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Abstract Bead-on-plate welding of zircaloy-4 (a reactive
material) plates was conducted using electron beam accord-
ing to central composite design of experiments. Its predic-
tive models were developed in the form of knowledge-based
systems in both forward and reverse directions using neural
networks. Input parameters considered for this welding of
reactive metals were accelerating voltage, beam current and
weld speed. The responses of the welding process were
measured in terms of bead width, depth of penetration and
micro-hardness. Forward mapping of the welding process
was conducted using regression analysis, back-propagation
neural network (BPNN), genetic algorithm-tuned neural net-
work (GANN) and particle swarm optimization algorithm-
tuned neural network (PSONN). Reverse mapping of this
process was also carried out using the BPNN, GANN and
PSONN-based approaches. Neural network-based approaches
could model this welding process of reactive material in both
forward and reverse directions efficiently, which is required
for the automation of the same. The performance of the neural
network models was found to be data-dependent. The BPNN
could outperform the other two approaches for most of the
cases but not all in both the forward and reverse mappings.
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Introduction

Zircaloy-4 (Zr-4), a reactive material, is used as a fuel
cladding in Pressurized Water Reactors (PWR) and CANa-
dian Deuterium Uranium (CANDU) reactors due to its excel-
lent corrosion resistance, good mechanical properties and
very low thermal neutron cross-section. Zirconium alloys
have low linear coefficient of thermal expansion giving supe-
rior dimensional stability at the elevated temperatures mak-
ing it most suitable for nuclear waste containers, where the
temperature could exceed 200 ◦C for hundreds of years.1

Zr-4 is also used for the fabrication of reprocessing plant
equipment due to its outstanding general corrosion resistance
in nitric acid media and insensitivity to intergranular corro-
sion (Tonpe et al. 2011). It is a reactive metal and has a strong
affinity for oxygen and nitrogen at elevated temperatures and
is considered to be in the difficult-to-weld category. Zr-4
material can be welded by Tungsten Inert Gas (TIG) welding
and Electron Beam Welding (EBW) process. The hardness
value in the TIG welded region is found to be higher than that
in the base metal region reducing its ductility. The increase
in hardness may be due to the increase in oxygen or nitrogen
content in the weld region (Thomas et al. 1993). Zr-4 can be
welded using EBW process in vacuum without the danger of
becoming brittle due to contamination.

EBW is an autogenous welding process, in which intense
heat energy required to melt and fuse the metal is obtained
by the impingement of highly focused beam of electrons
on to the target surface. It has the potential to become the
most important technology for the welding of light weight
alloy and reactive metals for nuclear industry, aerospace and

1 Technical Data Sheet of Reactor grade zirconium available from
http://www.atimetals.com.
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national defense applications (Thomas et al. 1993; Chi and
Chao 2007).

The mechanical properties of the welded joint, such as
yield strength, tensile strength, and micro-hardness are deter-
mined as a part of the weld qualification, which depend on
the metallurgical properties and physical dimensions of the
weld bead and heat affected zone (Lancaster 1970). These
metallurgical and physical properties depend on the input
process parameters, namely accelerating voltage, beam cur-
rent, welding speed, focus positions, ambient pressure, and
others. The input-output correlations are required to be devel-
oped in both forward and reverse directions to predict the
outputs of the process for a given set of input parameters and
vice-versa, that is, to determine the required set of process
parameters in order to obtain the desired outputs in real
time. This is required for the automation of the process. The
problem of forward modeling can be solved using statistical
regression analysis. However, it may not be always possible
to carry out the reverse modeling using the obtained regres-
sion equations. As regression analysis is conducted response-
wise, it may not be able to capture the complete information
of the process. On the other hand, modeling involving mul-
tiple inputs and outputs can be done simultaneously using
neural networks. The training of a knowledge-based system
is provided off-line and after the training is over, it can be
used on-line. Thus, knowledge-based systems (also known
as expert systems) could be useful to establish the said rela-
tionships of a process in both the directions.

Literature review

A considerable amount of work had been carried out by var-
ious investigators to study the welding of reactive materials.
Some of those studies are discussed here. Saresh et al. (2007)
studied the effects of EBW on thick Ti-6Al-4V titanium alloy
and found that contamination must be avoided to obtain the
sound weld. The authors concluded that cosmetic pass might
be required to eliminate the undercuts, which was very detri-
mental. Rao et al. (2008) studied the fracture toughness of EB
welded Ti-6Al-4V, and found that these values of the weld
metals were superior to that of the base metal. Choi and Choi
(2008) investigated the effects of welding conditions on the
mechanical properties of pure titanium and found that the
specimen with minimum number of welding pass and max-
imum amount of shielding gas could give rise to the highest
tensile strength. Saha and Ray (2008) presented the require-
ments of vacuum level and welding speed for welding of
various reactive metals. Zircaloy used for nuclear applica-
tions should be welded at an ambient pressure of less than
2×10−4 mbar. Tonpe et al. (2011) studied the corrosion resis-
tance property of EB welded and TIG welded Zr-4 plates and
found that its corrosion resistance values in boiling 11.5M

nitric acid was better than that of any other potential material
used for reprocessing equipment fabrication. However, it was
also found that the hardness of the weld region of TIG welded
samples were more than double the hardness value in the base
metal region. On the other hand, the hardness value increased
by only 7.6 % for the EB welded plates. Ahmad et al. (2002)
conducted the hardness and microstructural studies of elec-
tron beam welded joints of Zr-4 and stainless steel plates.
They found that the defects like porosity, voids and cracks
could be avoided and heat affected region was reduced in
EBW.

