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Abstract Due to increasing environmental concerns, man-
ufacturers are forced to take back their products at the end
of products’ useful functional life. Manufacturers explore
various options including disassembly operations to recover
components and subassemblies for reuse, remanufacture, and
recycle to extend the life of materials in use and cut down
the disposal volume. However, disassembly operations are
problematic due to high degree of uncertainty associated
with the quality and configuration of product returns. In this
research we address the disassembly line balancing problem
(DLBP) using a Monte-Carlo based reinforcement learning
technique. This reinforcement learning approach is tailored
fit to the underlying dynamics of a DLBP. The research results
indicate that the reinforcement learning based method is able
to perform effectively, even on a complex large scale prob-
lem, within a reasonable amount of computational time. The
proposed method performed on par or better than the bench-
mark methods for solving DLBP reported in the literature.
Unlike other methods which are usually limited determinis-
tic environments, the reinforcement learning based method
is able to operate in deterministic as well as stochastic envi-
ronments.
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Introduction

Rising environmental concerns and depletion of the Earth’s
natural resources have forced governments of the industrial-
ized countries to take preventative measures. These govern-
ments are pushing original equipment manufacturers (OEM)
to design environmentally friendly products and engage
in environmentally friendly practices to reduce the effect
of products on the environment. Products, nowadays, are
returned to OEMs at the end of their lifecycle. Once the end-
of-life (EOL) products are sent back by customers, OEMs
either send these products to third party product recovery
facilities (PRF) or explore various EOL strategies themselves
to get the most benefit out of these EOL products and min-
imize their adverse impact on the environment. In Europe,
OEMs carry out product recovery operations even though
no profit is realized. The European Union (EU) governments
force European manufacturers to reclaim their products at the
end of products’ functional life and engage in EOL activities
to minimize the damage done to the environment by the EOL
products (Lambert and Gupta 2005a,b; Gupta and Lambert
2008; McGovern and Gupta 2011). The scenario is slightly
different with the US based OEMs. Manufacturers in the US
are reluctant to accept the extended product responsibility
because legislations in the US

Returned products arrive at the PRFs (or at OEMs) in
a variety of conditions. Depending on the condition of a
returned product different product recovery operations are
utilized to extract the most benefit out of the returned prod-
ucts. Recycling is a viable option if the returned products
contain valuable metals such as gold (Au) and platinum (Pt).
If the returned products are in a good condition in terms of
quality and functionality (which means they are not worn out,
or they were used properly during their functional lifetimes)
then they are either put through various remanufacturing
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processes to bring them back to like-new conditions or disas-
sembled for component recovery purposes. The disassembly
of EOL products and component recovery lead to signifi-
cant environmental benefits. The consumption of the Earth’s
natural resources to manufacture brand new components is
reduced by re-use of recovered components; this practice also
cuts down energy emissions due to incineration slows down
piling up of landfills due to excessive disposal. Disposal and
incineration of EOL products are always an option; however
OEMs and PRFs consider these options viable only if the
returned products are beyond redemption and pursuing other
recovery strategies are economically infeasible (Banda and
Zeid 2006).

Current literature on reverse logistics considers disas-
sembly/remanufacturing as the first operational step in the
reverse logistics domain (Reveliotis 2007). The reverse logis-
tics domain can be divided into two stages: pre-disassembly/
remanufacturing and post-disassembly/remanufacturing.
There exists many scheduling, planning, and optimiza-
tion problems associated with these two interdependent
stages; however these problems are beyond the scope of
this research. Disassembly is a link between the two afore-
mentioned stages of reverse logistics. Disassembly domain
houses a large set of problems which have been studied by
researchers thoroughly over the last two decades (Tang et al.
2002; Turowski et al. 2005). In this research we address the
disassembly line balancing problem (DLBP) using a machine
learning technique known as reinforcement learning (RL)
(Aissani et al. 2011).

A typical disassembly line consists of a series of worksta-
tions oriented according to the disassembly sequence of the
returned EOL products (Gungor and Gupta 1999a,b, 2002).
DLBP tries to determine the sequence of operations that
balance the line evenly. The term “balance” is used with
varying connotation from one study to another; however gen-
erally it implies assigning disassembly operations to work-
stations to build a feasible sequence of disassembly tasks in
which the minimum number of workstations is achieved and
the variation of idle time among workstations is minimized
(Gungor and Gupta 1999a,b; Tang and MengChu 2006). The
feasibility of a sequence depends on various factors such as
precedence relations among components, demand rate for the
components, and the existence of environmentally hazardous
components in the product. Line balancing is carried out to
determine the most efficient sequence of operations to dis-
assemble a given product. We will elaborate on the different
performance measures in “Objectives formulation” section.

