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Abstract This study establishes a bi-objective imperfect
preventive maintenance (BOIPM) model of a series-parallel
system. The improvement factor method is used to evaluate
the extent to which repairing components can restore the sys-
tem reliability. The total maintenance cost and mean system
reliability are optimized simultaneously through determining
the most appropriate maintenance alternative. A bi-objective
hybrid genetic algorithm (BOHGA) is established to opti-
mize the BOIPM model. The BOHGA utilizes a Pareto-based
technique to determine and retain the superior chromosomes
as the GA chromosome evolutions are performed. Addition-
ally, a unit-cost cumulative reliability expectation measure
(UCCREM) is developed to evaluate the extent to which
maintaining each individual component benefits the total
maintenance cost and system reliability over the operational
lifetime. This UCCREM is then incorporated into the genetic
algorithm to construct a superior initial chromosome popu-
lation and thereby enhance its solution efficiency. In order to
obtain diverse bi-objective solutions as the Pareto-efficient
frontier is approached, the closeness metric and diversity
metric are employed to evaluate the superiority of the non-
dominated solutions. Accordingly, decision makers can eas-
ily determine the most appropriate maintenance alternative.
Three simulated cases verify the efficacy and practicality of
this approach for determining an imperfect preventive main-
tenance strategy.
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Introduction

The performance of a series-parallel system with multiple
components, in terms of reliability, availability, and so forth,
relies heavily on the designed configurations. Certainly, per-
forming maintenance work is indispensable to ensure that a
system is restored to a specific operational state and remains
so. Many studies (Wang 2002; Nakagawa 2005) have treated
a system configuration as a single piece of equipment in order
to reduce the complexity of planning a preventive main-
tenance strategy for multiple components. However, this
cannot actually elucidate the level of system performance,
because determining preventive maintenance strategies for
multi-component systems normally involves complicated
mathematical calculations. Some studies (Bai and Pham
2006; Bris et al. 2003) have addressed this issue by focusing
on each system component to determine an overall preven-
tive maintenance strategy. As is well known, implementing
maintenance work consumes human resources and entails
considerable costs. Nonessential maintenance or inappropri-
ate maintenance periods will squander the limited system
maintenance resources. As compared with the perfect main-
tenance theory, the imperfect maintenance theory offers to
better reveal system performance for a degraded component
or device, since the maintenance work is performed on indi-
vidual components. As a result, maintenance engineers can
more safely ensure that a system fulfils its specific perfor-
mance requirements.

Furthermore, the maintenance model is solved under the
essential constraints of maintenance resources and minimal
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system performance requirements. The constrained model
requires a more arduous calculation than unconstrained mod-
els in order to obtain the optimal solution. Accordingly,
the computational expense of optimizing a preventive main-
tenance model increases significantly with the number of
components and the complexity of the system configura-
tion. As a result, the conventional analytical approach cannot
obtain an exact solution within a reasonable time. Hence, to
reduce the complexity of solution for each component, most
studies consider either optimizing the maintenance work
subject to fixed maintenance periods or optimizing the
maintenance periods subject to certain maintenance work
(Zequeira and Bérenguer 2006). Additionally, only a sin-
gle objective is taken into account, such as minimization
of maintenance cost or maximization of system reliabil-
ity. Establishing a multi-objective maintenance optimization
model can more fully explain the system performance and
maintenance schedule than a single-objective model. From a
practical viewpoint, decision makers benefit from simultane-
ously optimizing multiple system performance requirements
to obtain diversified maintenance alternatives through opti-
mized non-dominated solutions. Decision makers can then
determine the most appropriate alternative for given system
requirements and resource constraints. Therefore, this study
strives to establish a bi-objective imperfect preventive main-
tenance (BOIPM) model optimizing total maintenance cost
and mean system reliability by determining the maintenance
periods of each component over its operational lifetime in a
series-parallel system. The improvement factor method (Tsai
et al. 2004) is employed to evaluate the extent to which main-
taining components reduce the hazard rate and deterioration
rate on the maintenance periods and thereby recovery system
reliability.

Due to the inherent complexity of solving a preventive
maintenance model, good results are obtained when meta-
heuristic algorithms are extensively utilized to solve various
aspects of the model. Examples include the system config-
uration designs, redundancy allocation problems (Gen and
Cheng 1997; Hsieh et al. 1998; Tavakkoli-Moghaddam et al.
2008), reliability analysis (Bris et al. 2003), and preventive
maintenance strategy (Quan et al. 2007). Moreover, develop-
ing multi-objective meta-heuristic algorithms is becoming
increasingly essential from the viewpoint of efficient opti-
mization of multi-objective preventive maintenance models
such as the multi-objective genetic algorithm (GA) in fulfill-
ment of practical requirements (Wang and Li 2011; Yamachi
et al. 2006; Konak et al. 2006). However, there is still much
room for improvement in the search mechanisms to further
the efficacy of solving any specified multi-objective preven-
tive maintenance problem.