Though some qualitative studies involving microstructure
characterization of reactive metal welding using EBW had
been conducted, the study of input-output modeling of EBW
process for the reactive metals has not yet been reported.
The mathematical models for the EBW process had been
developed by various researchers (Hashimoto and Matsuda
1965; Klemens 1969; Miyazaki and Giedt 1982; Vijayan and
Rohatgi 1984; Elmer et al. 1990; Petrov et al. 1998; Ho 2005)
correlating the input process parameters with the outputs or
responses. The analytical models require exact distribution
of the heat flux, power density and physical properties of
the material at elevated temperatures, which are difficult and
time consuming to measure. Moreover, reverse mapping of
the EBW process might not be always possible to carry out
using analytical models. In such situations, the models are
developed based on the outcomes of experiments performed
according to some statistical designs and then analyzed by
regression methods to predict the required output. Regression
analysis was used by various researchers (Yang et al. 1993;
Gunaraj and Murugan 1999a, b, 2000a, b; Ganjigatti et al.
2007) for modeling several conventional welding phenom-
ena. Modern welding processes, such as laser beam welding
(LBW) and EBW were also modeled using the regression
analysis. Benyounis et al. (2005) utilized Response Surface
Methodology (RSM) to predict weld profile in laser welding
of medium carbon steel. Koleva (2001, 2005) used statistical
regression analysis to develop the correlation of input para-
meters with the weld parameters for electron beam welding
of austenitic stainless steel. Dey et al. (2009) used non-linear
regression analysis to predict the bead profile in bead-on-
plate welding of stainless steel (SS) 304 plates using electron
beam.

Several attempts were made to carry out input-output mod-
eling of various welding processes in forward direction using
statistical regression analysis. However, the regression analy-
sis is carried out response-wise and consequently, may not
be able to capture the complete information of the process.
These problems could be solved using neural network-based
approaches.

Neural networks (NNs) can be used to develop knowledge-
based systems of the processes in the form of some quanti-
tative models (Bhadeshia 1999). NN-based models had been
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used extensively for the modeling of various conventional
(Nagesh and Datta 2002; Tay and Butler 1997; Kim et al.
2005, 2002; Dutta and Pratihar 2007; Mollah and Pratihar
2008; Amarnath and Pratihar 2009) and modern welding
processes. Vitek et al. (1998) used an NN to model pulsed Nd-
YAG laser welds of Al-alloy and found it to be a powerful tool
for predicting the weld pool shape characteristics. Plasma arc
welding process was modeled by Cook et al. (1995) using
an artificial neural network (ANN). They also observed that
ANNs are efficient tools for the analysis, modeling and con-
trol of this process. Olabi et al. (2006) optimized the welding
parameters in terms of ratios of penetration to fuse-zone-
width and penetration to HAZ-width for CO2 laser weld-
ing of medium carbon steel using a back-propagation neural
network (BPNN). They reported the strength of ANNs in
investigating and calculating the optimal penetration depth
and widths of fusion zone and HAZ. Okuyucu et al. (2007)
developed an ANN model for correlating the welding para-
meters and mechanical properties for friction stir welding
(FSW) process and found that the ANN calculated mechan-
ical properties were in good agreement with the measured
data. Dey et al. (2010a, b) used BPNN, genetic algorithm-
tuned neural network (GANN) and radial basis function
neural network (RBFNN) for the modeling of bead-on-plate
welding process using electron beam. Input-output relation-
ships of the butt welding of SS304 plates were investigated by
Jha et al. (2011) in both forward and reverse directions using
BPNN and GANN, and the latter was found to perform better
than the former. Huang and Kovacevic (2011) applied back-
propagation neural network and multiple regression analy-
sis for the input-output modeling of the laser beam welding
of high strength steel. The laser power, welding speed and
acoustic signatures acquired during the laser welding process
were taken as the input parameters, whereas weld depth of
penetration was considered as the output of the process. They
could predict the weld depth of penetration reasonably well
by the proposed models. Lin (2012) used the combination
of Taguchi Method, Grey relational analysis and neural net-
work for the modeling and optimization of the quality of Gas
Metal Arc (GMA) welding. The quality characteristics of the
GMA welding process was represented by a single value of
grey relational grade determined by normalizing the depth
of penetration, depth-to-width ratio and fusion area for each
specimen. A multilayer feed-forward neural network was uti-
lized for modeling the process. The quality of GMA welding
could be improved using the NN-predicted optimal parame-
ters.