Literature review

Among all the problem domains investigated in the disas-
sembly domain, DLBP is the one which has been studied

the most extensively so far. DLBP is first introduced by
Gungor and Gupta (1999a,b). They introduced the disassem-
bly precedence matrix (DPM) representing the precedence
relationships among the parts; they used a priority function
in a heuristic approach to solve simple DLBPs. Researchers
discussed the complications of DLBP in the presence of task
failures and presented algorithms to solve the problem with
the goal of assigning tasks to workstations to minimize the
cost of defective parts probabilistically (Gungor et al. 2001;
Gungor and Gupta 2002). Several of the studies used exact
algorithms to find optimal sequences for EOL products with
small number of components (Lambert 2001, 2007). How-
ever, the problem space increases drastically as the number of
components in an EOL product increases (Gupta and Gungor
2001; Tang et al. 2002). Researchers soon realized that exact
algorithms were inadequate to solve larger problem instances
(Giudice and Fargione 2007; Martinez et al. 2009).

For any given product with K number of components,
the solution space for the balancing problem contains K !
different task sequences, including both feasible and infea-
sible. Exact methods are able to handle small size problems
(Lambert 2007); however, they quickly become inapplicable
as the number of components in a product increases. It is
necessary to reduce the solution space by eliminating infea-
sible sequences. Commonly precedence relations among the
components are used to reduce the size of the problem. Graph
techniques, such as petri nets or AND/OR graphs, are also
used to construct a feasible set of disassembly operation
sequences (Tadao 1989; Homem de Mello and Sanderson
1990). If there are other constraining criteria specific to the
problem under consideration, they can be applied for further
reduction of the solution space.

The aforementioned challenge with the increased prob-
lem size has led researchers to focus on heuristic approaches
(Zeid et al. 1997; Pan and Zeid 2001; Veerakamolmal and
Gupta 2002). A balancing function and associated four objec-
tive functions for DLBP are suggested by McGovern and
Gupta (Gupta et al. 2004; McGovern and Gupta 2007a,b).
Later several heuristic approaches were applied to address
DLBP: two-phase approach (Greedy/2-Opt) (McGovern and
Gupta 2007a,b), ant colony optimization (ACO) (Agarwal
and Tiwari 2006; McGovern and Gupta 2007a,b), then
genetic algorithm (GA) (Kongar and Gupta 2006; McGovern
and Gupta 2007a,b; Seo et al. 2001) and H-K meta-heuristics.
These approaches are presented and compared along with a
greedy/hill-climbing heuristic hybrid (McGovern and Gupta
2004a,b; Kizilkaya and Gupta 2005; McGovern and Gupta
2011) and a novel uninformed general-purpose search heuris-
tic (McGovern and Gupta 2007a,b). GA has been used
in disassembly sequencing by Kongar and Gupta (2006)
and McGovern and Gupta (2007a,b). Altekin et al. (2008)
discussed disassembly line balancing with limited supply
and subassembly availability. They presented two DLBP
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formulations to maximize the profit per disassembly cycle
and the whole planning horizon.

DLBP, in general, does not involve a dynamic production
environment. Hence, challenges involved with this problem
domain are caused by product/component level complexities.
While sequencing disassembly tasks are carried out, solution
approaches proposed so far in the literature give priority to
early disassembly of environmentally hazardous components
and high-demand components (Gungor and Gupta 1999a,b;
Gupta and Gungor 2001; McGovern and Gupta 2007a,b).
Whether or not a component is environmentally hazardous
is usually known in advance. However, it is a known fact that
seasonal trends can affect the demand for a certain compo-
nent. Hence, demand for individual components in a certain
type of product is stochastic yet all the solution method-
ologies proposed so far treat demands deterministically. For
the sake of practicality and generality, this issue has been
addressed in this research.

Problem description

DLBP is a pre-operational design issue. Criteria applied or,
more importantly, solution methodologies implemented to
address DLBP vary from situation to situation. Our research
treats DLBP as a stochastic problem. As such, we introduce a
new methodology based on the reinforcement learning (RL)
algorithm to solve stochastic DLBP problems. Another added
benefit to our new methodology is that it can handle the large
solution spaces when products have many components.

We apply our methodology to both small and big products.
We aim to determine a balanced order of disassembly opera-
tions for desktop computers and cellular phones which have
eight and twenty five salvageable components respectively.
Information regarding individual task times and workstation
cycle time as well as other related data such as number of
demands for individual components and hazardous compo-
nent information are obtained from earlier studies (Gupta
et al. 2004; Lambert and Gupta 2005a,b; McGovern and
Gupta 2007a,b). Before addressing the challenges that arise
due to the problem size, we state the main objectives (targets)
of our research:

1. Apply the RL techniques to DLBP to bring in a new
approach to the problem domain which has been dom-
inated by heuristic approaches. The RL techniques are
very powerful especially in dynamic environments which
require a high level of adaptation.

2. Investigate the effectiveness and efficiency of the RL
techniques by comparing their performance to other
existing solution methodologies.

3. Incorporate stochastic element(s) of the DLBP domain
to assure that RL approach is practical enough to handle
the dynamic elements of the environment.

