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Abstract This paper investigates the effects of welding
parameters on the welding quality and optimizes them in
the small scale resistance spot welding (SSRSW) process.
Experiments are carried out on the basis of response sur-
face methodology technique with different levels of welding
parameters of spot welded titanium alloy sheets. Multiple
quality characteristics, namely signal-to-noise (S/N) ratios of
weld nugget diameter, penetration rate, tensile shear load and
the failure energy, are converted into an independent quality
index using principal component analysis. The mathematical
model correlating process parameters and their interactions
with the welding quality is established and discussed. And
then this model is used to select the optimum process parame-
ters to obtain the desired welding quality. The verification test
results demonstrate that the method presented in this paper
to optimize the welding parameters and enhance the welding
performance is effective and feasible in the SSRSW process.
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Introduction

With the rapid development of microelectromechanical sys-
tems, small scale resistance spot welding (SSRSW) is com-
monly used in electronic and medical devices. Compared
with normal scale or large scale resistance spot welding
(LSRSW), SSRSW deals with relatively thinner sheet metal
(sheet metal less than 0.2–0.5 mm) (Kaiser et al. 1982).
SSRSW is distinct from LSRSW in many aspects; electrode
sticking, expulsion, and non-repeatable welding may occur
on condition of simply reducing welding parameters (Dong
et al. 2002). There have been some studies on SSRSW. Zhou
et al. (2000) investigate the weldability of thin sheet alu-
minum, brass, and copper in SSRSW. Ely and Zhou (2001)
study the weldability of Kovar, steel, and nickel. Tan et al.
(2004) expound the dynamic resistance during SSRSW of
Ni sheets and point out that the dynamic resistance curve
could be divided into six stages. Fukumoto et al. (2008) inves-
tigate the weldability of austenitic stainless steel. Xu and Zhai
(2008) study the weldability of refractory alloy 50Mo-50Re
thin sheet. Chen et al. (2012) adoptes a fully coupled thermal-
electrical-mechanical finite element model (FEM) to provide
a clearer understanding of the entire welding process and
pointes out that the maximum electrode displacement and
minimum dynamic resistance serve as important indicators
of nugget quality which can directly reflect the formation and
growth of nuggets during SSRSW.

Resistance spot welding (including SSRSW) is a com-
plicated mechanical-thermal-electrical process and the weld
quality is highly affected by various process conditions,
noise and errors (Wen et al. 2009). However, there are few
reports and literatures of the relevant studies on process
optimization of SSRSW. Thus it is necessary to investigate
an effective method to boost and optimize the quality of
SSRSW.
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There are plentiful literature reports on process optimiza-
tion in the RSW process. Darwish and Al-Dekhial (1999)
propose response surface methodology (RSM) to explore
the effects of spot welding parameters on the strength of
spot welded aluminum sheets with commercial purity. The
optimum process parameters for obtaining the desired spot
welding quality are captured by the proposed polynomial
mathematical model. Rowlands and Antony (2003) applies
the Taguchi’s loss function analysis to a spot welding process
for the sake of discovering the key process parameter and
RSM is also employed to identify the process parameters
which affect the variability of the weld strength. Taguchi
method is one of the simple and effective solutions for para-
meter design and experimental planning (Siddiquee et al.
2010). Esme (2009) applies Taguchi method to investigate
the effects of welding parameters on the tensile shear strength
in RSW process and obtains an optimum parameter combi-
nation for the maximum tensile shear strength by means of
analyzing signal-to-noise (S/N) ratio. Thakur and Nanded-
kar (2010) recommend the Taguchi method to determine the
effects of electrode force, welding current and welding time
on the tensile shear strength of RSW of austenitic stainless
steel. Analysis of variance is also performed to determine the
predominant process parameters of RSW. Khan et al. (2012)
develops a response surface model to study the influence of
process parameters of weld-bonding on tensile shear strength
of the weld-bond of 2 mm thick aluminum alloy sheets and
discusses the effects of the significant process parameters
and their interaction on the tensile shear strength. All these
methods mentioned above have been proved to be satisfying
by performing confirmatory tests afterwards. Whereas, all
of these research reports only focus on one quality charac-
teristic. It is well known that welding quality is commonly
characterized by a number of indicators, such as nugget size,
tensile shear strength, penetration rate and so on.

To overcome this shortcoming, the effects of spot welding
parameters on multiple quality characteristics of RSW and
resultful ideas on how to find the optimal welding parame-
ters in a smart way are discussed in some research materi-
als. Antony (2001) applies a Taguchi quality loss function
to the RSW manufacturing process based on multi-objective
optimization technique. It performs comparatively improve-
ment in multiple quality characteristics compared with single
quality characteristics by means of an example of electronic
assembly problem. Kim et al. (2005) employs the RSM to
establish the optimal input conditions to obtain a satisfactory
weld quality of spot welded of highly tensile TRIP steel.
Muhammad et al. (2012) applies a multi-objective optimiza-
tion with simultaneous consideration of multiple response
(radius of weld nugget and width of HAZ) using Taguchi
method to optimize the multiple quality characteristics in
RSW process. Experimental confirmation test is then carried
out to validate that the predicted model is reliable. All the

optimization techniques mentioned above are on the basis of
the assumption that the response values are uncorrelated or
independent. But this may not be always reasonable in real-
istic situations (Aslanlar 2006; Sun et al. 2008). Therefore, it
is essential to eliminate the multi-colinearity problem prior
to application of various optimization techniques.

Other process optimization methods are also proposed by
some researchers. Bai and Chai (2012) investigate a hybrid
intelligent optimal-setting control of the raw slurry blending
process which can automatically adjust the set-points in order
to respond to the variation of the boundary condition. The
application results applied in an alumina factory in China
prove the validity and effectiveness of the proposed meth-
ods. Ding et al. (2011) apply the traditional linear weighting
methods, strength Pareto evolutionary algorithm (SPEA) and
the K means supports vector clustering to achieve the multi-
objective optimization design of the overall performance of
injection molding machine. Rani et al. (2012) propose a mod-
ified genetic algorithm for the multi-objective optimization
of PID controller parameters and the results show that it has
the capability to optimally tune the PID controllers based on
the nonlinear model of the pendulum. Aghaei et al. (2012)
present a fuzzy optimization method to enhance the opti-
mal power flow considering Unified Power Flow Controller.
Loghmanian et al. (2012) propose a new modified elitist non-
dominated sorting genetic algorithm using clustered crowd-
ing distance to minimize the complexity of a model structure
and its predictive error simultaneously. All the methods men-
tioned above have not been employed in the field of spot
welding, whereas an attempt may be made to improve the
welding quality through using them for reference.

