
some is determined by evaluating the objective function. The
process of survival of the fittest is simulated by allowing
better chromosomes to produce the offspring chromosomes
(through crossover and mutation). The offspring population
members are then evaluated to evolve next iteration’s popula-
tion if they provide better solutions. This process is repeated
for large number of iterations to obtain a best chromosome.
The main parameters values used in the GA-based approach
are population size is 20, mutation probability is 0.02, and
crossover probability is 0.8. Simulated annealing resembles
the process of physical annealing of solids. It starts with an
initial solution at high temperature, exploring its nearby solu-
tions by a perturbation process, and then replacing the solu-
tion with higher energy solutions, if obtained. This is repeated
for a number of iterations which is determined by cooling
rate. In this application, the main parameter values are ini-
tial temperature is 1,000, cooling rate is 0.98, and number of
solutions checked at each stage is 20. Exchange algorithms
start with a set of measurement locations (randomly selected)
and exchanges the current locations with those in candidate
locations set to improve the chosen objective function. Can-
didate locations are obtained by discretizing the assembly
parts (10 mm). When the number of measurement locations
are large (>10), CPU time of exchange algorithms are high.
This is due to the fact that exchange algorithm were initially
developed for experimental design with a relatively small
number of factors and experiments. Direct search methods
do not require any information about the gradient of the
objective function as opposed to gradient-based search. A
direct search algorithm searches a set of solutions around the
current solutions, looking for one in which the value of the
objective function is lower than the value at the current solu-
tion. Due to a large number of objective function evaluations
for the set of solutions, computational times are typically
higher.

The decision regarding the suitability of the sensor layout
from the GA-based approach has to be made by comparing
the sensitivity value (Sm) with the threshold value (T). The
threshold sensitivity value is obtained based on the potential
sensitivity (Sp) value, which is taken to be 40.00. There-
fore, the value of ‘T’ becomes 36.00 (taking τ= 90), which
is greater than the Sm obtained from GA-based approach
and lower than the sensitivity value obtained by the state-of-
the-art approaches (see Table 4). This scenario is discussed
in detail in Section “Feature-based approach for sensor
distribution” (see Fig. 8). Therefore, iterative procedure is
employed to obtain sensor layout to replace KCs (as dis-
cussed in Section “Feature-based approach for sensor distri-
bution”). The iterative procedure is used to retain maximum
number of KCs in the sensor layout obtained by the state-
of-the-art approaches. Hence, the methodology described in
Section “Feature-based approach for sensor distribution” is
applied to obtain the best sensor layout which has Sm ≥ T
and maximum number of measurement points as KCs. After
running this procedure, five measurement points (KCs) in
the sensor layout obtained by GA-based approach has been
replaced by arbitrary points on parts/subassembly. Sm value
for the sensor layout is obtained to be 38.21. Therefore, sen-
sor layouts obtained by the feature-based approach can be
used for measurement purposes in multi-station assembly
processes. In this case study, the option of using sensor lay-
outs directly from state-of-the-art approaches directly has
not been employed due to the potential cost that would be
incurred if calibration, tolerance allocation and measurement
error analysis are done for the sensor layout having arbitrary
measurement points.

Therefore, the sensor layout obtained after the application
of feature-based methodology will have fewer challenges
related to calibration, tolerancing and measurement errors
due to the presence of KCs in final sensor layout.

Summary and conclusions

This paper presents a feature-based approach for determin-
ing the optimal sensor distribution in the case of multi-
station assembly processes. The main objective of the
proposed method is to maximize the number of KCs
that can be used as a measurement point in a sensor
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Fig. 10 Geometrical relations
for feature-based measurement
errors (Huang et al. 2004) Direction of 
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layout. A sensitivity index value has been used for char-
acterizing the sensor layout, which is defined as the capa-
bility of measurement systems to detect the underlying
root causes of variation. The application of feature-based
sensor distribution methodology is illustrated on the
3-D automotive part. Where, GA-based approach (tak-
ing in consideration predetermined KCs only for mea-
surement point selection) is integrated with state-of-the-
art approaches with a view to increase the number of
predetermined points in the sensor layout based on the
threshold sensitivity value. The proper mathematical formu-
lation of the KC maximization problem and related con-
straints such as: (i) ease of calibration; (ii) measurement
errors; and (iii) tolerance allocation is not detailed in this
paper. Instead, conceptual guidelines have been discussed
above so that future researches in this area may focus
on it.

Appendix A

e(x) = d∗x (cos2 α sin2 β − 1)

+d∗y (cos2 α sin β cosβ)+ d∗z (sin α cosα sin β)

(24)

e(y) = d∗x (cos2 α sin β cosβ)+ d∗y (cos2 α cos2 β − 1)

+d∗z (sin α cosα cosβ) (25)

e(z) = d∗x (sin α cosα sin β)+ d∗y (sin α cosα cosβ)

+d∗z (sin2 α − 1) (26)

Where, d∗x , d∗y , and d∗z are the deviations of the feature in the
x, y, and z directions respectively and α, β are the angles
between the intersection lines and the coordinate axes as

illustrated in Fig. 10. Thus, the designer can identify the
measurement errors associated with the placement of sen-
sors on arbitrary points.
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