The problems related to forward mapping had been solved
by various researchers, but those related to reverse mapping
did not receive much attention, till date. The main objective
of the present study is to establish input-output correlations of
the electron beam welding of reactive metal Zr-4 in both for-
ward and reverse directions in the form of knowledge-based

Fig. 1 60 kV, 8 kW Electron beam welding machine

systems, which might be required for its automation. It is
important to mention that a knowledge-based system is noth-
ing but an expert system (developed in the form of computer
program), which contains the piece of knowledge necessary
to establish input-output relationships of a process. 2 Com-
parisons of the developed knowledge-based systems were
made in terms of their performances. Three input process
parameters, namely accelerating voltage, beam current and
welding speed were considered for the electron beam weld-
ing of reactive metals. The responses of the process were
measured in terms of weld bead width, depth of the fusion
zone and micro-hardness.

The remaining part of this paper is organized as follows:
the next section deals with the descriptions of experimental
details and data collection methods adopted in the present
study. The method of analysis is explained after that. Results
are then stated and discussed. Some concluding remarks are
made and the scopes for future work are stated at the end.

Experiments and data collection

Bead-on-plate welding experiments on the reactive mate-
rial: Zr-4 were carried out using 60 kV, 8 kW Techmeta,
France make EBW machine located at Atomic Fuels Divi-
sion, Bhabha Atomic Research Centre, Trombay, Mumbai,
India. Figure 1 displays the EBW machine used for the exper-
iments, which consists of electron beam gun column, work
chamber, job handling system, job viewing system, power
supply, control panel and vacuum pumping system. The work
chamber of the EBW machine having the dimensions of
600 mm×600 mm×600 mm was evacuated to a base vac-
uum in the range of 5 × 10−5 mbar to 3 × 10−5 mbar during
the experiments using a diffusion pump assembly backed

2 Available from http://www.cs.ru.nl/~peterl/eolss.pdf.
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Table 1 Process parameters and
their ranges for electron beam
welding of Zr-4 plates

Inputs Unit Coded
symbol

Un-coded
symbol

Minimum value Mid-value Maximum value

Accelerating voltage kV X1 V 40 50 60

Beam current mA X2 I 12 16 20

Weld speed mm/min X3 S 600 750 900

by roots-rotary combination of vacuum pumps. The electron
beam gun uses indirectly heated tungsten filament as emitter.
The gun chamber vacuum of the order of 5×10−6 mbar was
achieved using turbo-molecular pump backed by a double
stage, direct drive rotary vane vacuum pump.

Design of experiments

The significant process parameters for electron beam weld-
ing of reactive metals are accelerating voltage (V), beam
current (I), weld speed (S), and ambient pressure. The ambi-
ent pressure was kept fixed in the range of 5 × 10−5 mbar
to 3 × 10−5 mbar during the experiments to avoid any con-
tamination, which may result in the increase of ductile to
brittle transition temperature. Three input process parame-
ters, namely V, I, and S were considered within their respec-
tive ranges for the electron beam bead-on-plate welding of
4.55 mm thick hot rolled Zr-4 plates (Chemical Composi-
tion: Sn = 1.10 %, Fe = 0.23 %, Cr = 0.25 %, O = 1,000 ppm,
C = 122 ppm, Zr = 98.41 %). The ranges for V, I and S were
decided through a number of trial runs. The experiments were
conducted according to central composite design (CCD)
methodology (Montgomery 1997), with three center points.
Thus, a total of 23 +2×3+3 = 17 combinations of process
parameters were considered for the experiments. The process
parameters set at their three levels are given in Table 1.

Table 2 shows the CCD matrix considered for the elec-
tron beam welding of Zr-4 plates using three factors, each
set at its three levels (i.e., two end points and a centre point).
Three replicates were considered for each combination of
input parameters, and therefore, a total of 3×17 = 51 exper-
iments were carried out.

Data collection

Experiments were carried out on Zr-4 plates using the combi-
nations of process parameter shown in Table 2. Experiments
were also performed for an additional set of eight test cases
to be used for verification of the developed models. Table 3
displays the combinations of process parameters used for the
test cases.

Bead-on-plate welding was carried out on rectangular Zr-4
plates of dimensions: 90 mm×30 mm×4.55 mm. Figure 2
displays some of the EBW bead-on-plate runs on the Zr-4

Table 2 CCD Matrix for electron beam welding of Zr-4 plates

Serial no. V (kV) I (mA) S (mm/min)

1 40 12 600

2 50 16 750

3 60 12 600

4 50 20 750

5 40 12 900

6 40 16 750

7 50 12 750

8 50 16 600

9 40 20 600

10 60 12 900

11 60 20 900

12 50 16 900

13 50 16 750

14 60 20 600

15 40 20 900

16 60 16 750

17 50 16 750

Table 3 Various combinations of process parameters used in the test
cases

Serial no. V (kV) I (mA) S (mm/min)

1 45 14 675

2 45 18 675

3 45 14 825

4 45 18 825

5 55 14 675

6 55 18 675

7 55 14 825

8 55 18 825

plates. The Zr-4 plates were cleaned and outgassed before
carrying out the bead-on-plate welding.