In the present work, first weld nugget size, tensile shear
strength, penetration rate and failure energy are transformed
into welding performance characteristics using signal-to-
noise (S/N) ratio. And then the principal component analy-
sis (PCA) is adopted to convert the four welding quality
indices into an independent quality indicator. After eliminat-
ing the effects of multicollinearity among variables, RSM is
employed to analyze and find out the optimal process para-
meters. Making use of the RSM modeling technique, the
complicated relationships between the process parameters
and the synthetical weld quality index of SSRSW are also
discussed.

The rest of the paper is organized as follows. Section
“Experimental detail” introduces the experimental condi-
tions and experimental design. Section “Analysis methods
and corresponding procedures” describes the methods and
the corresponding procedures of the signal-to-noise (S/N)
ratio method, PCA and RSM to obtain the composite weld-
ing quality index (CWQI) and the regression model quanti-
fying the relationship between the input variables (welding
current, welding time and welding force) and the output vari-
able (CWQI). Section “The four principal component scores”
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Fig. 1 The optimization procedures of the research methodology

discusses factor/interaction effects of welding parameters on
CWQI, the optimizing design and experimental verification.
Finally, Section “Conclusion” concludes the paper. The pro-
cedures applied in this research are shown in Fig. 1.

Experimental detail

Titanium and its alloys have been identified as one of the
best engineering metals for application in many industrial
fields (Kaya and Kahraman 2012), such as aviation, medical
industry and chemical engineering, and so on. This is because
titanium and titanium alloy have relatively low density, excel-
lent corrosion resistance and high mechanical strength (Cui
et al. 2011). Therefore, this paper is planned to optimize the
welding parameters of TC2 titanium alloy sheets with the
thicknesses of 0.4 mm. The alloy has satisfactory plasticity,
good weldability and its chemical composition (percent by
weight) is given in Table 1. The TC2 titanium alloy sheets
are cut in the dimension of 100 × 30 × 0.4 mm, installed as
lapping joints, as shown in Fig. 2.

Fig. 2 Specimen sizes for SSRSW

When the temperature is higher than 550 ◦C, titanium and
its alloy easily produce chemical reaction with oxygen, nitro-
gen, hydrogen, which reduces their performances. However,
during resistance spot welding, under the pressure of elec-
trodes the nugget does not directly contact with the air, so
it does not require special protection measures. The rough
degree and cleanness of metal sheet surfaces extremely affect
the welding quality (Saresh et al. 2007), so it is necessary to
reduce the surface resistance by mechanical and chemical
methods before welding. In this research, first the sheets are
cleaned using hard brush, and then are chemically cleaned by
the mixed solution of 45 % of nitric acid, 20 % of hydroflu-
oric acid and 35 % of water. After etching for 2–3 min, the
base metal sheets are cleaned with running water.

The spot welding tests are performed using a resistance
spot weld machine produced by Miyachi Unitek Corporation.
A HF27 high frequency resistance welding power supply
with a pneumatically actuated small-scale resistance weld
head is employed in this experiment. The HF27 power supply
can provide constant current, constant voltage and constant
power modes for a welding process. In this work constant
current mode is used. The flatted copper alloy electrodes
with 3 mm in diameter are employed. No cooling water is
supplied to the electrodes.

In order to improve the reliability and availability of the
test results, experiments are scheduled based on RSM tech-
nique. Box–Behnken designs (BBD) are a class of rotatable
or nearly rotatable second-order designs based on three-level
incomplete factorial designs (Souza et al. 2005; Ferreira et
al. 2007), which are considered to be more suitable for the

Table 1 Chemical compositions of TC2 titanium alloy (wt%)

Alloying elements Impurities (not more than)

Al Mn Ti Fe C N H O Other elements

Single Total

4.0 1.5 Remain 0.30 0.10 0.05 0.012 0.15 0.10 0.40
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limited number of samples to be conducted in comparison
with other experimental design methods (Beal et al. 2006).
The 95 % confidence interval for the experimental results of
the BBD is analyzed by default. In this paper, a BBD is finally
chosen and the values of the welding process parameters at
different levels are tabulated in Table 2.

The levels −1, 0, 1 in Table 2 are known as coded variables
in the RSM, which are dimensionless, zero mean and the
same standard deviation. Coded value of the variable welding
time (T ) z1 is defined as (Muthukumar et al. 2003)

z1 = (T − z0)/�z (1)

where z1 is the coded value of welding time, z0 is the value
of T at the center point, �z is the step change of T , so as the
welding current (I ) and electrode force (F).

The number of experiments (N ) required for the develop-
ment of BBD is defined as (Ferreira et al. 2007):

N = 2q(q − 1) + C0 (2)

where q is number of factors and C0 is the number of central
points. In this paper, three factors (welding time, welding
current and electrode force) are considered while C0 = 5.
The BBD can be viewed as consisting of three interlocking
22 factorial design and a central point (Souza et al. 2005;
Aslan and Cebeci 2007), as shown in Fig. 3. The numbers in
Fig. 3 are the experimental serial number conducted in this
research; z1, z2 and z3 are respectively coded welding time,
welding current and electrode force.

After welding, tensile-shearing tests are carried out on
a universal tensile testing machine with the tension speed
of 1 mm/min. Nugget diameter is determined from the frac-
tured faying surfaces of tensile-shear testing. The failure
energy is extracted from the load-displacement curve and
its value equals the curve area. As one of the most important
factors governing the mechanical performance of resistance
spot welds, penetration rate A is calculated according to the
following formula:

A = h/(δ − c) × 100 % (3)

where h is the semiminor axis of the nugget; δ is the thickness
of the plates to be welded; c is the indentation depth and D is
the nugget diameter, as presented in Fig. 4. Table 3 illustrates
the results of the experiments. The numbers in the brackets
are the corresponding coded values of welding parameters.

Fig. 3 The three-factorial Box–Behnken experimental design

Fig. 4 Geometric morphology of the nugget

T, I, F respectively represents welding time, welding cur-
rent and electrode force.

Analysis methods and corresponding procedures

Signal-to-noise ratio

As one of the simple and effective solutions for parameter
design and experimental planning approach, signal-to-noise
(S/N) ratio (Dubey and Yadava 2008) is employed to rep-
resent the welding performance characteristic in this study.
There are three categories of the quality characteristics in the
analysis of S/N ratio—the lower the better, the higher the
better and the nominal the better.