We make the following assumptions in our solution method-
ology:

• Only a single product type is disassembled
• Incoming products have an identical structure
• The disassembly precedence relations are known
• Task times are known in advance
• Variation of a particular task time is considered negligible

hence the cycle time is treated constant
• Product conditions are not taken into account
• Hazardous components are identified in advance
• Initially, demands for components are assumed to be

known in advance for benchmarking purposes; this
assumption is once the procedure is verified

There are certain elements in the disassembly domain which
make solutions to DLBP more complicated compared to
those of their assembly counterparts. Disassembly line design
issues and operational issues are often tied to a high level of
uncertainty. This uncertainty usually stems from products,
demands or the line itself. The nature and the implications
of these uncertainties are beyond the scope of this work. The
reader is referred to Gungor and Gupta (1999a,b) (Gupta
and Gungor 2001) for an extensive review of complications
associated with disassembly lines and for the discussion on
factors that make a disassembly line more complex than its
assembly counterparts. In this research, we are concerned
with uncertainty that stems from a single source: demand
fluctuations.

Reinforcement learning framework

RL stems from the idea of learning by interacting. The goal
is to learn what to do (mapping situations to actions) through
experience without relying on anything but the reinforcement
received from the environment (Watkins 1989; Watkins and
Dayan 1992; Russell and Norvig 1995; Sutton and Barto
1998; Tewari 2007). In its simplest form RL framework
works according to the following logic: at any given time
t , the decision making agent (DMA) perceives the state of
the environment and executes an action; the environment
responds to this action by generating a numerical signal
called reward/punishment/reinforcement (Sutton and Barto
1998). It is through this signal the DMA understand whether
or not it has made a good decision. Figure 1 illustrates the
components of an RL framework. The implementation of
RL techniques begins with structuring the state space, action
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Fig. 1 RL framework

space, and reinforcement signal according to the problem
under focus.

State representation captures the necessary information
about the environment and communicates this information
to the DMA. Action space contains a set of actions which are
available to the DMA at any given time t . The DMA selects
actions based on action-selection methodologies. When the
DMA selects and executes an action the state of the envi-
ronment changes. The DMA perceives the consequences of
that action through the changes in the state. Agent receives a
reward (reinforcement) from the environment, based on the
merit of this new state. In turn, reinforcement signal helps
the DMA evaluate the strength of immediate actions.

The RL logic is mapped to values. The mapping lets DMA
track the long term performance of its actions selected in
various states. Value mapping is achieved by making use
of several different functions. In this research we utilize the
Action-Value (state-action value) function, or in RL jargon
Q-values, to facilitate the learning. For a set of finite discrete
states, s ∈ S, and a set of discrete actions, a ∈ A(s), the
action-value function is denoted as follows:

Qπ (s, a) = Eπ {Rt |St = s, at = a}
= Eπ

{∑∞
k=0

γ krt+k+1|St = s, at = a
}

(1)

where γ denotes the discount rate. Discount rate takes a value
in the 0 < γ ≤ 1 range; it represents the present value of
rewards received in future states. The function given above
represents the value of taking action a in state s under a pol-
icy π Qπ (s, a) denotes the expected reward received starting
from s, taking action a, and thereafter following policy π . A
policy, π , is a mapping from state s ∈ S and action a ∈ A(s)
to the probability π(s, a). Simply put, policy is the probabil-
ity of selecting an action a in a given state, s. RL procedures
commonly defined as on-policy or off-policy depending on
whether or not they strictly follow a policy or not.

RL algorithms are categorized into three major families
of algorithms, namely, dynamic programming, Monte-Carlo,
and temporal difference (TD-learning). For further informa-
tion on specific strength and weaknesses of each family of

algorithms the readers can refer to literature (Russell and
Norvig 1995; Sutton and Barto 1998) for an overview of
reinforcement learning techniques.

In this paper we utilize the RL framework for the following
reasons:

1. RL algorithms are proven to yield optimal results when
applied to Markov Decision Problems. Two problems we
focus in this paper are modeled as Markov Decision Prob-
lems with appropriate state, action, and reward represen-
tations.

2. We expect that RL approach to yield results that are
at least as good as those given by the existing solution
methodologies. We support this claim by benchmarking
our RL approach to existing solution approaches. The
results are presented in section “Results and analysis”.

3. Our goal is to present a solution approach that is generic
and applicable to variants of DLBP. Also, the Monte-
Carlo RL solution framework we adopted does not
require unrealistic inputs such as transition probabilities
and expected immediate reward.