Cleaning of Zr-4 plates is essential, as contamination may
lead to the welds with poor strength and/or poor corrosion
resistance (Rudling et al. 2007). The Zr-4 plates were initially
cleaned using ethyl alcohol and the cleaned samples were
allowed to dry. The cleaned and dried Zr-4 plates were heated
in an oven up to 75 ◦C for about 15–20 min to outgas the
moisture adsorbed, if any, due to atmospheric humidity. The
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Fig. 2 EBW bead-on-plate runs on Zr-4 plate

dried and baked plates were allowed to cool down to room
temperature and stored in a humidity-controlled room. The
plates were then used for electron beam welding. Welding
was carried out with a sufficient inter-pass time, so that the
plate comes down to room temperature before the subsequent
passes. The EB welded specimens were cut at a minimum
distance of 10mm form the edge for preparing cylindrical
mounts to be utilized for further analysis. The cylindrical
mounts of diameter φ25 mm×25 mm (height) were prepared
using cold setting resin. The grinding and polishing of all the
mounts were carried out using France make Mecatech 334
polishing machine. The polished samples were etched using
chemical solution of H2O:HNO3:HF with a volumetric ratio
of 50:45:5.

The output parameters, that is, bead width (BW), bead
penetration (BP), and Vickers micro-hardness (Hv) were
determined for all the experimental runs and test cases. The
bead profiles for all the samples were measured and recorded
after taking the images of all the etched samples on Leica
make optical microscope. Figure 3 shows the photograph
of the fusion zone profile for one of the EB welded sam-
ples. The microstructures of fusion zone for some of the EB
welded samples of Zr-4 are shown in the “Appendix”. The
spherical shapes of the fusion zone indicate that a conduc-
tion mode of welding was pre-dominant in the EB welding of
Zr-4 for the selected ranges of accelerating voltage and beam
current.

The micro-hardness values for all the samples were deter-
mined along the horizontal direction (across the parent metal,
HAZ and fusion zone) at a depth of half of the bead pene-
tration measured from the top. These values were collected
using Omni Tech Micro-hardness testing machine using a
load of 300 g at room temperature. These values were mea-
sured at a separation of 500μm and the average value was
used for the modeling and analysis purpose.

Figure 4 displays the variations of micro-hardness mea-
sured in a horizontal direction (at a particular depth from the
top surface) across the parent metal, HAZ and fusion zone
of the weld-bead. The average hardness of the fusion zone

Fig. 3 Photograph of the fusion zone profile of 4.55 mm thick Zircaloy-
4 plate welded using electron beam
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Fig. 4 Variations of micro-hardness across the parent metal, HAZ and
fusion zone

was found to be around 9.29 % higher than that of the parent
metal and heat affected zone.

Methods of analysis

The models were developed to establish input-output cor-
relations of the electron beam welding of Zr-4 plates using
non-linear statistical regression analysis and neural networks
as discussed below.

Forward mapping

Electron beam welding process was modeled in the for-
ward direction using non-linear statistical regression analy-
sis and three NN-based algorithms to predict the output(s)
or response(s) for a given set of input parameters. Three
input parameters, namely accelerating voltage, beam cur-
rent and welding speed were considered for the model.
Three responses, namely weld bead width, bead penetra-
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tion and micro-hardness were predicted as the outputs of
the model.

Approach 1: Statistical Regression Analysis
A non-linear statistical regression analysis of the data

obtained through the experimental runs was carried out
using Minitab14 software3 to establish the input-output rela-
tionships. Non-linear regression equation contained a con-
stant, some linear, squared and interaction terms. The val-
ues of the constant and coefficients of other terms were
determined through a statistical regression analysis by min-
imizing the error in predictions through the least square
technique. Interested readers may refer to Montgomery
(1997) for a detailed description of this statistical regression
analysis.

Approach 2: Back-Propagation Neural Network
The developed BPNN model consisted of an input layer

with three neurons corresponding to the three input parame-
ters, a hidden layer and an output layer with three neurons cor-
responding to the three outputs. The hidden layer contained
13 neurons, as it was decided through a detailed paramet-
ric study. The initial values of connecting weights between
the input and hidden layers and those between the hidden
and output layers were generated at random. A mean square
deviation (MSD) in predictions of the output was minimized
in order to obtain the optimal neural network. The MSD in
prediction was calculated as follows:

M SD = 1

L

L∑

l=1

1

M

M∑

m=1

1

2

(
T l

om − Ol
om

)2
, (1)

where L denotes the number of training cases, M repre-
sents the number of outputs, T l

om and Ol
om indicate the tar-

get and predicted outputs, respectively, of mth neuron lying
on the output layer corresponding to lth training case. The
schematic view of the NN is shown in Fig. 5.

A batch mode of training was adopted to train the net-
work using one thousand training cases. The training cases
consisted of 51 scenarios obtained through the real exper-
iments and 949 scenarios generated artificially using the
regression equations. The connecting weights: [V ] and [W ]
were updated to reduce the MSD during the training of the
network by following the back-propagation algorithm, which
works based on the steepest descent method. Interested read-
ers may refer to Pratihar (2008) for a detailed description of
the back-propagation algorithm.