Table 2 Welding process parameters at different levels

Symbol Process parameter Unit Level −1 Level 0 Level 1

A Welding time ms 8 10 12

B Welding current kA 1.6 2.0 2.4

C Electrode force N 76.2 101.6 127
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Table 3 Experimental results based on Box–Behnken design

Experiment
number

Welding parameters Nugget
diameter (mm)

Penetration
rate (%)

Shear
strength (N)

Failure
energy (J)

T I F

1 8 (−1) 1.6 (−1) 101.6 (0) 1.47 50.29 1395 1.68

2 12 (+1) 1.6 (−1) 101.6 (0) 1.67 58.35 1920 2.35

3 8 (−1) 2.4 (+1) 101.6 (0) 1.93 63.44 2206 2.62

4 12 (+1) 2.4 (+1) 101.6 (0) 2.18 64.78 2339 2.75

5 8 (−1) 2.0 (0) 76.2 (−1) 1.72 59.30 1996 2.32

6 12 (+1) 2.0 (0) 76.2 (−1) 2.05 65.04 2423 2.90

7 8 (−1) 2.0 (0) 127 (+1) 1.66 57.58 1893 2.25

8 12 (+1) 2.0 (0) 127 (+1) 1.78 61.14 2094 2.44

9 10 (0) 1.6 (−1) 76.2 (−1) 1.77 60.29 2075 2.55

10 10 (0) 2.4 (+1) 76.2 (−1) 2.16 63.24 2223 2.67

11 10 (0) 1.6 (−1) 127 (+1) 1.47 50.59 1400 1.76

12 10 (0) 2.4 (+1) 127 (+1) 2.07 67.92 2458 2.94

13 10 (0) 2.0 (0) 101.6 (0) 1.89 62.64 2187 2.54

14 10 (0) 2.0 (0) 101.6 (0) 1.88 62.74 2175 2.54

15 10 (0) 2.0 (0) 101.6 (0) 1.87 62.93 2187 2.54

16 10 (0) 2.0 (0) 101.6 (0) 1.87 62.23 2187 2.54

17 10 (0) 2.0 (0) 101.6 (0) 1.90 64.58 2175 2.54

The desired observed value of a lower-the-better charac-
teristic is zero (Antony 2000). Examples include tool wear,
noise level in automotive engines, response time to customer
complaints, shrinkage porosity, warp and surface roughness
(Antony 2000). The S/N ratio with a lower-the-better char-
acteristic can be expressed as:

xi = −10 log

⎛
⎝1

n

n∑
j=1

y2
i j

⎞
⎠ (4)

where xi is the S/N ratio; yi j is the i th quality characteristic
value at the j th test (i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The larger-the-better response is generally employed
when the objective of the experiment is to maximize the
response value provided that it is within acceptable limits.
Examples include strength, efficiency, miles/gallon of an
automobile, corrosion resistance, product or component reli-
ability, product life and so on (Antony 2000). The S/N ratio
with a higher-the-better characteristic can be expressed as:

xi = −10 log

⎛
⎝1

n

n∑
j=1

1

y2
i j

⎞
⎠ (5)

The nominal the better characteristic is recommended when
the experimental objective is to achieve a target response
value and a minimal variability around the target. Instances
include dimensions (width, thickness, height, etc.), force,
pressure, viscosity, resistance, voltage, current, capacitance

and so on (Antony 2000). The S/N ratio with the nominal the
better characteristic can be expressed as:

xi = 10 log

(
y2

i

σ 2
i

− 1

n

)
(6)

where yi = ∑n
j=1 yi j/n is the i th average quality character-

istic experimental value; σ 2
i = 1

n−1

∑n
j=1 (yi j − yi )

2 is the
corresponding deviation and mn is the total number of the
tests.

In this study, the penetration rate, tensile shear load and the
failure energy are the higher the better characteristics; while
the weld nugget size is the nominal the better characteristic.
The S/N ratios for each experiment number are summarized
in Table 4. The S/N ratios of penetration rate, tensile shear
load and the failure energy in Table 4 are calculated from
Eq. (5), and the S/N ratios of weld nugget size is obtained
according to Eq. (6).

Principal component analysis

As an effective statistical technique, PCA is used in data com-
pressing and statistical features extracting by means of elim-
inating the overlapping information of the samples, which
changes high dimension into low dimension without much
loss of information. The PCA method involves several pro-
cedures, as shown below (Fung and Kang 2005):
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Table 4 The sequences of S/N
ratios Experiment number S/N ratio (dB)

Nugget diameter Penetration rate Shear strength Failure energy

1 56.44 78.36 144.81 10.38

2 65.19 81.33 151.20 17.09

3 96.63 83.00 153.98 19.26

4 47.96 83.42 155.15 20.23

5 67.94 81.65 151.98 16.83

6 103.87 83.50 155.86 21.29

7 61.57 81.06 150.92 16.22

8 71.06 82.26 152.94 17.84

9 69.02 81.98 152.75 18.72

10 49.37 82.94 154.13 19.64

11 57.84 78.47 144.89 11.31

12 100.44 84.37 156.14 21.57

13 88.00 82.75 153.81 18.64

14 85.67 82.78 153.70 18.64

15 75.21 82.84 153.81 18.96

16 76.30 82.75 153.81 18.49

17 92.77 82.62 153.70 18.49

1. The original multiple quality characteristic array

X =
⎛
⎜⎝

x1(1) . . . x1(n)
...

. . .
...

xm(1) · · · xm(n)

⎞
⎟⎠ (7)

where m is the number of experiment and n is the number of
the quality characteristic. In this paper, x is the S/N ratio of
each quality characteristics and m = 17, n = 4.

2. Normalizing the response

The S/N ratio of each quality characteristic is normal-
ized using the following formula to get rid of the differences
between units.

xi ( j)∗ = xi ( j) − xi ( j)−

xi ( j)+ − xi ( j)−
(8)

X∗ =
⎛
⎜⎝

x1(1)∗ . . . x1(n)∗
...

. . .
...

xm(1)∗ · · · xm(n)∗

⎞
⎟⎠ (9)

where xi ( j)∗ is the normalized response, xi ( j)+ is the max-
imum of xi ( j), and xi ( j)− is the minimum of xi ( j).

3. Correlation coefficient array

The correlation coefficient array is evaluated as follows:

Rkl = Cov(xi (k)∗, xi (l)∗)√
V ar(xi (k)∗)V ar(xi (l)∗)
(k = 1, 2, 3, . . . , n; l = 1, 2, 3, . . . , n) (10)

where Cov(xi (k)∗, xi (l)∗) is the covariance of sequences
xi (k)∗ and xi (l)∗, V ar(xi (k)∗) is the variance of sequence
xi (k)∗ and V ar(xi (l)∗) is the variance of sequence xi (l)∗,
which represent the measures of quality characteristics k
and l.