The genetic algorithm is a solution approach that simu-
lates the evolutionary process of natural beings by applying
crossover and mutation mechanisms to predetermined chro-

mosome structures. The setting of probabilities, regarding
the crossover and mutation, guides the GA search in a direc-
tion that approaches the global optimum of the optimization
problem. According to Baker and Ayechew (2003), the initial
chromosome structures will considerably affect the ability to
solve the problem. To enhance GA efficacy, some studies
have aimed at constructing a tailor-made procedure that pro-
duces superior chromosomes if given the properties of the
optimization problem. In that regard, this study considers
properties associated with the BOIPM model established for
a series-parallel system to construct superior chromosomes
by evaluating the extent to which maintaining a component
benefits the system performance. Accordingly, the compo-
nent importance measures established by Birnbaum (Elsayed
1996) and the ratio criterion established by Bris et al. (2003)
are improved to develop a unit-cost cumulative reliability
expectation measure (UCCREM) that is hoped to more accu-
rately evaluate the importance of components. The two pre-
viously developed importance measures have disadvantages
that result in inappropriate evaluations of component impor-
tance. The newly developed UCCREM mainly evaluates the
extent to which maintaining a component benefits the system
performance in terms of reliability and total maintenance cost
in accordance with the BOIPM model established that simul-
taneously optimizes mean system reliability and total mainte-
nance cost. Additionally, a bi-objective hybrid GA (BOHGA)
is established, with the UCCREM incorporated, to efficiently
solve the BOIPM model established. The fundamental idea of
the Pareto-based technique (Srinivas and Deb 1994; Fonseca
and Fleming 1998; Deb et al. 2002) for non-dominated solu-
tions of multi-objective problems is also incorporated by the
simulated chromosome evolution procedure to generate the
offspring and direct the search toward an ideal Pareto frontier.
Furthermore, in order to obtain solutions that are diversified
and distributed as the Pareto-efficient frontier is approached,
the closeness metric and diversity metric (Wang et al. 2009;
Deb 2001) are utilized to determine the superiority of chro-
mosomes in the BOHGA established. The best settings of
search parameters in the BOHGA established is determined
by the response surface methodology (RSM) (Montgomery
2005) technique, instead of the conventional trial-and-error
process, in the hope of extending the ability of the BOHGA
to approach the ideal Pareto frontier. Finally, three simulated
cases verify the efficacy and practicality of this work.

The remainder of this paper is organized as follows. Sec-
tion “Literature review” reviews the literature on imper-
fect maintenance, multi-object maintenance strategy, and
optimization algorithms. Section “Methods” describes the
BOIPM model formulation, the UCCREM, and the estab-
lished BOHGA. Section “Results and discussion” presents
and discusses the results of three numerical simulations to
demonstrate the efficiency of the proposed BOHGA. Finally,
Section “Conclusions” concludes the paper.
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Literature review

Imperfect maintenance

Maintenance activities, generally including corrective main-
tenance (CM), preventive maintenance (PM), predictive
maintenance, and e-maintenance, are indispensible to ensure
that a system is restored to a specific operational state and
remains so. The status of a system is normally between as
good as new and as bad as old as the imperfect mainte-
nance work or preventive maintenance work is performed.
Implementing a preventive maintenance plan can extend
the operational lifetime of a system and reduce its failure
rate. Pham and Wang (1996) considered the extent to which
imperfect component maintenance restores system perfor-
mance and they divided the evaluation approaches into eight
different categories, including the (p, q) rule, (p(t), q(t))
rule, improvement factor method, virtual age method, shock
model method, (α, β) rule, and multiple (p, q) rule as well as
the others. Among these approaches, the improvement fac-
tor method is the easiest to understand and in practice is the
simplest to implement. Zequeira and Bérenguer (2006) estab-
lished an imperfect maintenance model using the improve-
ment factor method, which optimizes the total maintenance
cost, and thus determined an optimal maintenance strategy.
Tsai et al. (2001) employed the GA to optimize a con-
strained imperfect maintenance model that had convention-
ally employed the improvement factor method. The unit-cost
life was optimized, while the worst allowable system relia-
bility constituted the model constraint. A two-stage approach
was established: first, determine the optimal maintenance
periods; then, for each maintenance time point, measure
the extension of system life per unit cost of components
and thus determine whether the proper maintenance activ-
ity involves nothing, simple preventive work, or preventive
replacements. Liao et al. (2010) showed that periodic preven-
tive maintenance (PM) may easily overlook reliability issues
due to the deterioration of the system with time and usage.
A reliability-based sequential preventive maintenance model
has been proposed for monitoring repairable deteriorating
systems. When the system’s reliability reaches the threshold
R, an imperfect repair technique is implemented to restore
the system. The optimal threshold R and preventive mainte-
nance cycle number are determined to minimize the system
operation cost in the established PM model. Schutz et al.
(2011) proposed an integrated strategy to determine jointly
efficient business and maintenance plans. Two maintenance
policies including a minimalist policy and a sequential policy
are studied. Two meta-heuristic algorithms based on GA are
developed to maximize the net profit defined by the achieve-
ment of missions minus maintenance costs. Castro (2009)
established failure models for system components via a non-
homogeneous Poisson process. The system is one composed

of repairable and irreparable components. The failure rate of
repairable components depends on the number of irrepara-
ble components in the system. The system cost is minimized
by optimizing decision variables involving the amount of
preventive maintenance and the corresponding maintenance
periods from the time when operation begins until the time
when the system cannot be restored to worst allowable relia-
bility as performing maintenance works except replacement.
Nahas et al. (2008) established an extended great deluge algo-
rithm to minimize the total maintenance cost for a multi-state
imperfect maintenance model subject to the worst allow-
able system reliability established by Levitin and Lisnianski
(2000). The solution efficiency of Nahas et al. (2008) outper-
forms that of Levitin and Lisnianski (2000). Park et al. (2000)
established a periodic preventive maintenance model, min-
imizing the expected cost per unit time by determining the
amounts and periods of preventive maintenance over an infi-
nite time span. In this model, a minimal repair is performed
when a component failure occurs, restoring the system to
its status prior to failure. Furthermore, preventive mainte-
nance can decrease the rate of system degradation, while the
hazard rate of the system continues to increase monotoni-
cally. Soro et al. (2010) focused primarily on a continuous
Markov process for simultaneously evaluating the reliabil-
ity, availability, and productivity of a multi-state degraded
system. In their approach, the Poisson hazard rate simulates
the temporal variation of the component failures associated
with different system degradations. The assumption in the
Markov process is that the system returns to its previous
status after imperfect maintenance work is performed when
the system is fatigued or a non-essential component fails.
The Chapman–Kolmogorov equations are utilized to solve
this model and obtain the stable probabilities of all system
statuses and thereby simultaneously evaluate the reliability,
availability, and productivity of the system. Tsai et al. (2004)
established an imperfect maintenance model in which the
activities of maintenance, repair, and replacement are taken
into account. A two-stage approach is followed to optimize
the model. In stage I, the identical maintenance period of
all components is determined. The maintenance period of
each component is determined initially by maximizing the
system availability, and then the minimum of those mainte-
nance periods is selected as identical maintenance period of
all components. In stage II, the optimal maintenance activity
is determined for each component at each maintenance time
by using maintenance-benefit analysis model.