Approach 3: Genetic Algorithm-Tuned Neural Network
Figure 6 shows schematic view of a GANN system

(Pratihar 2008), in which the back-propagation algorithm of

3 Available from http://www.minitab.com.

approach 2 was replaced by a genetic algorithm (GA) in order
to evolve an optimal NN system through the batch mode of
training. In this model, the NN parameters, such as connect-
ing weights, bias values and transfer functions were opti-
mized using a GA. Each variable of the NN was represented
using five bits. The optimum number of hidden neurons was
turned out to be equal to 12 through a detailed parametric
study. The GA-string looked as follows (for 3 input, 12 hid-
den and 3 output neurons):

10111︸ ︷︷ ︸
v11

. . .. . .. . .. . .. . . 10101︸ ︷︷ ︸
v312

01110︸ ︷︷ ︸
w11

. . .. . .. . .. . .. . .. . .

10101︸ ︷︷ ︸
w123

10001︸ ︷︷ ︸
ah

01110︸ ︷︷ ︸
ao

10111︸ ︷︷ ︸
b

In the above string, v represents connecting weights
between input and hidden layers, w denotes connecting
weights between the hidden and output layers, ah and ao

denote the coefficients of log-sigmoid transfer functions for
the hidden and output layers, respectively and b represents
the bias value. The fitness of the GA-string was calculated
using Eq. (1). The GA tried to evolve an optimized NN system
through a number of generations using the fitness informa-
tion calculated on some training scenarios.

Approach 4: Particle Swarm Optimization Algorithm-
Tuned Neural Network (PSONN)

In this approach, Particle Swarm Optimization (PSO)
algorithm was used to tune the parameters of the NN. The
PSO algorithm was proposed by Kennedy and Eberhart
(1995) for solving optimization problems. The schematic
view of a PSONN system is shown in Fig. 7. The variables,
which are required to be optimized, form the population of
solutions and are denoted by the particles. Each particle has
its own position and velocity to move around the search
space. The position of a particle represents a possible solu-
tion to the optimization problem and the velocity is directed
towards the new and better position. The velocity and posi-
tion of the i th particle and its dth dimension are changed
according to the following equations:

vid(t + 1) = wvid(t) + c1 R1(Pbest − xid(t))

+c2 R2(Gbest − xid(t)), (2)

xid(t + 1) = xid(t) + vid(t + 1), (3)

where vid(t) represents velocity of the particle at t th iteration,
xid(t) indicates its position at tth iteration t, Pbest is the best
previous position of the particle, Gbest denotes the globally
best previous position of the particle, w indicates the inertia
weight, c1 and c2 represent the cognitive and confidence coef-
ficients, respectively, R1 and R2 are the two random numbers
lying in the range of (0, 1). The fitness of the PSO particle
was calculated using Eq. (1).
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Fig. 5 A schematic view of NN
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Fig. 6 A schematic view of GA-NN system (reproduced from the second author’s textbook Soft Computing © 2008 Narosa Publishing House,
New Delhi Pratihar 2008)
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Fig. 7 Flow-chart of PSONN algorithm

It is to be noted that the performance of PSO algorithm
depends on its parameters, such as w, c1, c2. An optimal
NN was evolved by the PSO algorithm through a number of
iterations.

Reverse mapping

The reverse mapping of this process was done using BPNN,
GANN and PSONN-based approaches. Three desired
responses, such as bead width, bead penetration and micro-
hardness were fed as inputs to the model and the outputs
were obtained in terms of the process parameters to be set
to achieve the desired set of responses. The mapping of
the process in reverse direction might be required for its
automation.

Results and discussion

The input-output models were developed as discussed ear-
lier and the test cases were passed through it to check the
adequacy of the model.

Results of forward mapping

Results of Approach 1

The input-output correlations were developed in the forward
direction using regression analysis and significance test was
conducted to see the effect of process parameters on the
responses. The regression analysis was carried out at a con-
fidence level of 95 %. The bead-geometric parameters and
micro-hardness were represented as the functions of input
process parameters as given below.
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Weld bead width (BW) Bead Width (BW) was expressed
in coded form (refer to Eq. 4) as a non-linear function of
process parameters, namely accelerating voltage (V), beam
current (I) and welding speed (S), represented by X1, X2

and X3, respectively by using statistical regression analysis,
which works based on the principle of the least square error
minimization.