4. Determining the eigenvalues and eigenvectors

The eigenvalues and eigenvectors are determined from the
correlation coefficient array,

(R − λk Im)Vik = 0 (11)

where R is the matrix form of Rkl; λk is the kth eigenvalue
and

∑n
k=1 λk =n, k = 1, 2, . . . , n; Vik = [ak1ak2 · · · akn]T

is the eigenvector corresponding to the eigenvalue λk .

5. Principal component scores

The principal component score PC Si (k) corresponding
to each trial condition is formulated as:

PC Si (k) =
n∑

j=1

xi ( j)∗ · Vjk

(i = 1, 2, . . . , m; k = 1, 2, . . . , n) (12)
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where PC Si (k) is the principal component score of the i th
trial run in the kth quality characteristic, xi ( j)∗ is the cor-
responding normalized response, Vjk is the eigenvector cor-
responding to the eigenvalue λk, PC S is the matrix form of
PC Si (k) and PC S = [PC S(1), PC S(2), . . . , PC S(n)].

6. Evaluating the contribution rate and accumulating con-
tribution rate of each principal component

APk = λk∑n
k=1 λk

(k = 1, 2, . . . , n) (13)

AAPk =
∑k

j=1 λk∑n
k=1 λk

(k = 1, 2, . . . , n) (14)

where APk is the contribution rate, which explains the degree
of the variation of the kth principal component. AAPk is the
accumulation contribution rate. In general, we select the top
p (p < n) factors whose cumulative contribution of variance
accounts to 85–95 %.

Table 5 manifests that the first two principal components
(PC(1) and PC(2)) represent 99.52 % of the variation in the
responses. PC(1) is able to explain about 83.22 % of the
total variation. Based on these statistical tests and indices,
it might be postulated that only the first two principal com-
ponent scores can be chosen to form the composite welding
quality index (CWQI). The comprehensive index is defined
as the sum of the products of the first two principle com-
ponent scores multiplied by their corresponding eigenval-
ues. CW Q I = ∑2

k=1 λk PC S(k) represents the original four
welding quality indices and accounts for most of the variance
in the original responses, as shown in Table 6. It is desirable
to have a high CWQI. Through PCA, we synthesize four cri-
teria, eliminate information overlapping of the sample, and
reduce the dimension of welding quality indices.

Response surface methodology

RSM is a collection of statistical and mathematical method
comprising of an experimental design for a polynomial

mathematical model between the input variables and output
variables, the statistical modeling quantifying the relation-
ships between the controllable input parameters and out-
put variables (Beal et al. 2006), and the optimization of the
response variables influenced by various process parameters,
which are useful for the modeling and analyzing engineering
problems. It is assumed that the independent input variables
are continuous and controllable by experiments with negli-
gible errors. By using the results of a numerical experiment
in the points of BBD, response surface analysis is much less
computationally expensive than conventional solution using
the original method (Raissi and Farsani 2009). It is required to
find a suitable approximation for the true functional relation-
ship between independent variables and the response surface.

Generally, the relationship between the response variable
y and the predictor variables (x1, x2, . . . , xn) may be known
exactly as a description (Lai et al. 2009):

y = f (x1, x2, . . . , xn) + ε (15)

where ε is model error and includes measurement error and
other variability.

In this study, f (x1, x2, . . . , xn) is a function of the welding
parameters such as welding time (T ), welding current (I ),
and electrode force (F), which quantifies the CWQI of spot-
welded TC2 titanium alloy. The function can be expressed
as:

f (x1, x2, . . . , xn) = g(x1, x2, . . . , xn) + ε (16)

where g(x1, x2, . . . , xn) is the polynomial of order three or
less.

The successful application of RSM relies on the identifica-
tion of a suitable and precise approximation for g(x1, x2, . . . ,

xn). The second-order polynomial (regression) equation used
to represent the function g(x1, x2, . . . , xn) is given by:

Table 5 Principal component
analysis of the original S/N ratio
responses

Item Principal components

PC(1) PC(2) PC(3) PC(4)

Eigenvalues 3.3289 0.6518 0.0141 0.0052

Proportion 0.8322 0.1630 0.0035 0.0013

Accumulated proportion 0.8322 0.9952 0.9987 1.0000

Responses (S/N ratio) Eigenvectors

Nugget diameter 0.3609 −0.9322 −0.0259 −0.0106

Penetration rate 0.5400 0.1856 0.6252 0.5320

Shear strength 0.5389 0.2156 0.1524 −0.8005

Failure energy 0.5365 0.2258 −0.7650 0.2757
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Table 6 Four principal component scores and the composite welding quality index

No. PCS(1) PCS(2) PCS(3) PCS(4) λ1 · PC S(1) λ2 · PC S(2) CWQI

1 0.0548 −0.1415 −0.0039 −0.00161 0.1824 −0.0923 0.0902

2 1.0039 0.0604 −0.0715 −0.02617 3.3420 0.0394 3.3813

3 1.5935 −0.3158 −0.0234 −0.02672 5.3045 −0.2058 5.0986

4 1.4190 0.5500 −0.0078 −0.03934 4.7237 0.3585 5.0823

5 1.0753 0.0339 −0.0112 −0.05929 3.5797 0.0221 3.6018

6 1.8716 −0.3449 −0.0885 −0.06657 6.2303 −0.2248 6.0055

7 0.9015 0.0897 −0.0419 −0.05041 3.0011 0.0584 3.0595

8 1.2443 0.0392 −0.0051 −0.04867 4.1422 0.0255 4.1677

9 1.2396 0.0790 −0.0960 −0.03847 4.1264 0.0515 4.1779

10 1.3082 0.4806 −0.0318 −0.02487 4.3549 0.3132 4.6681

11 0.1225 −0.1410 −0.0548 0.026513 0.4078 −0.0919 0.3159

12 1.9541 −0.2500 −0.0116 −0.00273 6.5049 −0.1630 6.3419

13 1.4770 −0.1957 −0.0057 −0.0506 4.9169 −0.1275 4.7894

14 1.4596 −0.1579 −0.0028 −0.03956 4.8590 −0.1029 4.7561

15 1.4178 0.0267 −0.0116 −0.0323 4.7196 0.0174 4.7370

16 1.3940 −0.0039 0.0105 −0.05227 4.6404 −0.0025 4.6379

17 1.4832 −0.2844 −0.0123 −0.05925 4.9373 −0.1854 4.7520

g(x1, x2, . . . , xn) = a0 +
n∑

i=1

ai xi +
n∑

i=1

aii x2
i

+
n∑

j �=i

ai j xi x j + ε (17)

where xi denotes the coded unit of the input variables, and
g(x1, x2, . . . , xn) is the output variable. In addition, a0 is
the average of the responses and ai , ai j , aii are regression
coefficients that depend on respective linear, interaction, and
squared terms of factors, which are obtained from the exper-
imental result data using least square method.