Multi-objective maintenance strategy

Busacca et al. (2001) aimed to establish a three-objective
maintenance model for a nuclear energy plant to address
the safety issue of a high-pressure injection system. The
main objectives are to maximize the mean availability but to
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minimize the repair and check-up costs as well as the
radiation exposure time of workers. The principle of non-
dominated solutions is incorporated into the GA search
mechanism to determine the repair and check-up periods
and thereby efficiently optimize three objectives. Tian et al.
(2012) proposed a bi-objective condition-based maintenance
model that simultaneously maximizes reliability and min-
imizes maintenance costs. A physical-programming-based
approach was developed to enable decision makers to realize
a systematic and efficient tradeoff between the cost objec-
tive and the reliability objective, instead of adjusting the
weights of the optimized objectives, as in the case of conven-
tional approaches. Nosoohi and Hejazi (2011) developed a
multi-objective maintenance model in which the replace-
ment maintenance is performed in accordance with practi-
cal requirements. A multi-objective optimization algorithm
is based on the ε-constraint method to efficiently approach
ideal Pareto frontier solutions and determine the optimal
maintenance strategy. Berrichi et al. (2009) and Wang (2002)
considered parallel machine scheduling problems to deter-
mine a maintenance schedule for machines. A bi-objective
maintenance model is simultaneously optimized for pro-
duction requirements and system availability by using ant
colony optimization to obtain the compromise solutions from
which the appropriate maintenance alternative is determined.
Moradi et al. (2011) focused mainly on flexible job shop
problems with a bi-objective optimization model that consid-
ered maintenance benefit and production efficiency. The pro-
duction schedule and preventive maintenance strategy that
optimally reduce the process flow time and system unavail-
ability are determined simultaneously. Quan et al. (2007)
focused mainly on heavy industry facilities at railroad yards
or aircraft service centers, which are high consumers of
human resources for maintenance works. In order to shorten
the maintenance times and simultaneously reduce the con-
sumption of human resources, a bi-objective maintenance
schedule model is devised. An optimization algorithm is
developed to approach the ideal Pareto frontier solutions of
the model and thereby determine the best maintenance alter-
native. Sachdeva et al. (2008) studied the case of a paper man-
ufacturing plant and formulated a preventive maintenance
schedule model for maximizing production system availabil-
ity while simultaneously minimizing total maintenance cost.
The genetic algorithm is employed to solve the model and
determine the best preventive maintenance strategy. Khatab
et al. (2011) developed a block replacement policy for a sys-
tem operating over a random time horizon. The expected total
replacement cost was minimized by determining the optimal
replacement period. In general, the replacement activity is
referred to as perfect maintenance, which cannot be directly
applied to a system that deteriorates with time. Therefore,
the applicability of this study is limited.

Optimization algorithms

The most common way to easily solve the multi-optimization
problem (MOP) is through a weighted-sum method (Coello
1999; Fonseca and Fleming 1997) that aggregates multiple
objectives into a single performance index. The weighted-
sum method needs a weight assigned to each of the multiple
objectives, which introduces uncertainty through subjective
judgments, and inappropriate weights yield an unsatisfactory
solution. Furthermore, this type of approach can only be used
on problems with convex Pareto frontier and can only obtain
one solution, rather than a set of non-dominated solutions that
offer various alternatives to fulfill practical requirements. Lin
and Wang (2012) proposed a hybrid genetic algorithm to opti-
mize the periodic PM Model in a series-parallel system. The
main idea is that an importance measure of components is
developed to evaluate the extent to which maintaining com-
ponents improves the system’s reliability. This importance
measure of components is then incorporated into a con-
ventional GA to enhance its ability to approach the global
optimum. However, only perfect maintenance was consid-
ered in the established periodic PM model; this approach
is not applicable to a deteriorating system. Osyczka and
Kundu (1996) established a multi-objective evaluation func-
tion using the distance metric and incorporated this in the GA
to search for non-dominated solutions of a MOP. Srinivas
and Deb (1994) established a non-dominated sorting genetic
algorithm (NSGA) in which the calculation of the fitness
of a MOP solution has an embedded fitness share mecha-
nism to obtain diversified MOP solutions. Fonseca and Flem-
ing (1998) suggested a scale-independent fitness function
to measure and prioritize the candidates and thereby solve
MOPs. Rudolph (2001) established an elitist multi-objective
evolutionary algorithm (EMOEA), which combines the par-
ent with its offspring and then retains the superior chro-
mosomes to form a new parent population that generates
offspring. Deb et al. (2002) developed an elitist non-
dominated sorting genetic algorithm (NSGA-II) with a
crowding metric to evaluate the crowding distance of each
non-dominated solution and thereby screen for diversified
non-dominated solutions. Normally, the solution quality of a
multi-objective optimization algorithm is evaluated in terms
of two performance aspects, which are the closeness and
the diversity of the solution set. The closeness metric evalu-
ates the proximity of the solution set and the Pareto-optimal
frontier, while the diversity metric evaluates the span of
the solution set (Wang et al. 2009; Deb 2001). The ideal
multi-objective solution set is uniformly distributed along
the Pareto-efficient frontier. In summary, an algorithm devel-
oped for MOP solving must possess the ability to find
diverse solutions near the Pareto-optimal frontier and thus
efficiently provide various alternatives for decision makers to
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appropriately select from according to system performance
requirements and resource constraints.