Objectives formulation

The proper metrics need to be identified in order to facili-
tate and enhance the learning (via Reinforcement signal) of
the RL approach. We utilize the balance metrics developed
by McGovern and Gupta (2007a,b) because the functions
they developed capture the goal statement discussed in sec-
tion “Introduction”. We identify and formulate the following
objectives to achieve our stated goal:

1. Minimize the number of work stations for a given cycle
time.

2. Balance the disassembly line (minimize the variation of
the station idle times throughout the system).

3. Remove hazardous components early in the disassembly
sequence.

4. Remove high demand components on priority in the dis-
assembly sequence.

There exist several “balance measures” in the literature
(Gupta et al. 2004; Lambert and Gupta 2005a,b; Kongar and
Gupta 2006; Altekin et al. 2008) which are developed to bring
mathematical context to the generic goal statement discussed
in section “Introduction”. We use the following notation to
formulate the objectives:

Nw: Number of work stations required for a sequence
Tc: Cycle time
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Tsj : Time taken by the workstation j to complete assigned
tasks to it

Ck : kth component in a disassembly sequence
hCk : Binary number indicates the hazardousness of the

component; 0 if the kth component in a disassembly
sequence is non-hazardous, else 1

dCk : The demand of the kth component in a disassembly
sequence

nt : Number of times part t is assigned to the sequence
m: Number of disassembly tasks
Tri Part removal time of component i

In this research we seek to address the DLBP by utilizing RL
techniques. The formulation of four objectives is described
below:

First and Second Objectives: These objectives complement
each other. The McGovern–Gupta balance function (McGov-
ern and Gupta 2007a,b) simultaneously minimizes the num-
ber of workstations needed to operate the disassembly line
and variation of idle time among the workstations that are
utilized.

F =
Nw∑
j=1

(
Tc − Tsj

)2 (2)

Eq. (2) denotes the McGovern–Gupta balance function. The
minimization of this function gives

F1 min = min

⎧⎨
⎩

Nw∑
j=1

(
Tc − Tsj

)2

⎫⎬
⎭ (3)

The system idle time and number of workstations necessary
to run the disassembly operations are minimized so that the
line efficiency is maximized. A perfect balance is attained
when F1i = 0.

Third Objective: Remove hazardous components earlier in
the sequence to avoid contamination of the desired parts or
breakdown of disassembly workstations.

F2 min = min

{
m∑

k=1

(
k · hCk

)}
(4)

Fourth Objective: Remove high demand components as early
as possible in the sequence:

F3 min = min

{
m∑

k=1

(
k · dCk

)}
(5)

We also have the following constraints along with the afore-
mentioned objectives: (i) the precedence constraints shown
in Figs. 2 and 3; (ii) for any workstation j , the time it takes
to complete the assigned tasks cannot exceed the cycle time,
in other words, Tsj ≤ Tc; (iii) each disassembly task must

be assigned to the sequence and can be assigned only once,
which means nt = 1.

Unlike in an assembly line in which the demand occurs at
the end of the line, demand for components can arrive at any
of the workstations on a disassembly line. Each component is
associated with a demand. To enhance the recovery or recy-
cle of useful components or materials means to maximize the
disassembly line efficiency. In the disassembly sequence, a
required part may be preceded by other parts which can pro-
long the access time to the desirable part. A sequence that
removes the high demand components as early as possible
shortens the response time of obtaining the desired compo-
nents and improves the customer satisfaction.

Applying RL to DLBP

In order to define the states, actions, and reward structure
of the RL implementation we make use of the precedence
graphs between the components during the disassembly
analysis. Similarly we also use the precedence graphs to
reduce the size of the solution space. The disassembly prece-
dence graphs can be viewed as regions with m number of
destinations which are to be visited only once. The only
restriction is that a certain node x is not allowed to be vis-
ited unless all the predecessor nodes are visited prior to n.
A full sequence is formed when all the disassembly tasks
are covered in the sequence. The quality of the full sequence
is known to the DMA only when a sequence is completed.
This approach of traversing the precedence graphs is very
similar to finding a path in the well-known Traveling Sales-
man Problem (TSP). This approach allows us to address the
dimensionality issues.

The RL map traversing procedure in the present work fol-
lows an episodic execution. An episode starts when the agent
is at the beginning state, i.e. the first node in the disassembly
precedence graph and it ends once the sequence is complete
and the reward is received from the environment when the
agent has visited all the destinations in a region. So, state
space S is represented as the disassembly tasks {1, 2, . . . , m}
which are required to be completed in order to disassemble
the product. At a given time t , the agent is at a certain node
x of the disassembly precedence graph, which represents the
agent’s current state. The agent is allowed to choose from
a set of feasible actions to proceed to the next state. The
number of feasible actions depends on the agent’s current
state. In the current representation of the problem, the num-
ber of available actions can be viewed as the nodes that can
be visited in compliance with the precedence constraints. In
a practical sense, this dynamic action space approach allows
the DMA to select an action without computing the desir-
ability (or rather undesirability) of infeasible actions. The
nodes which are already visited are removed from the action
space for that episode and the remaining episodes. This is
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Fig. 2 State and action representation

Fig. 3 Reinforcement signal
propagation

done to ensure that all the disassembly tasks are put into the
sequence only once. After an action is selected, the destina-
tion node is appended to the sequence and the destination
node becomes the current state for the agent. Thus, the size
of the action space A varies depending on the current state
s. The aforementioned cycle continues, until a full sequence
is formed (meaning all the disassembly tasks are included
in the sequence). Once a full sequence is formed, the rein-
forcement signal R is received by the agent. The reward R is
computed according to the objective functions described by
Eqs. (2)–(5). Figure 2 illustrates the state and action repre-
sentation.