The Design Expert Software is employed to determine the
regression coefficients and analysis of variance (ANOVA)
with all factors and their respective values is also performed,
as listed in Table 7. In this study, T, I, F, T I, T F, I F, T 2

and I 2 are significant factors as the P values of them are
much smaller than 0.05. Correspondingly, the P value of
model term F2 is greater than 0.10 which indicates that it
is not significant. Besides, the full quadratic model is also
significant since its P value is below 0.05. The lack of fit
F value is 1.65 implying that the lack of fit is insignificant
relative to the pure error. There is a 31.22 % chance that a
lack of fit F value this large could occur due to noise. Non-
significant lack of fit is good—we want the model to fit.

The fitting degree of the theoretical quadratic polynomial
regression model is examined by the determination coeffi-
cient, as listed in Table 8. The coefficient of determination R2

is 0.9993 for response, which implies that 99.93 % of experi-
mental data confirm the compatibility with the data predicted

by the model and the model can not explain only 0.07 % of
the total variations. The R2 value is always between 0 and 1,
and its value indicates capability of the model. With regard
to a good statistical model, R2 value should be close to 1.0
(Karthikeyan and Balasubramanian 2010). The adjusted R2

value reconfigures the analytic expression with the significant
terms. The value of the adjusted determination coefficient
(Adjusted R2 = 0.9985) is also big enough to support the
high significance of the model. The predicted R2 is 0.9938
indicates that the model is able to explain 99.38 % of the vari-
ability in predicting completely new experimental data. This
is in reasonable agreement with the adjusted R2 of 0.9985.
The value of coefficient of variation is as low as 1.58, which
reveals that the deviations between experimental and pre-
dicted values are low. Adeq precision meant the signal to
noise ratio. A ratio greater than 4 is desirable. In this inves-
tigation, the ratio is 125.862, which indicates an adequate
signal. This model is able to navigate the design space. Fig-
ure 5 presents the accuracy of the predicted CWQI and the
measured CWQI. The straight line in Fig. 5 is a 45 degree line.
The predicted CWQI and the measured CWQI are aligned,
which once again favors the robustness and flexibility of the
mathematical model.

As the quadratic factor F2 has little effect on the
model (with a P value of 0.3521), presents low effect, this
less significant source can be excluded from the regres-
sion analysis. Based on this analysis, the regression coef-
ficients for the estimation of CWQI are decided and the
equation of the fitted regression model is achieved as
follows:
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Table 7 ANOVA test results

Source Sum of squares d f Mean square F value P value Prob > F

Model 45.19 9 5.02 1195.07 <0.0001

T 5.76 1 5.76 1370.20 <0.0001

I 21.86 1 21.86 5203.45 <0.0001

F 2.61 1 2.61 620.79 <0.0001

TI 2.73 1 2.73 650.87 <0.0001

TF 0.42 1 0.42 99.86 <0.0001

IF 7.66 1 7.66 1823.27 <0.0001

T 2 1.03 1 1.03 244.87 <0.0001

I 2 2.88 1 2.88 685.37 <0.0001

F2 0.004175 1 0.004175 0.99 0.3521

Residual 0.029 7 0.004202

Lack of fit 0.016 3 0.005429 1.65 0.3122

Pure error 0.013 4 0.003282

Cor total 45.22 16

Table 8 Post-ANOVA statistics

Standard deviation 0.065 R-squared 0.9993

Mean 4.10 Adjusted R-squared 0.9985

Coefficient of variation (%) 1.58 Predicted R-squared 0.9938

Predicted residual sum of squares 0.28 Adeq precision 125.862

Fig. 5 Accuracy of the predicted CWQI and the measured CWQI

CW Q I = −38.09029+5.61913T +21.34668I −0.23115F

−1.03360T I − 0.00637583T F + 0.13622I F

−0.124T 2 − 5.17929I 2 (18)

The equation is valid under the following conditions:

8 ≤ T ≤ 12

1.6 ≤ I ≤ 2.4 (19)

76.2 ≤ F ≤ 127

Accordingly, the regression model with the coded welding
parameters is:

CW Q I = 4.72 + 0.85z1 + 1.65z2 − 0.57z3 − 0.83z1z2

−0.32z1z3 + 1.38z2z3 − 0.5z2
1 − 0.83z2

2 (20)

The equation is valid under the following conditions:

−1 ≤ z1 ≤ 1

−1 ≤ z2 ≤ 1 (21)

−1 ≤ z3 ≤ 1

where z1 is the coded welding time, z2 is the coded welding
current and z3 is the coded electrode force.
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Fig. 6 Effect of welding current on CWQI

Fig. 7 Effect of welding time on CWQI

Overall results and discussion

Effects of welding parameters on CWQI

Plots of each factor and its effect on CWQI are presented in
Figs. 6, 7 and 8. In order to avoid errors, all the factors and
interactions must be considered carefully. In each of these
graphs, the factors that are not plotted are kept at certain
constant values. The figures indicate that all the welding para-
meters highly affect the CWQI.

Figure 6 shows the effect of welding current on the CWQI.
It can be observed that the CWQI of the spot-welded joint
increases with the welding current increasing from 1.6 to
2 kA, then it decreases with further increase of welding
(2–2.4 kA). As the welding current increases, the heat gener-
ated at the faying surface of the welding plates is increased
and therefore the nugget diameter is also increased; which in
turn results in higher tensile shear strength of the weld joint.
When the welding heat continues to increase, the heating
rate of the materials is higher than normal and the materials
expand faster. As the welding heat input exceeds a certain
value, expulsion is prone to occur, which leads to the erup-
tion of the molten metal from the nugget during welding.
The occurrence of expulsion would reduce the welding sur-
face quality, affect its corrosion resistance, mechanical prop-
erties and fatigue strength, shorten the electrode service life
(Senkara et al. 2004), which should be avoided.