Methods

Except for some complex system structures designed to meet
special requirements, the series-parallel system is the most
commonly used structure owing to its high reliability and
maintainability, as compared to other system structures. This
study aims to establish a bi-objective imperfect preventive
maintenance model that optimizes total maintenance cost
and mean system reliability. The decision variables, which
are the maintenance period and the maintenance work dur-
ing operational lifetime, are considered simultaneously in a
series-parallel system. In order to efficiently solve the model
established, this study also develops an UCCREM to evalu-
ate component importance and incorporates this measure into
the GA, thus laying the foundation to propose a BOHGA that
utilizes a Pareto-based technique (Srinivas and Deb 1994;
Fonseca and Fleming 1998; Deb et al. 2002). Moreover, the
RSM resulted form design of experiments is employed to
determine the best search parameter settings for the BOHGA
established in the hope of strengthening its exploratory
ability.

The BOIPM model for the series-parallel system

The bi-objective imperfect preventive maintenance model
established for the series-parallel system is one that simulta-
neously optimizes the total maintenance cost and the mean
system reliability by determining the preventive maintenance
period of each component in the series-parallel system. The
improvement factor (Tsai et al. 2004) method is employed
to evaluate the extent to which repairing components with
different Weibull failure distributions can restore the system
reliability. The Weibull distribution is extensively employed
in reliability modeling in real-world situations. This is mainly
because the hazard rate function corresponding to the Weibull
distribution can characterize various failure rate patterns in
the bathtub curve by setting shape parameter β. When β > 1,
the hazard rate function increases with time, which represents
the wear-out region of the bathtub curve. When β = 1, the
hazard rate is constant, which represents the constant failure-
rate region. When β < 1, the hazard rate function decreases
with time, which represents the early failure-rate region. This
qualifies the Weibull distribution model to describe the fail-
ure rate of various failure data in actual cases. Additionally,
to satisfy practical requirements, the model established is
subject to two constraints: the system reliability must sur-
pass the worst allowable value, and the total maintenance
cost must not exceed the value predetermined by resource
considerations. Accordingly, the BOIMP model established
is as follows:

Minimize CP M =
K∑

k=1

Ek∑

j=1

n jk∑

i=1

Ci jk (1)

Maximize Rmean =
∫ T

0 RS(t)dt

T
(2)

Subject to

RS(t) ≥ R0, RS(t) =
K∏

k=1

⎡

⎣1 −
Ek∏

j=1

(1 − R jk(t))

⎤

⎦ (3)

CP M ≤ C0 (4)

R0, i jk = R f, (i−1) jk + m2, jk
(
R0, jk − R f, (i−1) jk

)
(5)

Ri jk(t) = R0, i jk × e−((t−(i−1)tp, jk)×η jk/m1, jk)
β jk

,

(i − 1) × tp, jk ≤ t ≤ i × tp, jk (6)

n jk = I N T

(
T

tp, jk

)
(7)

where CP M represents the total maintenance cost, Ci jk repre-
sents the maintenance cost in the i th period of the j th compo-
nent in the kth sub-parallel system, n jk represents the number
of maintenances of the j th component in the kth sub-parallel
system, Ek represents the number of components in the kth
sub-parallel system, K represents the number of sub-parallel
systems in the series-parallel system, Rmean represents the
mean system reliability, t represents time, T represents the
operational lifetime of the system, Rs(t) represents the sys-
tem reliability, R0 represents the worst allowable reliabil-
ity, R jk(t) represents the reliability of the j th component
in the kth sub-parallel system, C0 is the greatest allowable
total maintenance cost, R0,i jk is the initial reliability in the
i th period of the j th component in the kth sub-parallel sys-
tem, R f,(i−1) jk is the final reliability in the (i − 1)th period
of the j th component in the kth sub-parallel system, R0, jk

is the initial reliability of the new system of the j th com-
ponent in the kth sub-parallel system. In Eq. 6, the term

e−((t−(i−1)tp, jk )×η jk/m1, jk)
β jk

is basically a Weibull reliabil-
ity function in which the improvement factor m1, jk is incor-
porated to evaluate the extent to which repairing decreases the
rate of component degradation. The term R0,i jk is obtained
from Eq. 5, in which the improvement factor m2, jk is incorpo-
rated to evaluate the extent to which repairing increases the
component reliability at the beginning of the maintenance
period. Therefore, by solving Eq. 6, the reliability of each
component can be obtained as repairs are carried out. To
clearly define components located in different sub-parallel
systems, the suffix Ri jk(t) is used to represent the reliabil-
ity of the j th component in the kth sub-parallel system as
repair is performed in the i th maintenance period. tp, jk is
an optimized decision variable representing the maintenance
period of the j th component in the kth sub-parallel system
of the established BOIMP model, while m1, jk and m2, jk are
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the improvement factors of the j th component in the kth
sub-parallel system, which serve to evaluate the extent to
which repairing components restores the component relia-
bility (their values lie between 0 and 1). m1, jk mainly char-
acterizes the decrease in the rate of component degradation,
while m2, jk mainly characterizes the increase in component
reliability at the beginning of the maintenance period. β jk

and η jk are the shape and scale parameters of the Weibull
failure distribution, respectively, corresponding to the j th
component in the kth sub-parallel system. INT is the mini-
mal integer function.