BWcoded = 3.81227 + 0.37183X1 + 0.61723X2

−0.33920X3 + 0.11886X2
1 − 0.06781X2

2

+0.18536X2
3 + 0.00892X1 X2

+0.02475X1 X3 − 0.07742X2 X3 (4)

The terms: X1, X2, X3, and X2
3 were found to have signifi-

cant contributions towards BW. Weld bead width was seen
to have non-linear relationship with the welding speed (X3).
The bead width was found to vary linearly with accelerating
voltage (X1) and beam current (X2) considered separately.
During the significance test, the coefficient of correlation had
turned out to be equal to 0.925 for bead width, which showed
that the model was statistically adequate to make further pre-
dictions. The adequacy of the model was further confirmed
through the analysis of variance (ANOVA). The un-coded
form of BW was found to be as follows:

BWun-coded = 6.94930 − 0.0976151V + 0.375553I

−0.0133790S + 0.00118857V 2

−0.00423812I 2 + 8.23808E − 06S2

+0.000222917V I + 1.65E − 05V S

−1.29028E − 04I S (5)

Figure 8 displays the surface plots of BW with accelerat-
ing voltage, beam current and welding speed. The bead width
was seen to increase with increasing beam current and accel-
erating voltage. Moreover, it decreased with the increasing
welding speed. However, the rate of increase in bead width
due to the increase in beam current was more than that due
to the increase in accelerating voltage. It can be concluded
that the welding should be carried out at low beam current
and accelerating voltage and high welding speed to obtain
small bead width. If the power is required to be increased for
obtaining the higher depth of penetration, then it should be
increased by increasing the accelerating voltage rather than
increasing the beam current to obtain small bead width.

The performance of the developed model was tested on
eight test cases. The percent deviations in predictions of bead
width are shown in Fig. 9. The maximum value of percent
deviation in predictions of BW was found to be equal to
8.67 %. The average absolute percent deviation in predictions
of BW had turned out to be equal to 3.07.

Weld bead penetration (BP) The regression analysis was car-
ried out similarly for the BP and the terms:X1, X2, X3, X2

2,

Fig. 8 Surface plots of BW with V, I and S

X1 X2, and X2 X3 were found to be significant. The beam cur-
rent was seen to have non-linear relationship with BP. The BP
had shown more or less linear relationship with accelerating
voltage and welding speed. The combined effects of X1 X2

(i.e., VI) and X2 X3 (i.e., IS) were also found to be signifi-
cant. The coefficient of correlation was found to be equal to
0.983 for BP. The model was statistically adequate to make
further predictions.

The un-coded form of BP was found to be as follows:

B Pun-coded = 1.16281 + 0.0268733V − 0.220858I

−1.57115E − 04S − 5.82958E − 04V 2

+0.0129190I 2 + 9.07668E − 09S2

+0.00368646V I + 2.90833E − 05V S

−1.95764E − 04I S (6)
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Fig. 9 Percent deviation in
predictions of BW for the test
cases

Fig. 10 Surface plots of BP with V, I and S

The surface plots of BP with accelerating voltage, beam
current and welding speed are shown in Fig. 10. The bead
penetration was found to increase with the increasing acceler-
ating voltage and beam current. The BP could decrease with
the high value of welding speed. Thus, the welding should

be done at high accelerating voltage and beam current, but at
low welding speed to obtain the high depth of penetration.

The performance of the developed model was tested on
eight test cases. Figure 11 displays the values of percent devi-
ations in predictions of BP for the eight test cases. The max-
imum value of percent deviation in predictions of BP was
found to be equal to 9.27 %. The average absolute percent
deviation in predictions of BP was seen to be equal to 4.06.

Micro hardness (Hv) of the weld zone It was observed from
the regression analysis for Hv that X1, X2, X3, and X2

1 were
significant. The accelerating voltage was found to have non-
linear relationship with Hv. Both the beam current and weld
speed showed more or less linear relationships with Hv. The
coefficient of correlation for the micro-hardness was obtained
as 0.774. The adequacy of the model was also checked
through the ANOVA test.

The un-coded form of Hv was found to be as follows:

H Vun-coded = −3.94433 + 10.6468V − 6.93296I

+0.0501945S−0.10165V 2−0.0156963I 2

−3.67100E −05S2+0.0150125V I

−5.72889E −04V S+0.00451125I S (7)

Figure 12 shows the surface plots of micro-hardness (Hv)
with accelerating voltage, beam current and welding speed.
The Hv was seen to decrease with the beam current but
increase with the weld speed. The increase in heat input
decreases the cooling rate (Kannatey 2009), which in turn
increases the grain size resulting in lower strength or micro-
hardness values. The rate of cooling increases with the
increase in welding speed (Kannatey 2009), which may be
responsible for decrease in grain size and hence, increase in
micro-hardness. The micro-hardness was found to initially
increase with the accelerating voltage, but further increase
in accelerating voltage resulted in a decrease of the micro-
hardness. The increase in accelerating voltage increases the
energy level of the electron and the centre-line tempera-
ture of the weld pool increases. This results in the increase
in the cooling rate, which is proportional to the square of
the temperature rise above the initial temperature (Kannatey
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Fig. 11 Percent deviation in
predictions of BP for the test
cases

Fig. 12 Surface plots of Hv with V, I and S

2009). Therefore, the hardness values increase initially with
an increase in the accelerating voltage. A further increase
in the accelerating voltage results in the decrease of the
focal spot diameter, which increases the incident power den-
sity. The increase in power density increases the heat input

and decreases the cooling rate. The decrease in cooling rate
decreases the hardness value. Therefore, welding should be
carried out at low beam current, medium accelerating voltage
and high welding speed to obtain high micro-hardness and
hence, high yield strength.