Different CWQI with the welding time varying from 8 to
12 ms are presented in Fig. 7. From the figure we can see

Fig. 8 Effect of electrode force on CWQI

that as welding time gets longer, the CWQI of the weld bond
first increases from 4.43 to 5.47 then decreases with fur-
ther increase of welding time. According to the joule law
(Q = I 2 Rt), longer welding time indicates larger weld-
ing heat input, which means that the nugget grows ade-
quately and the mechanical properties of the joints increases.
Nevertheless, welding time longer than a certain value is
unacceptable, especially with larger current. Overlong weld-
ing time combining with larger current leads mechanical col-
lapse surrounding the weld nugget, which reduces the CWQI.
From what has been mentioned above, effect of welding time
on the welding quality is similar to that of welding current.

Figure 8 examines the effect of electrode force on CWQI
visually. As electrode force increases, the CWQI get reduced.
This variation is due to the fact that the electrode force causes
the faying surface collapse and changes the contact area,
which in turn changes the contact resistance. As the elec-
trode force increases, a larger metallic contact area will be
generated and this leads to a lower contact resistance at the
faying surface. Consequently, the heat generation at the inter-
face is reduced and the nugget diameter is smaller compared
with lower electrode force. In addition, the electrode force
affects the weld current thresholds for nugget initiation in
SSRSW; that is to say, as the electrode force increases, the
minimum critical welding current needed to form the weld-
ing nugget is correspondingly lower and vice versa. It should
be pointed out that the electrode force must be high enough
to produce a comparatively acceptable nugget, but still low
enough to deform of the faying surface asperities without
metal expulsion or electrode sticking; as the basic process
of expulsion can be described by the interaction between the
forces from the liquid nugget and its surrounding solid con-
tainment (Senkara et al. 2004).

The extent of the process parameters impact of the
CWQI can be ranked from their respective F ratio values
(Lakshiminarayanan and Balasubramanian 2009) as well as
the regression coefficients in Eq. (20). As the degrees of free-
dom of all the input parameters are identical, a higher F ratio
value implies that the corresponding factor is more significant
than others and vice versa. From the F ratio values listed in
Table 7, it can be seen that welding current contributes more
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Fig. 9 Contour plots with the electrode force kept at 101.6 N

Fig. 10 Contour plots with the welding time kept at 10ms

on CWQI, followed by welding time and electrode force for
the range considered in this investigation.

Interaction effect of welding parameters

Contour plot plays a very important role in the study of a
response surface. To reveal the interaction effects of welding
parameters on CWQI and find the optimized combination
of the welding process parameters of CWQI, the contour
plots are presented in Figs. 9, 10 and 11. The contour
plots are obtained through setting one parameter as a cer-
tain constant value while the other two variables vary in the
range considered in this paper. The values in the boxes of
Figs. 9, 10 and 11 are different CWQI with different welding
parameters.

Figures 9, 10 and 11 respectively reveals the interaction
effects of three welding process parameters on the weld-
ing quality. The contours indicate that the optimal welding
can be achieved under relatively higher welding current
companying with larger electrode force. When the elec-
trode pressure is constant, it is beneficial to employ larger

Fig. 11 Contour plots with the welding current kept at 2.4 kA

welding current and appropriate welding time; the welding
time should not be too large, otherwise it may result in expul-
sion, but also not too small, or the nugget grows limitedly,
fails to reach its maximum mechanical properties. Thus it
can be seen that the specific combination of welding process
parameters may target a certain given welding quality index.
The contour maps of different welding qualities with various
combinations of welding process parameters could provide
a guidance opinion to constitute process scheme based on
production requirements.

From the F ratio values listed in Table 7 as well as the
regression coefficients in Eq. (20). It can be concluded that
the interaction effect between welding current and electrode
force (IF) affects more significantly on welding quality as
compared to that of interactions between welding current
and welding time (TI) and welding time and electrode force
(TF).

Optimizing design and experimental verification

Generally speaking, as for multi-response performance opti-
mization problem, each response variable value must be com-
puted and the factor/interaction effects which significantly
influence the multi-response performance must be consid-
ered. However, in this investigation the multi-response per-
formance statistic can be treated as an individual response
after a series of pretreatment described previously.

In order to optimize the response, the desirability func-
tion (Islam et al. 2009) is employed using Design Expert
software version 8.0.6. There are many methods available
to optimize a process. In this work, numerical optimiza-
tion is chosen (Hameed et al. 2009). Numerical optimiza-
tion presents a comprehensive and up-to-date description of
the most effective methods in continuous optimization. The
value of desirability function is always between 0 and 1. With
regard to the optimal welding parameters, it should be as
large as possible. The goal seeking begins at a random start-
ing point and proceeds up the steepest slope to a maximum.
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Table 9 Different welding parameters with different desirability function values

Welding time (ms) Welding current (kA) Electrode force (N) CWQI Desirability function value

9.39 2.4 127 6.40474 0.914

9.45 2.4 127 6.40436 0.914

9.47 2.4 125.51 6.35118 0.906

12.00 1.98 76.70 5.97087 0.851

Fig. 12 The failure characteristic of the welded sample with the opti-
mum welding parameters

Fig. 13 The tensile-shearing curve of the specimen joined with the
optimum welding parameters

There may be two or more maximums because of curvature
in the response surfaces and their combination into the desir-
ability function. By starting from several points in the design
space chances improve for finding the “best” local maximum
(Olmez 2009).

For the sake of getting the global optimal parameters, the
optimal combination of welding parameters is the one yield-
ing the maximum desirability function value together with
the biggest CWQI value and the variables of welding time,
welding current and electrode force are selected to be within
the range considered in this paper, as shown in Table 9. The
maximum achievable CWQI value is found to be 6.40474
through response surface analysis. The corresponding para-
meters that yield this maximum value are respectively weld-
ing time of 9.39 ms, welding current of 2.4 kA, and electrode
force of 127 N.

The confirmation experiment is a crucial step to verify
the feasibility and reproducibility of the experimental con-
clusions. If the confirmatory experiment results are persua-
sive, the proposed method is effective and significant in a
specific productive field. On the other hand, if unsatisfac-
tory results are obtained, further investigation of the problem
may be required. The verification test is implemented with
a specific combination of the factors previously evaluated.
In this study, after determining the optimum conditions and
predicting the response under these conditions, tests are car-
ried out with the optimal welding parameters to determine
the nugget diameter, penetration rate, shear strength and fail-
ure energy. The macrograph of failure characteristic of the
welded sample with the optimal welding parameters is pre-
sented in Fig. 12. It can be seen that the failure mode of the
welded joint is pullout failure. Failure mode has a significant
influence on the peak load and failure energy of the spot welds
and a pullout failure mode is most desirable (Hernandez et
al. 2008). Figure 13 gives the tensile-shearing curve of the
specimen joined at the predetermined welding time, weld-
ing current and electrode force. The shear strength is about
2,450 N and the failure energy is 2.96 J. The experimental
results presented in Table 10 are encouragingly satisfactory,
which proves that the parameter combination obtained by the

Table 10 Results of the confirmation experiment

Welding time Welding current Electrode force Nugget diameter Penetration rate Shear strength Failure energy CWQI
(ms) (kA) (N) (mm) (%) (N) (J)

9.39 2.4 127 2.05 67.45 2450 2.96 6.40474
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proposed approach performs well for multi-quality charac-
teristic optimization problem.