The UCCREM

The need to evaluate the importance of components within
multi-component systems has motivated the development of
various importance measures, but in practice the importance
measure of Birnbaum (Elsayed 1996) is widely used. How-
ever, this importance measure overestimates the importance
of components because only the extreme situations of failure
and function are taken into consideration. As is well known,
the performance of a component is described by its reliability
function, which is a probability function that varies with time.
Therefore, if only extreme situations are taken into account
to determine the importance of a component, as with Birn-
baum’s importance measure (Elsayed 1996), the extent to
which maintaining a component will benefit the system per-
formance is not adequately reflected. To compensate for the
disadvantages of Birnbaum’s importance measure, this study
adopts the concept of statistical expectation and takes into
account the failure probability of individual components to
develop a reliability expectation measure (REM) as follows:

I j
RE M (t) = (RS(1, r j (t)) − RS(t)) × r j (t)

+(RS(t) − RS(0, r j (t)) × (1 − r j (t)) (8)

where RS(t) represents the system reliability at time t , while
RS(1, r j (t)) and RS(0, r j (t)) represent the system reliability
when the j th component is functional or has failed, respec-
tively, since r j (t) and (1 − r j (t)) represent the probabilities
that the j th component is functional or has failed, respec-
tively. Thus, RS(1, r j (t)) − RS(t) reveals the positive effect
on system reliability when the j th component functions,
while RS(t) − RS

(
0, r j (t)

)
reveals the negative effect on

system reliability when the j th component fails. The reliabil-
ity expectation I j

RE M (t)of the j th components at time t falls

between 0 and 1. A large I j
RE M (t) value indicates the great

extent to which maintaining the j th component benefits the
reliability of the series-parallel system. The unit-cost cumu-
lative reliability expectation measure (UCCREM) is further
developed by considering the maintenance cost during the
operational lifetime as follows:

I T j
UCC RE M =

∫ T
0 I j

RE M (t)dt

C j
(9)

where
∫ T

0 I j
RE M (t)dt represents the cumulative REM value

during the operational lifetime T , and C j represents the

maintenance cost of the j th component. A large I T j
UCC RE M

value indicates the great extent to which maintaining the
j th component benefits the system performance in terms of
both the reliability and the maintenance cost of the series-
parallel system. Therefore, the UCCREM can be appropri-
ately employed to facilitate the determination of a preventive
maintenance strategy.

The established BOHGA

The genes in the GA are coded in the form of integers that
indicate the maintenance periods of the components. A chro-
mosome is a series of genes and is thus a combination of the
maintenance periods of the components. Namely, a chromo-
some represents a solution of the BOIPM model established.
Accordingly, this study proposes a BOHGA that involves two
stages, as discussed in the following two subsections.

Stage I: use the UCCREM to determine important
components

In past studies (Pham and Wang 1996), the initial chromo-
some structure significantly affected the solution efficiency
of the GA. In the planning of a preventive maintenance
strategy, the most important components are determined in
order to perform their maintenance work first. The least
important components normally do not receive any main-
tenance work during the operational lifetime under the con-
straint of the limited maintenance resources. Additionally,
optimizing the preventive maintenance periods of all com-
ponents in a series-parallel system involves a complicated
calculation. Therefore, solving this type of problem con-
sumes a great amount of computation time, particularly
when the number of components involved increases. Fol-
lowing the idea mentioned above for optimizing the BOIPM
model, the established BOHGA initially screens out unim-
portant components, retaining the important components by
using the UCCREM. As the importance of the j th com-
ponent in the series-parallel system becomes enhanced, the
I T j
UCC RE M value becomes larger. The importance sequence of

the components is determined as follows:

S =
n⋃

j=1

{
s j

}
(10)

where S j is the j th most important component, n is the num-
ber of components in the series-parallel system, and S is a set
that contains the importance sequence of the components.
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From S, this study determines the important components
of a series-parallel system by the following iterative proce-
dure:

Step 1: Given the first component S1 inS, optimize the
BOIPM model using the conventional GA to obtain
the total maintenance cost and mean system relia-
bility, if feasible solutions exist. Then, calculate the
closeness metric to evaluate the solution quality.

Step 2: Add one component according to its priority in S, and
optimize the BOIPM model using the conventional
GA to obtain the total maintenance cost and mean
system reliability, if feasible solutions exist. Then,
calculate the closeness metric to evaluate the solution
quality.

Step 3: Repeat step 2 until all the components are involved.

The combination of components with the lowest value of
the closeness metric identifies the important components of
the BOIPM model. These important components are sub-
stituted into stage II to optimize their maintenance periods.
The unimportant components do not receive any maintenance
work during the operational lifetime.

Stage II: optimize maintenance periods of important
components

This stage actually involves two sub-stages that consist of
five steps and four steps, respectively. The first sub-stage
proceeds as follows:

Step 1: Establish the initial population of chromosomes.
In the feasible area of the model established, where
solutions satisfy the reliability and cost constraints
as Eqs. (3) and (4), this step randomly generates 100
different combinations of the maintenance periods
of the important components to form an initial pop-
ulation of chromosomes.

Step 2: Screen and reproduce the chromosome population.
The non-dominated solutions determined in terms
of the total maintenance cost and mean system reli-
ability are retained as the superior chromosomes of
each generation. This step thereby performs a chro-
mosome reproductive procedure in which 100 chro-
mosomes are retained to form the basis of the next
generation of offspring.