Once the reinforcement signal R is received, it is dis-
tributed to all the state-action pairs to update their val-
ues. Figure 3 illustrates the propagation of the reinforcement
signal.

Similar to heuristic and meta-heuristic approaches, RL
framework is also problem specific. This means the state,
action and reinforcement representations are defined accord-
ing to the problems under focus. Our framework is unique
because while the learning is achieved through sampling, the
long-term desirability of state-action pairs is computed and
updated iteratively to attain optimal decision making capabil-
ities. Therefore the computational inefficiency of sampling is
compensated by simple and more efficient update rule. The
update rule and action selection mechanisms are discussed
in section “Disassembly problems”.

Disassembly problems

We intend to apply the RL approach to two different prob-
lems. First we test the RL approach on a small scale problem
in order to verify that it is working properly. We consider a
desktop computer (PC) with eight salvageable components
for RL approach. Part removal times (Tri ) and demands for
each part are listed in Table 1. We also obtained data regard-
ing the hazardousness of each component. This information
is utilized in the analysis stage. The cycle time, Tc, for this
problem is 40 s.

Table 1 Disassembly tasks, part removal times and demand data for
PC (McGovern and Gupta 2007a,b)

Task no. Disassembly task Tri (s) Demand

1 PC top cover 14 360

2 Floppy drive 10 500

3 Hard drive 12 620

4 Back plane 18 480

5 PCI cards 23 540

6 RAM modules (2) 16 750

7 Power supply 20 295

8 Motherboard 36 720
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Fig. 4 Precedence graph for PC

The solution space for this problem is reduced signifi-
cantly due to precedence relations among the components.
In the precedence graph presented in Fig. 4, dashed lines
represent soft precedence relations between the components
whereas solid lines represent strict precedence relations that
must be followed to disassemble the PC.

In the second problem, we consider a cell phone with
twenty five salvageable components. In this case, the size of
the problem state space is dramatically larger than that of the
first one. We use this problem to test how efficiently the pro-
posed RL method handles a problem of larger scale with high
complexity. Data associated with the second problem is pre-
sented in Table 2. We should mention that the cell phone prob-
lem, unlike the PC problem, does not have a closed (exact)
solution.

Similar to the PC problem, the cell phone problem also
has precedence constraints. The corresponding precedence
graph is illustrated in Fig. 5. The nodes labeled as DS and DF
denote “disassembly start” and “disassembly finish” respec-
tively. According to the studies carried out in the literature,
the average number of components in products which are
widely used varies between 8 and 16 (Tang et al. 2002). In
the cell phone case we are dealing with a type of product that
is more complex than an average product due to the number
of component the former contains.

The implementation of the RL procedure begins with
initialization. In the beginning of the execution all the
state-action pairs (Q-values) are initialized to 0. The exe-
cution consists of three stages. During the initial stage
(first 20,000 episodes) the agent is allowed to follow a
random policy. In the second stage (20, 000th–34,000th
episode) the agent switches to soft policy during which
actions are assigned a probability of selection based on
their Q-values. In the beginning of the second stage, the
actions are still selected more or less randomly to allow
the agent to explore the solution space. As the Q-values of
state-action pairs get updated, the agent starts to behave
more greedily by selecting actions with larger Q-values at
a given state. Eventually (after the 34,000th episode), the
procedure switches to a totally greedy policy marking the
beginning of the third and final stage of the execution by
selecting the action that yields the maximum Q-value at each

Table 2 Disassembly tasks, part removal times and demand data for a
cell phone (Gupta et al. 2004)

Task no. Disassembly
task

Tri (s) Hazardousness Demand

1 Antenna 3 Yes 4

2 Battery 2 Yes 7

3 Antenna Guide 3 No 1

4 Bolt (type 1) a 10 No 1

5 Bolt (type 1) b 10 No 1

6 Bolt (type 2) 1 15 No 1

7 Bolt (type 2) 2 15 No 1

8 Bolt (type 2) 3 15 No 1

9 Bolt (type 2) 4 15 No 1

10 Clip 2 No 2

11 Rubber seal 2 No 1

12 Speaker 2 Yes 4

13 White cable 2 No 1

14 Red/blue cable 2 No 1

15 Orange cable 2 No 1

16 Metal top 2 No 1

17 Front cover 2 No 2

18 Back cover 3 No 2

19 Circuit board 18 Yes 8

20 Plastic screen 5 No 1

21 Keyboard 1 No 4

22 Liquid crystal display 5 No 6

23 Sub-keyboard 5 Yes 7

24 Internal circuit 2 No 1

25 Microphone 2 Yes 4

state. Q-values eventually converge to their respective max-
imal values and the actions that yield better results become
distinctive during the later stages of the learning process.
Thus, at this point, further exploration of the solution space
becomes unnecessary. During the second stage of the exe-
cution, the DMA utilizes the Boltzmann machine to select
action (Watkins and Dayan 1992; Sutton and Barto 1998;
Tewari 2007), i.e.