Figure 13 displays the values of percent deviations in pre-
dictions of Hv for the eight test cases. The maximum value
of percent deviation in predictions of Hv was found to be
equal to −9.69 %. The average absolute percent deviation in
predictions of Hv had turned out to be equal to 6.79.

Results of Approach 2

A detailed parametric study was carried out to obtain opti-
mal set of parameters for the developed BPNN model.
Figure 14 shows the results of parametric study and the
obtained optimized parameters for the BPNN model are dis-
played in Table 4.

The performance of the developed model was checked by
passing the test cases through it. The values of percent devi-
ation in prediction of the output parameters were recorded
(refer to Fig. 15). Table 5 displays the average absolute
percent deviation in predictions of different responses as
obtained by this approach.

Results of Approach 3

The appropriate number of hidden neurons, and GA-para-
meters like population size, probability of mutation (pm) and
maximum number of generations (Genmax), were obtained
through a systematic parametric study, as shown in Fig. 16.

The optimal number of hidden neurons for the GANN
model was obtained as 12, and the GA parameters, such
as population size, maximum generations and probability of
mutations were found to be equal to 200, 700 and 0.000095
respectively. The performance of the developed model was
tested on eight test cases. The values of percent deviation
in predictions of the responses are shown in Fig. 15. Table 5
shows the values of average absolute percent deviation in pre-
dictions of different responses as obtained by this approach.
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Fig. 13 Percent deviation in
predictions of Hv for the test
cases

Results of Approach 4

The maximum number of runs for the PSONN-based model
had been kept fixed to 50 after a few trial runs. The number of
neurons in the hidden layer and that of executions or iterations
in each run were kept equal to 30 and 15,000, respectively.
The inertia weight w was determined as w = 1/(ln2) and the
cognitive and confidence coefficients were set as c1 = c2 =
(0.5 + ln2) . Figure 17 shows the details of the parametric
study carried out for the determination of number of hidden
neurons and that of executions in each run.

The tested cases were passed through the developed
PSONN model to check its performance. The values of
percent deviation in prediction of different responses as
obtained by this approach are displayed in Fig. 15. The aver-
age absolute percent deviations in prediction of different
responses are displayed in Table 5.

Summary

All the developed four approaches could predict the responses
reasonably well (within 10 %). However, the performance of
BPNN was found to be slightly better than that of other NN-
based approaches for two responses out of three. It might
happen because their performances are generally found to be
data-dependent. Moreover, the results of BPNN were seen to
be comparable with those of regression analysis. Therefore,
either the BPNN or regression analysis was recommended
for the forward mapping of this process.

Results of reverse mapping

Reverse mapping of this welding process was also carried
out using three NN-based approaches to predict the required
process parameters in order to obtain a desired set of outputs
or responses. Results of the reverse mapping are discussed
below.

Results of Approach 1 (BPNN approach)

The optimal set of parameters for the BPNN model used for
the reverse mapping are obtained through a systematic study,
as shown in Table 6.

The test cases were passed through the optimized BPNN to
check its performance for predicting the process parameters.
The values of percent deviation in predictions of the process
parameters are shown in Fig. 18.

Results of Approach 2 (GANN approach)

The parametric study of the GANN model was carried out
to determine the set of optimal parameters corresponding to
the best fitness. The optimal number of neurons in the hidden
layer, population size, maximum number of generations and
probability of mutation were found to be equal to 27, 50, 100
and 0.00095, respectively, for the developed network. The
adequacy of the developed model was tested on eight test
cases. The values of percent deviation in predictions of the
process parameters are shown in Fig. 18.

Results of Approach 3 (PSONN approach)

The detailed parametric study was conducted to obtain opti-
mum number of neurons in the hidden layer and number of
executions or iterations in each run for the PSONN model.
The optimum number of neurons of the hidden layer turned
out to be equal to 28 and the optimum number of executions
or iterations in each run was determined as 15,000. The per-
formance of the tuned model was checked by passing through
the test cases. Figure 18 shows the values of percent devia-
tions in predictions of the process parameters corresponding
to the set of desired outputs or responses.

Table 7 displays the values of average absolute per-
cent deviation in predictions of different process parameters
obtained using the BPNN, GANN and PSONN-based reverse
models.
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Fig. 14 Results of the parametric study conducted for the BPNN (a–g)
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Table 4 Optimized parameters
for BPNN-based forward model Sr. no. Parameters Symbol Value

1. Number of neurons of the hidden layer Hn 13
2. Coefficients of transfer functions

For hidden layer ah 5.0
For output layer ao 5.0

3. Learning rate between
Input and hidden layers λh 0.640
Hidden and output layers λo 0.735

4. Momentum constant α 0.916
5. Bias b 0.000009
6. Maximum number of iterations z 10,000

Fig. 15 Comparisons of
different approaches in terms of
percent deviation in predictions
of various responses using
regression analysis, BPNN,
GANN and PSONN-based
forward models (a–c)
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Table 5 Average absolute
percent deviation in predictions
of different responses using
BPNN, GANN and
PSONN-based forward models