Step 3: Perform the crossover procedure.
This step randomly generates masks from the chro-
mosome structure to perform the GA crossover pro-
cedure on randomly selected pairs of chromosomes,
subject to the predetermined number of masks and
crossover rate.

Step 4: Perform the mutation procedure.
A mask mutation approach is also employed as the
GA mutation procedure. Some randomly generated
masks are used to perform the mutation procedure
on chromosomes that are randomly selected from
those obtained at step 3. The number of masks and
the mutation rate are predetermined by the RSM.

Step 5: Test whether any termination condition is met.

Note that steps 2–5 are iterated until the algorithm meets
either of the following conditions:

1. The change in the closeness metric is <0.0001 for
50 successive generations, enabling a reduction in
average CPU time.

2. A maximum of 100 generations is reached.

The optimal bi-objective non-dominated solutions are thus
determined in order to constitute maintenance alternatives.
Engineering managers can then select the most appropriate
maintenance alternative according to the practical require-
ments of the system and the constraints of limited mainte-
nance resources.

The settings of the search parameters of the BOHGA are
determined through systematic experimentation and analysis
by using the RSM as follows:

Step 1: Plan the RSM experiments for the closeness and
diversity metrics.
The faced central composite design (FCCD) is
adopted to plan experiments in which there are
four experimental factors: the crossover probability,
the mutation probability, the number of crossover
masks, and the number of mutation masks. In total,
30 experimental points were designed, involving 8
factorial points, 16 faced axial points, and 16 cen-
ter points. For more details of the central composite
design, refer to Montgomery (2005).

Step 2: Conduct the RSM experiments and record experi-
mental observations.
The 30 planned FCCD experiments are conducted
by optimizing the BOIPM model using the BOHGA,
with various crossover and mutation probabilities as
well as different numbers of masks for crossover and
mutation. Because the closeness and diversity met-
rics are determinants to evaluate the quality of non-
dominated solutions, these values are calculated on
the basis of the total maintenance cost and mean sys-
tem reliability that are obtained.

Step 3: Establish the response surface models of the close-
ness and diversity metrics.
The response surface models of the closeness and
diversity metrics are determined using the lack-
of-fit test procedure on the search parameters,
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including the mutation probability, the number of
crossover masks, and the number of mutation
masks. Normally, a p value greater than 0.05 in the
lack-of-fit test indicates that the fitted model is
appropriate at a significance level α of 0.05. If the
full quadratic model is appropriate, the model can
be expressed as follows:

yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2

+β13x1x3 + β14x1x4 + β23x2x3 + β24x2x4

+β34x3x4 + β11x2
1 + β22x2

2 + β33x2
3

+β44x2
4 + ε, i = 1, 2 (11)

where y1 and y2 represent the closeness and diver-
sity metrics, respectively; x1, x2, x3, and x4, repre-
sent the crossover probability, mutation probability,
the number of crossover masks, and the number of
mutation masks, respectively; the xi x j are interac-
tion terms among the four design factors; the x2

i are
the effects of quadratic terms; β0, βi j , and β j j are
the fitted model parameters; and ε is a random error
term.

Step 4: Optimize the settings of the search parameters.
The optimal settings of the four search parameters
are determined using a desirability function (Har-
rington 1965) technique based on the response sur-
face models of the closeness and diversity metrics
that are obtained at step 3. The desirability value,
which lies between 0 and 1, is extensively used in
industrial fields to solve multi-response optimiza-
tion problems. For more details of the desirability
function, refer to Harrington (1965).

Results and discussion

Three simulated series-parallel system cases verify the effi-
cacy of the established approach. The operational lifetime is
set to 50 months. Each system consists of 15 components
that are coded by integers ranging from 1 to 15. Figures 1,
2 and 3 are reliability block diagrams of the simulated cases
to show the system configurations, where case 1 includes
six subsystems, case 2 includes four subsystems, and case 3
includes 12 subsystems. Simulated case 1 mainly character-
izes the diversified sub-parallel configurations that involve
one single-component subsystem, two sub-parallel systems
with two components, two sub-parallel systems with three
components, and one sub-parallel system with four compo-
nents. Simulated case 2 mainly characterizes the sub-parallel
configurations in which the numbers of components sur-
pass those of simulated case 1. Simulated case 3 mainly

Fig. 1 Reliability block diagram of simulated case 1

Fig. 2 Reliability block diagram of simulated case 2

Fig. 3 Reliability block diagram of simulated case 3

characterizes the series configurations in which multiple
single-components are serially connected.

This study applies the Weibull probability distribution,
which is extensively employed in reliability analysis to sim-
ulate a component failure scenario. Thus, five values of the
shape parameters β (i.e., 3, 2, 1.5, 1.1, and 0.5) and three
values of the scale η (i.e., 0.01, 0.02, and 0.03) are selected
to construct the failure statuses of the 15 simulated compo-
nents. Table 1 lists the parameter values of these 15 simu-
lated components that are denoted alphabetically A–O. The
value β = 2 is mainly characteristic of components with an
instantaneous increase of failure rate. The values β = 1.1 and
β = 1.5 are mainly characteristic of components with grad-
ual increases of failure rate. The valueβ = 0.5 is mainly char-
acteristic of components with a gradual decrease of failure
rate. The parameters of each component in three simulated
series-parallel systems are determined through a random per-
mutation procedure. Accordingly, three different permuta-
tions of 15 simulated components are produced randomly
and then matched with the components labeled by integers
in the three simulated reliability cases to determine the para-
meters of all 15 components. The failure probability model
for each component is thus obtained. Table 2 lists the com-
ponent matches for the three simulated cases in this study.
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Table 1 Parameters of
simulated components Components Failure probability