Pr(A = a|S = s) = eQt (a)/τ

∑na
b=1 eQt (a)/τ

(6)

Boltzmann machine enables the agent to assign probabilities
of selection to actions available to it at a given state s at time
t based on the state-action values. In Eq (6), τ denotes the
temperature and na denotes the total number of actions avail-
able to agent at state s. Larger numerical values are assigned
to parameter τ initially to facilitate exploration. As the learn-
ing process progresses, τ value is reduced gradually to allow
the selection of actions with larger Q-values to enable the
agent to behave more greedily. One drawback of Boltzmann
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Fig. 5 Precedence graph for
cell phone

action selection mechanism is that if the Q-values of state-
action pairs are too close to each other, it will not be able to
distinguish good actions from the inferior ones. If this is the
case, other action selection mechanisms are to be explored.
In this research, the reward mechanism allows the Boltzmann
machine to differentiate good actions from the inferior ones.

The agent does not receive a reinforcement signal imme-
diately after performing an action. Instead, the agent receives
the reinforcement signal upon the completion of a
disassembly task sequence. This event is known as delayed-
reward by the RL practitioners. In this case, the afore-
mentioned delayed-reward event occurs because the agent
cannot become aware of its performance until a full-sequence
is formed; in other words, a sequence cannot be evaluated
unless it is complete.

Reinforcement signal received by the agent needs to be a
scalar value in order to be used to update the Q-values. All of

the objectives are listed and formulated in section “Objectives
formulation” so that when sequencing of the disassembly
tasks is completed, there is a value associated with all of the
objectives listed.

In the light of the above discussion, we formulated the
reinforcement signal as follows;

R = 1

w1 F1 + w2 F2 + w3 F3
(7)

Weights w1, w2 and w3 are assigned to each objective value
(F1, F2 and F3) to account for the relative importance of the
objectives depending on the application. Also, these weights
allow us to prioritize one objective over the others during the
test runs. Therefore, assigning appropriate weights is more
of an experimental concern than scientific decision making.
Over the course of this research we determined weights in
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Fig. 6 Psuedo-code for the RL
implementation

Initialize
Number of Episodes;
Number of Training Episodes;
Number of Greedy Action-Selection Episodes;
All the entries in the Q-Table = 0;

Start Sequence
Put the starting node in to the sequence;

Execute Learning
while (sequence != complete) 
{
if(iteration number <= Training Episodes)

Select Actions randomly
if(Training Episodes < iteration number && iteration number <= Greedy switch )

Select Actions using Boltzmann-machine
if(iteration number > Greedy switch)

Select Actions using Greedy Action-Selection
update the current state as the disassembly task added to the sequence
}

Clean up
count how many times State-Action pair is visited;
Obtain the reward;
update Q-values (average the rewards obtained at a certain state by selecting a certain action);
Episode finish;
Update iteration number;
New Episode Start;

Eq. (7) based on experimental results and objective prioriti-
zation.

Once the agent receives the reinforcement signal,
Q-values of actions taken at each state are updated following
the on-policy Monte-Carlo approach (Pan and Zeid 2001). In
its simplest form, the update rule is defined by

Q (s, a)← average(Returns (s, a)) (8)

Equation (8) indicates that Q-value for state s and action
a is updated based on the average reinforcement (reward or
return) received by executing action a at state s. Monte-Carlo
approach strictly depends on sampling each state-action pair
as many times as possible. This is why for a given number
of episodes we allow the agent to follow a totally random
policy; in other words we allow the DMA to go through a
sampling period. If sampling is not sufficient, then the chance
of converging to a sub-optimal solution(s) greatly increases.
The pseudo-code shown in Fig. 6 lays out the logic that has
been discussed and described in this section.

The Monte Carlo is a model free approach which means
that the procedure can be implemented without needing
further information from the environment. However, the
number of episodes that the DMA has to run needs to be
large enough to get the agent to a state at which it can start
to distinguish good actions from the bad ones.