Conclusions

This work presents a multi-objective optimization technique
based on PCA and RSM to study a SSRSW process with
four correlated responses. First a Box–Behnken experimen-
tal designs which require smaller number of experiments is
chosen and the corresponding nugget diameter, penetration
rate, shears strength and failure energy are obtained. Then
the four observed values are transformed into the welding
performance characteristics through signal-to-noise (S/N)
ratio. The first two principal component scores are chosen
to form the CWQI after PCA, which converts the multi-
response performance statistics into an individual response
value. A regression model is obtained from the experimen-
tal data to quantify the relationship between the input vari-
ables (welding current, welding time and welding force)
and the output variable (CWQI) which is a converged by
the principal component scores using the first and second
eigenvalues as weights. The variance of each principal com-
ponent is taken as the weight to obtain the CQWI, which
eliminates drawbacks of man-made subjectivism. The con-
tour plots are displayed and the effects of welding para-
meters on CWQI are also discussed. Larger electrode force
together with appropriate welding time and welding cur-
rent is desirable. Though all the three input variables affect
the CWQI, analysis of variance indicates that welding cur-
rent contributes more on CWQI, followed by welding time
and electrode force. In order to avoid the possibility that
the optimal parameters are not global within the range con-
sidered in this paper, the optimal combination of welding
parameters is the one yielding the maximum desirability
function value together with the biggest CWQI value. The
result of verification test which is performed with over-
all optimum welding parameters determined through the
response surface method proves that the proposed approach
is effective and feasible for a SSRSW process, which might
be used as a valuable reference for optimizing and pro-
moting welding quality of SSRSW in a mass production
line.

The proposed approach for multi-quality characteristic
optimization problem would perform well in some other
relevant field so long as all of the responses of the multi-
response problem are not independent of each other. The only
thing we should do is to select the significant and control-
lable factors and obtain the new correlative responses through
experiments when dealing with process optimization prob-
lems of this sort. The correlation coefficient can be calcu-
lated for checking the relationship between the performance
indicators.

Acknowledgments The authors are grateful for the financial sup-
ported by the National Natural Science Foundation of China (11072083)
and the Chinese Universities Scientific Fund (C2009M002). The authors
are also grateful for the experiment supported by the analysis and
test centre of Huazhong University of Science and Technology and
Dongfeng Peugeot Citroen Automobile Company Limited.

References

Aghaei, J., Ara, A. L., & Shabani, M. (2012). Fuzzy multi-objective opti-
mal power flow considering UPFC. International Journal of Innov-
ative Computing, Information and Control, 8, 1155–1166.

Antony, J. (2000). Multi-response optimization in industrial experi-
ments using Taguchi’s quality loss function and principal component
analysis. Quality and Reliability Engineering International, 16, 3–8.

Antony, J. (2001). Simultaneous optimization of multiple quality char-
acteristics in manufacturing processes using Taguchi’s Quality Loss
Function. International Journal of Advanced Manufacturing Tech-
nology, 17, 134–138.

Aslan, N., & Cebeci, Y. (2007). Application of Box–Behnken design
and response surface methodology for modeling of some Turkish
coals. Fuel, 86, 90–97.

Aslanlar, S. (2006). The effect of nucleus size on mechanical properties
in electrical resistance spot welding of sheets used in automotive
industry. Materials & Design, 27, 125–131.

Bai, R., & Chai, T. (2012). Hybrid intelligent optimal-setting control
with multi-objectives of the raw slurry blending process in the alu-
mina production. International Journal of Innovative Computing,
Information and Control, 8, 1251–1262.

Beal, V. E., Erasenthiran, P., Hopkinson, N., Dickens, P., & Ahrens,
C. H. (2006). Optimization of processing parameters in laser fused
H13/Cu materials using response surface method (RSM). Journal of
Materials Processing Technology, 174, 145–154.

Chen, Y. C., Tseng, K. H., & Cheng, Y. S. (2012). Electrode dis-
placement and dynamic resistance during small-scale resistance spot
welding. Advanced Science Letters, 11, 72–79.

Cui, C., Hu, B. M., Zhao, L., & Liu, S. (2011). Titanium alloy production
technology, market prospects and industry development. Materials
& Design, 32, 1684–1691.

Darwish, S. M., & Al-Dekhial, S. D. (1999). Statistical models for spot
welding of commercial aluminum sheets. International Journal of
Machine Tools and Manufacture, 39, 1589–1610.

Ding, L., Tan, J., Wei, Z., Chen, W., & Gao, Z. (2011). Multi-objective
performance design of injection molding machine via a new multi-
objective optimization algorithm. International Journal of Innova-
tive Computing, Information and Control, 7, 3939–3950.

Dong, S. J., Kelkar, G. P., & Zhou, Y. (2002). Electrode sticking during
micro-resistance welding of thin metal sheets. IEEE Transactions on
Electronics Packaging Manufacturing, 25, 355–361.

Dubey, A. K., & Yadava, V. (2008). Robust parameter design and multi-
objective optimization of laser beam cutting for aluminium alloy
sheet. The International Journal of Advanced Manufacturing Tech-
nology, 38, 268–277.

Ely, K. J., & Zhou, Y. (2001). Microresistance spot welding of Kovar,
steel, and nickel. Science and Technology of Welding & Joining, 6,
63–72.

Esme, U. (2009). Application of Taguchi method for the optimization
of resistance spot welding process. The Arabian Journal for Science
and Engineering, 34, 519–528.

Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M.,
Brandao, G. C., et al. (2007). Box-Behnken design: An alternative
for the optimization of analytical methods. Analytica Chimica Acta,
597, 179–186.

123



1348 J Intell Manuf (2014) 25:1335–1348

Fukumoto, S., Fujiwara, K., Toji, S., & Yamamoto, A. (2008). Small-
scale resistance spot welding of austenitic stainless steels. Materials
Science and Engineering A, 492, 243–249.

Fung, H. C., & Kang, P. C. (2005). Multi-response optimization in
friction properties of PBT composites using Taguchi method and
principal component analysis. Journal of Materials Processing Tech-
nology, 170, 602–610.