model
Parameters MTBF (months) Maintenance

cost

A Weibull β = 3, η = 0.01 89.3 15

B Weibull β = 3, η = 0.02 44.65 10

C Weibull β = 3, η = 0.03 29.77 5

D Weibull β = 2, η = 0.01 88.62 15

E Weibull β = 2, η = 0.02 44.31 10

F Weibull β = 2, η = 0.03 29.54 5

G Weibull β = 1.5, η = 0.01 90.27 15

H Weibull β = 1.5, η = 0.02 45.14 10

I Weibull β = 1.5, η = 0.03 30.09 5

J Weibull β = 1.1, η = 0.01 96.49 15

K Weibull β = 1.1, η = 0.02 48.25 10

L Weibull β = 1.1, η = 0.03 32.16 5

M Weibull β = 0.5, η = 0.01 200 15

N Weibull β = 0.5, η = 0.02 100 10

O Weibull β = 0.5, η = 0.03 66.67 5

Table 2 Component matches
for three simulated cases The numbers of

components
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Case 1 H O B J G D C K N F L I E M A

Case 2 A G M B K E N F D J C L H I O

Case 3 B L C H I F O A G D E J M N K

The maintenance periods of the 15 components in each
of the three simulated cases are optimized by formulating
the BOIPM model and then solving that using the BOHGA.
This study presents the optimization process for case 1 in two
stages, in the following two subsections.

Stage I: use the UCCREM to determine important
components

For each component shown in Fig. 1, the values of the
UCCREM are calculated using Eqs. (8)–(10) to initially
obtain the importance sequence S = {10, 12, 11, 7, 8, 9, 2,

6, 3, 5, 1, 4, 15, 13, 14} in Table 3. The total maintenance
cost and mean system reliability are optimized by steps 1–
3 of the iteration procedure based on the conventional GA
with predetermined crossover rate 0.6, mutation rate 0.1, five
crossover masks, and four mutation masks. This same opti-
mization procedure is repeated 10 times to obtain the objec-
tive values associated with the total maintenance cost and
mean system reliability. Table 4 summarizes the closeness
metric for different combinations of components. Obviously,
the 13th combination set S13 = {10, 12, 11, 7, 8, 9, 2, 6, 3,

5, 1, 4, 15}with the smallest closeness metric 0.032 identifies

Table 3 UCCREM values and ranks

The numbers of components UCCREM Ranks

1 0.0085 11

2 0.0112 7

3 0.0105 9

4 0.0076 12

5 0.0099 10

6 0.0106 8

7 0.1452 4

8 0.0943 5

9 0.0785 6

10 1.8209 1

11 0.6705 3

12 0.7037 2

13 0.0031 14

14 0.0019 15

15 0.0032 13

the most important components that most affect the mean
system reliability and total maintenance cost over the oper-
ational lifetime. Therefore, all of the components except the
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Table 4 Importance of
components Items S Maintenance combination in order

of component importance
Mean closeness metric

1 S1 10 Infeasible solutions

2 S2 10, 12 Infeasible solutions

3 S3 10, 12, 11 Infeasible solutions

4 S4 10, 12, 11, 7 Infeasible solutions

5 S5 10, 12, 11, 7, 8 Infeasible solutions

6 S6 10, 12, 11, 7, 8, 9 Infeasible solutions

7 S7 10, 12, 11, 7, 8, 9, 2 Infeasible solutions

8 S8 10, 12, 11, 7, 8, 9, 2, 6 Infeasible solutions

9 S9 10, 12, 11, 7, 8, 9, 2, 6, 3 0.041

10 S10 10, 12, 11, 7, 8, 9, 2, 6, 3, 5 0.050

11 S11 10, 12, 11, 7, 8, 9, 2, 6, 3, 5, 1 0.044

12 S12 10, 12, 11, 7, 8, 9, 2, 6, 3, 5, 1, 4 0.044

13 S13 10, 12, 11, 7, 8, 9, 2, 6, 3, 5, 1, 4, 15 0.032

14 S14 10, 12, 11, 7, 8, 9, 2, 6, 3, 5, 1, 4, 15, 13 0.035

15 S15 10, 12, 11, 7, 8, 9, 2, 6, 3, 5, 1, 4, 15, 13, 14 0.036

Table 5 Allocated design factor levels

Designed factors Low level High level

Crossover rate (x1) 0.1 0.9

Mutation rate (x2) 0.1 0.7

Numbers of crossover masks (x3) 4 10

Numbers of mutation masks (x4) 2 8

13th and 14th are required to undergo maintenance work
during the operational lifetime. The components required to
undergo maintenance are substituted into stage II to optimize
the preventive maintenance periods.

Stage II: optimize maintenance periods of important
components

The initial chromosome population is formed by randomly
producing 100 different maintenance periods for the 13
important components identified in stage I. Each combina-
tion of maintenance periods corresponds to a solution of
the BOIMP model. Accordingly, repetition of steps 2–6 can
determine the non-dominated solutions of simulated case 1
that form the Pareto frontier. Notably, the optimal settings
of the search parameters are predetermined by applying the
RSM. Table 5 shows the allocated design factor levels.