Results and analysis

The RL approach discussed in this paper section has been
applied to PC and cell phone problems. We will first present
the solution obtained for the PC to validate the proposed RL
approach. The cell phone problem is used to test the efficiency
of the RL approach on large and complex problems. We also
benchmark our RL approach against the existing methods
using the cell phone problem

Some of the optimal sequences obtained from solving the
PC case are listed in Table 3. The values for Objectives 1,

Table 3 Solution for the PC
disassembly Sequence Total number of

workstations
Total system
idle time

F1 F2 F3 Total objective
(F1 + F2 + F3)

1-5-3-6-2-8-7-4 4 11 33 7 19025 19065

1-5-2-6-3-8-7-4 4 11 33 7 19265 19305

1-5-2-3-6-8-7-4 4 11 33 7 19395 19435
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Table 4 Sample RL solution break down analysis for the cell phone disassembly

Sequence 2 6 7 1 8 3 9 14 13 17 21 20 22 25 5 16 15 18 19 23 24 4 10 11 12

Tri 2 15 15 3 15 3 15 2 2 2 1 5 5 2 10 2 2 3 18 15 2 10 2 2 2

Workstation 1 1 2 2 3 3 4 4 5 5 5 5 5 5 6 6 6 6 7 8 8 9 9 9 9

Station idle time (s) 1 0 0 1 1 1 0 1 2

Table 5 Performance metrics for sample RL solution

F1 F2 F3 Total objective
value

Total system
idle time

Total number
of workstations

9.0 97.0 862.0 968.0 7.0 9

Table 6 Performance metrics for sample ACO solution

Fitness 1 Fitness 2 Fitness 3 Total
fitness

Total system
idle time

Total number
of workstations

9.0 89.0 952 1050.0 7.0 9

2 and 3 listed in Table 3 are obtained by evaluating Eqs.
(2–5). The value of Objective 3 is significantly larger than
the corresponding values of Objectives 1 and 2. By utilizing
weights w1, w2 and w3 in Eq. (7) the diminishing effect of
Objective 3 value on other objective values is prevented. The
quality of the solutions obtained is equivalent in terms of
total number of workstations utilized and the distribution of
the total idle time among the workstations.

For the cell phone problem, the first group of test runs is
implemented in a deterministic environment, which means
we used the demand data utilized in earlier studies and
assumed that the quantity of demands for each component
is fixed. We will provide a breakdown analysis of a single
near optimal solution obtained in a deterministic environ-
ment. Similar analyses were carried out in earlier studies
(Gupta et al. 2004; McGovern and Gupta 2007a,b).

The solution shown in Table 4 is a sample of possible
optimal solutions we were able to obtain using the proposed
RL approach. The first row is the sequence itself; the sec-
ond row gives the task time information (also known as part
removal time, Tri ) for each disassembly task; the third row
lists workstations assigned to which respective tasks, and
lastly the fourth row lists the duration of the idle time at each
workstation. Values obtained after evaluating the objective
functions given by Eqs. (2–5) for this solution are listed in
Table 5.

To our knowledge, the best solution obtained so far for the
cell phone line balancing problem is obtained by using the
ACO meta-heuristic (McGovern and Gupta 2007a,b) with
the performance measures listed in Table 6.

As Tables 5 and 6 show, both methods yield an equivalent
solution because the number of workstations used, total sys-

960

980

1000

1020

1040

1060

1080

1100

0 10 20 30 40 50

T
o

ta
l F

it
n

es
s

Run number

Agent Fitness Values Benchmark Value

Fig. 7 A set of 40 runs and their outputs

tem idle time and variation of idle time between the work-
stations are minimized. However, the RL method yields a
better total objective value because the high demand com-
ponents are removed earlier in the sequence. Regardless, we
used the total objective value of the ACO meta-heuristic for
benchmarking purposes. One drawback of the Monte-Carlo
approach is that the agent is not always able to obtain the
best solution simply because it does not experience these
solutions sufficient number of times.

For the cell phone problem we prioritized the value of the
first objective expressed by F1, using the weights in Eq. (7).
We observed that, the total objective value varied in a range
due to the fluctuating values of the fourth objective expressed
by F3.

In Fig. 7 the total objective values obtained from 40 inde-
pendent runs are plotted. The straight line represents the
benchmark value from the ACO meta-heuristic. All of the
40 solutions obtained are equivalent to the optimal solution
in terms of the total number of workstations and the total
system idle time which are 9 and 7.0 respectively. In order to
bring some statistical validity, we carried out the confidence
interval analysis. We assume that the variation is normally
distributed, and for a 95 % confidence interval the formula-
tion is as follows:

P

(
X − 1.96

σ√
n

< μ < X + 1.96
σ√
n

)
(9)

In Eq. (9) X̄ and σ are sample mean and standard deviation
respectively and n is the population size. For this particular
case, the sample mean and standard deviation of the pop-
ulation are 1046.275 and 31.194 respectively. If we substi-
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tute these numbers into Eq. (9) the 95 % confidence interval
becomes (1041.343; 1051.207).

For many practical reasons we set the stopping criteria for
the execution as 37,000 episodes. This means, the execution
will stop immediately after the 37,000th episode whether or
not the agent has converged to optimality. If the DMA is
able to find an optimal solution earlier than 37,000 episodes,
the execution terminates earlier. The point of switch from
a soft-max to a greedy policy indicates that the procedure
has converged to optimality. We studied the average number
of iterations it takes for the DMA to converge to optimal-
ity. Figure 8 illustrates the point in execution at which the
procedure converges to optimality for 40 independent test
runs. On average the agent converges to optimality after the
completion of 31,636 episodes. This means, after following
a random policy for 20,000 episodes the procedure is able
to find the optimal solution after the completion of 11,636
episodes. However, Fig. 8 all by itself does not give a clue as
to how the DMA behaves throughout the execution period.
Thus we looked into the variation of the total objective value
throughout the span of the execution in order to gain addi-
tional insights into the agent’s behavior.