Hameed, B. H., Lai, L. F., & Chin, L. H. (2009). Production of biodiesel
from palm oil (Elaeis guineensis) using heterogeneous catalyst: An
optimized process. Fuel Processing Technology, 90, 606–610.

Hernandez, V. H. B., Kuntz, M. L., Khan, M. I., & Zhou, Y. (2008).
Influence of microstructure and weld size on the mechanical behavior
of dissimilar AHSS resistance spot welds. Science and Technology
of Welding and Joining, 13, 769–776.

Islam, M. A., Sakkas, V., & Albanis, T. A. (2009). Application of statis-
tical design of experiment with desirability function for the removal
of organophosphorus pesticide from aqueous solution by low-cost
material. Journal of Hazardous Materials, 170, 230–238.

Kaiser, J. G., Dunn, G. J., & Eagar, T. W. (1982). Effect of electrical
resistance on nugget formation during spot welding. Welding Jour-
nal, 62, 167s–174s.

Karthikeyan, R., & Balasubramanian, V. (2010). Predict ions of the
optimized friction stir spot welding process parameters for join-
ing AA2024 aluminum alloy using RSM. International Journal of
Advanced Manufacturing Technology, 51, 173–183.

Kaya, Y., & Kahraman, N. (2012). The effects of electrode force, weld-
ing current and welding time on the resistance spot weldability of
pure titanium. International Journal of Advanced Manufacturing
Technology, 60, 127–134.

Khan, F., Dwivedi, M. D., & Sharma, S. (2012). Development of
response surface model for tensile shear strength of weld-bonds of
aluminium alloy 6061 T651. Materials & Design, 34, 673–678.

Kim, T., Park, H., & Rhee, S. (2005). Optimization of welding para-
meters for resistance spot welding of TRIP steel with response sur-
face methodology. International Journal of Production Research,
43, 4643–4657.

Lai, X. M., Luo, A. H., Zhang, Y. S., & Chen, G. L. (2009). Opti-
mal design of electrode cooling system for resistance spot welding
with the response surface method. International Journal of Advanced
Manufacturing Technology, 41, 226–233.

Lakshiminarayanan, A. K., & Balasubramanian, V. (2009). Compari-
son of RSM with ANN in predicting tensile strength of friction stir
welded AA7039 aluminum alloy joints. Transactions of Nonferrous
Metals Society of China, 19, 9–18.

Loghmanian, S. M. R., Yusof, R., Khalid, M., & Ismail, F. S.
(2012). Polynomial NARX model structure optimization using
multi-objective genetic algorithm. International Journal of Innov-
ative Computing, Information and Control, 8, 7341–7362.

Muhammad, N., Manurung, Y. H. P., Jaafar, R., Abas, S. K., Tham, G.,
& Haruman, E. (2012). Model development for quality features of
resistance spot welding using multi-objective Taguchi method and
response surface methodology. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-012-0648-3

Muthukumar, M., Mohan, D., & Rajendran, M. (2003). Optimization
of mix proportions of mineral aggregates using Box Behnken design
of experiments. Cement & Concrete Composites, 25, 751–758.

Olmez, T. (2009). The optimization of Cr (VI) reduction and removal
by electrocoagulation using response surface methodology. Journal
of Hazardous Materials, 162, 1371–1378.

Raissi, S., & Farsani, R. E. (2009). Statistical process optimization
through multi-response surface methodology. World Academy of Sci-
ence, Engineering and Technology, 51, 267–271.

Rani, M. R., Selamat, H., Zamzuri, H., & Ibrahim, Z. (2012). Multi-
objective optimization for PID controller tuning using the global
ranking genetic algorithm. International Journal of Innovative Com-
puting, Information and Control, 8, 269–284.

Rowlands, H., & Antony, J. (2003). Application of design of experi-
ments to a spot welding process. Assembly Automation, 23, 273–279.

Saresh, N., Pillai, M. G., & Mathew, J. (2007). Investigations into the
effects of electron beam welding on thick Ti-6Al-4V titanium alloy.
Journal of Materials Processing Technology, 192–93, 83–88.

Senkara, J., Zhang, H., & Hu, S. J. (2004). Expulsion prediction in
resistance spot welding. Welding Journal, 83, 123s–132s.

Siddiquee, A. N., Khan, Z. A., & Mallick, Z. (2010). Grey rela-
tional analysis coupled with principal component analysis for opti-
mization design of the process parameters in in-feed centreless
cylindrical grinding. International Journal of Advanced Manufac-
turing Technology, 46, 983–992.

Souza, A. S., Dos Santos, W. N. L., & Ferreira, S. L. C. (2005). Appli-
cation of Box-Behnken design in the optimization of an on-line
pre-concentration system using knotted reactor for cadmium deter-
mination by flame atomic absorption spectrometry. Spectrochimica
Acta Part B: Atomic Spectroscopy, 60, 737–742.

Sun, X., Stephens, E. V., & Khaleel, M. A. (2008). Effects of fusion zone
size and failure mode on peak load and energy absorption of advanced
high strength steel spot welds under lap shear loading conditions.
Engineering Failure Analysis, 15, 356–367.

Tan, W., Zhou, Y., Kerr, H. W., & Lawson, S. (2004). A study of
dynamic resistance during small scale resistance spot welding of thin
Ni sheets. Journal of Physics D: Applied Physics, 37, 1998–2008.

Thakur, A. G., & Nandedkar, V. M. (2010). Application of Taguchi
method to determine resistance spot welding conditions of austenitic
stainless steel AISI 304. Journal of Scientific & Industrial Research,
69, 680–683.

Wen, J., Wang, C. S., Xu, G. C., & Zhang, X. Q. (2009). Real time
monitoring weld quality of resistance spot welding for stainless steel.
ISIJ International, 49, 553–556.

Xu, J., & Zhai, T. (2008). The small-scale resistance spot welding of
refractory alloy 50Mo-50Re thin sheet. JOM Journal of the Minerals,
Metals and Materials society, 60, 80–83.

Zhou, Y., Gorman, P., Tan, W., & Ely, K. J. (2000). Weldability of thin
sheet metals during small-scale resistance spot welding using an
alternating-current power supply. Journal of Electronic Materials,
29, 1090–1099.

123

http://dx.doi.org/10.1007/s10845-012-0648-3

	Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology
	Abstract 
	Introduction
	Experimental detail
	Analysis methods and corresponding procedures
	Signal-to-noise ratio
	Principal component analysis
	Response surface methodology

	Overall results and discussion
	Effects of welding parameters on CWQI
	Interaction effect of welding parameters
	Optimizing design and experimental verification

	Conclusions
	Acknowledgments
	References