Sr. no. Output or response Average
absolute %
deviation
using regres-
sion analysis

Average
absolute %
deviation
using BPNN
model

Average
absolute %
deviation
using GANN
model

Average
absolute %
deviation
using PSONN
model

1. Bead Width, mm 3.07 2.91 5.98 5.23

2. Bead Penetration, mm 4.06 4.39 9.70 7.74

3. Vickers micro-hardness, VHN 6.79 6.85 5.29 4.34
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Fig. 16 Results of the parametric study of the GANN approach (a–d)
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Fig. 17 Results of the parametric study of PSO-NN (a, b)
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Table 6 Optimized parameters
for BPNN-based reverse model Sr. no. Parameters Symbol Value

1. Number of neurons of the hidden layer Hn 10

2. Coefficient of transfer function

For hidden layer, ah 6.5

For output layer ao 2.5

3. Learning rate between

Input and hidden layers, λh 0.64

Hidden and output layers λo 0.20

4. Momentum constant α 0.25

5. Bias b 0.000009

6. Maximum number of iterations z 10,000

Fig. 18 Comparisons of
different approaches in terms of
percent deviation in predictions
of various process parameters
using BPNN, GANN and
PSONN-based reverse models
(a–c)
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Table 7 Average absolute %
deviation in predictions of
different process parameters
using BPNN, GANN and
PSONN-based models for
reverse mapping

Sr. no. Process parameters Average
absolute %
deviation
using BPNN
model

Average
absolute %
deviation
using GANN
model

Average
absolute %
deviation
using PSONN
model

1. Accelerating voltage 6.75 10.46 9.32
2. Beam current 4.94 5.64 11.97
3. Weld speed 7.93 11.31 7.46

Summary

The performance of the BPNN and PSONN were found
to be better than that of the GANN in most of the
cases but not all. This indicates that the performances
of these approaches are data-dependent. Although all the
three NN-based approaches could tackle the problem of
reverse mapping of this process, BPNN was recommended
finally based on its performance in terms of accuracy in
predictions.

Comparisons

Form the above study, it was observed that NN-based
approaches could model the input-output relationships of this
process accurately in both forward and reverse directions.
The training of the NN-based approaches was done off-line
and once the training was over, these approaches could yield
the output(s) for a set of inputs within the fraction of a sec-
ond in a P-IV PC. Thus, these approaches might be suitable
for on-line implementations. Regression analysis carried out
using Minitab-14 software, also did not take more than a
second in the said PC. In order to capture the information of
the process completely, all the outputs were to be modeled
simultaneously, which could be done using the NN-based
approaches. On the other hand, statistical regression analy-
sis is conducted response-wise. It is important to mention
that in order to automate any process, its input-output rela-
tionships are to be known accurately in both the forward
and reverse directions on-line and NN-based approaches
have the potential to serve this purpose. As the BPNN
could perform better than other two NN-based approaches
in case of both forward and reverse mappings, it was
finally recommended for the input-output modeling of this
process.

Concluding remarks

The electron beam welding of the reactive metal and its input-
output modeling were carried out successfully in both for-
ward and reverse directions. In this study, knowledge-based

systems were developed using neural networks to establish
the input-output relationships of this process. The following
conclusions were drawn from this study.

• The forward models developed using regression analysis,
BPNN, GANN and PSONN were found to be successful
in predicting the responses in terms of bead width, bead
penetration and micro-hardness of the fusion zone for a
given set of process parameters.

• The reverse models developed using BPNN, GANN and
PSONN were also seen to be efficient for the prediction
of required process parameters, namely accelerating volt-
age, beam current and welding speed in order to obtain a
desired set of outputs or responses.

• BPNN had been recommended for conducting both the
forward and reverse mappings of this process.

• Knowledge-based systems developed using the neural
networks could solve the problems of both forward and
reverse mappings efficiently. The training of the neural
networks-based approaches was done off-line and once
the training was over, these approaches could yield the
output(s) for a set of inputs within the fraction of a second
in a P-IV PC. Thus, these approaches might be suitable
for on-line implementations. Regression analysis carried
out using Minitab-14 software, also did not take more
than a second in the said PC. In order to capture the
dynamics of the process completely, all the outputs are
to be modeled simultaneously, which could be done using
neural networks. On the other hand, statistical regression
analysis was conducted response-wise. The developed
neural networks-based approaches were able to make on-
line predictions of the input-output relationships of the
process accurately in both forward and reverse directions,
which might be required for its automation.

• The welding should be carried out at low beam current
and accelerating voltage and high welding speed to obtain
low bead width.

• To ensure a high depth of penetration, welding is to be
conducted at high accelerating voltage and beam current
but at low welding speed.

• The high value of micro-hardness was obtained for the
low beam current, medium accelerating voltage and high
welding speed.
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Scope for future work

Bead-on-plate welding experiment was carried out for the
electron beam welding of Zircaloy-4 material. Actual butt
welding will be tried for Zr-4 and other reactive metals, in
future. The input-output modeling of the process may be
carried out using other soft computing techniques.
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