Figure 9 illustrates the total fitness values obtained by the
agent at the end of every episode during a test run, which con-
verged to optimality after 27,056th episode. Fluctuations in
the total objective value indicates that agent still behaves ran-
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Fig. 10 Effects of demand stochasticisity on total number of worksta-
tions utilized

domly for the first several thousand episodes after switching
from the random policy to a soft-max policy. Fluctuations
in the total objective value stop after the Q-values of cer-
tain state-action pairs, at a given state, become significantly
larger than the others allowing the DMA to differentiate good
actions from the inferior ones

To incorporate demand stochasticity, we allowed the
demand value, for each component, to fluctuate randomly
between 1 and 9 in each episode during the test runs. There-
fore, there is no observable demand pattern. In practice,
demand fluctuates seasonally; however while testing the RL
approach we intended to expose the agent to very extreme
demand fluctuations in order to observe its effects on opti-
mality of the solutions.

Figure 10 illustrates the effects of demand fluctuations on
the optimality of workstation utilization in 40 independent
runs made in a stochastic demand environment. The approach
converges to inferior solutions in some cases in which 10
workstations are utilized and the total system idle time and the
idle time variation among the workstations are much higher.
In a sample of 40 test runs, the agent converged to a sub-
optimal solution 8 times, which accounts for 20 % of the test
runs. The variation of the total system idle time due to demand
fluctuations is illustrated in Fig. 11. The total system idle time
is tied to the total number of workstations utilized since an
increase in the total number of workstations also suggests
that task assignment is not carried out in the most efficient
way thus resulting in high idle times at several workstations.

Just like in case of the total number of workstations uti-
lized, the agent converges to sub-optimal solutions in terms of
total system idle time in order to compensate for the extremes
of the demand fluctuations. In order to observe the effects of
the randomness of the demand accurately, we set the weights
in Eq. (7) in such a way that all the performance metrics have
the same contribution to the overall fitness. This way none of
the objectives mentioned in section “Objectives formulation”
have a higher impact on the total objective value.

We also studied the effects of stochastic demands on con-
vergence to optimality (or sub-optimality in this case). We
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observed that it took longer for the agent to converge to opti-
mality but it was able to do so more consistently after around
the same number of iterations.

Figure 12 illustrates in how many episodes the agent con-
verges to an optimal (or sub-optimal as well) solution in
40 independent runs. On average, it takes roughly 33,223
episodes for the agent to converge to optimality. This num-
ber is higher than that of the deterministic case as mentioned
earlier, but this is to be expected since it takes longer for the
agent to adapt to very sudden and drastic demand fluctua-
tions.

Discussion and future research

In this paper we addressed a small and a large problem
(PC and cell phone problems respectively) within the DLBP
domain using an RL approach. We computed 5 different per-
formance metrics which we think are important to assess
a solution to the DLBP. These metrics are: the total num-
ber of workstations, the total system idle time, the distrib-
ution of total idle time among the workstations, the early
removal of hazardous parts and the early removal of high
demand components. We analyzed the performance of the
RL approach for the two problems in both deterministic and
stochastic environments. We tested and verified that the RL
approach using the PC problem. Afterwards, the RL approach
is tested on a larger scale problem, cell phone under deter-
ministic assumptions. The approach converged to optimality
100 % of the time upon the completion of reasonable num-
ber of episodes. The results obtained when we applied RL to

both problems prove the robustness of the RL approach; it
was able to converge to optimality in both cases.

When we made some test runs in an environment in which
demands for components of the product are stochastic we
observed that our approach converged to inferior solutions
20 % of the time in terms of total number of workstations
utilized, total system idle time, and distribution of idle time
among workstations due to extreme demand fluctuations.
Another interesting observation was that it took longer for
the RL approach to converge to optimality when the number
of demands for each component was stochastic.

One important drawback of addressing problems associ-
ated with DLBP using Monte-Carlo approach is that it is
necessary to carry out the sampling; it means that unless
the solution space is sufficiently explored the RL approach
will most likely converge to a sub-optimal solution. To over-
come this issue, we first let the agent explore the solution
space by allowing it to follow a random policy for 20,000
episodes. This turned out to be a sufficient amount of explo-
ration because in both deterministic and stochastic cases the
agent was able to improve the policy and attained the optimal
policy to follow (100 % when operating in a deterministic
environment and 80 % in a stochastic environment). How-
ever, the need for sampling has an adverse effect on the
computation time since the agent needs to complete an extra
20,000 episodes.
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