After the RSM experiments are conducted, the response
surface model of the closeness and diversity metrics of the
four design factors are established. A full quadratic model
for the closeness metric is based on the p value 0.5647 from
the lack-of-fit test at significance level α = 0.05 as follows:

ŷ1 = −0.059 − 0.029x1 + 0.076x2 + 0.032x3 − 0.011x4

−0.014x1x2 − 5.20810−5x1x3 − 3.64610−4x1x4

−6.250 × 10−4x2x3 + 3.681 × 10−3x2x4

−1.736 × 10−4x3x4 + 0.040x2
1 − 0.109x2

2 − 2.202

×10−3x2
3 + 1.187 × 10−3x2

4 (12)

The coefficient of determination R2 is 0.72 for the fitted
closeness metric model. A linear model for the diversity met-
ric is based on the p value 0.1960 for the lack-of-fit test at
significance level α = 0.05 as follows:

ŷ2 = 0.0453 − 0.0306x1 + 0.057x2 − 3.333 × 10−4x3

+5.556 × 10−4x4 (13)

The coefficient of determination R2 is 0.4479 for the fit-
ted diversity metric model. The optimal settings of these
four research parameters are determined on the basis of the
Eqs. (12) and (13) utilizing the desirability function tech-
nique, and the desirability obtained is 0.73. The optimal
crossover rate, mutation rate, number of crossover masks,
and number of mutation masks are determined as 0.9, 0.1, 4,
and 5, respectively. In total for case 1, the BOHGA obtains
19 non-dominated solutions forming a Pareto frontier with
closeness metric 0.017 and diversity metric 0.05. The nicely
obtained values of the closeness and diversity metrics reveal
that the 19 non-dominated solutions are evenly distributed
along the Pareto frontier and are close to the ideal Pareto
solution set. In order to further verify the efficacy of the
established BOHGA, this study applies the conventional GA
to again optimize the simulated cases. Table 6 summarizes the
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Table 6 Comparison between the BOHGA and the conventional GA
for simulated case 1

Metrics Conventional GA BOHGA

Closeness metric 0.034 0.017
Diversity metric 0.044 0.050

Fig. 4 Pareto frontier solutions of the BOHGA and the conventional
GA of simulated case 1

comparison between the BOHGA and the conventional GA
in terms of the closeness and diversity metrics, while Fig. 4
displays the Pareto frontier solution for each. The closeness
metric of the BOHGA outperforms that of the conventional
GA, although their diversity metrics are close to each other.
Five distinguished solutions are selected from among the 19
non-dominated solutions obtained, and these constitute five
distinct maintenance alternatives. Figure 4 shows these five
alternatives, while Table 7 lists the corresponding mainte-
nance periods of the 15 components in case 1, the optimized
total maintenance cost, and the mean system reliability. From
Table 7, for the first maintenance alternative, we know that
the optimized maintenance periods of components 1–15 are
27, 39, 18, 44, 48, 19, 7, 31, 43, 3, 42, 3, –, –, and 31, respec-
tively. Significantly, components 13 and 14 do not need to be

repaired during the operational lifetime of 50 months. This
is mainly because the UCCREM values for component 13
and component 14 are rather low (see Table 3), as compared
to other components in case 1. In other words, maintaining
component 13 and component 14 cannot greatly improve the
system in terms of its reliability and maintenance cost. The
details of other maintenance alternatives can be obtained by
following the same analysis procedure. Maintenance engi-
neers can simply determine the most appropriate alternative
in accordance with practical system performance require-
ments and resource constraints. Obviously, the first alterna-
tive imposes less total maintenance cost but achieves lower
mean system reliability in comparison with the fifth alterna-
tive. The performances of alternatives 2–4, in terms of mean
system reliability and total maintenance cost, lie between
those of alternatives 1 and 5. However, the five maintenance
alternatives obtained all outperform the conventional GA
solutions.

Summary for cases 2 and 3

For simulated cases 2 and 3, the optimizations with the estab-
lished approach can be summarized as follows:

1. For simulated case 2, a set of ten important components
was determined in order as S10 = {15, 12, 14, 8, 13, 11,

10, 6, 7, 9}. Therefore, all of the components except the
1st through 5th are required to undergo maintenance
work during the operational lifetime. A total of 33 non-
dominated solutions form the optimized Pareto frontier
and thus determine five distinct maintenance alternatives.
Figure 5 displays the optimized Pareto frontier. Table 8
presents the comparison between the BOHGA and the
conventional GA. Table 9 presents the maintenance
periods of the 15 components associated with the five
alternatives. The established BOHGA outperforms the
conventional GA in terms of the closeness and diversity
metrics.

2. For simulated case 3, all 15 components are required
to undergo maintenance work during the operational

Table 7 Maintenance periods of components for alternatives of simulated case 1

Alternatives Components Total maintenance
cost

Mean system
reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 27 39 18 44 48 19 7 31 43 3 42 3 – – 31 330 0.9759

2 27 39 18 44 23 19 4 31 43 3 42 3 – – 31 370 0.9788

3 27 39 18 44 48 19 7 18 34 3 3 3 – – 31 415 0.984

4 27 39 18 44 23 19 4 18 34 3 3 3 – – 31 455 0.9866

5 27 39 18 44 23 19 4 18 34 3 3 3 – – 14 485 0.9879

“–” indicate no maintenance is required
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Fig. 5 Pareto frontier solutions of the BOHGA and the conventional
GA of simulated case 2

Table 8 Comparison between the BOHGA and the conventional GA
for simulated case 2

Metrics Conventional GA BOHGA

Closeness metric 0.046 0.041

Diversity metric 0.083 0.045

lifetime. This is mainly because case 3 is characterized
by a series configuration which comprises nine serially
connected single components and two sub-parallel sys-
tems that include two components and three components.
The system reliability is inherently low, as compared to
parallel configurations. A total of 36 non-dominated
solutions form the optimized Pareto frontier and thus
determine five distinct maintenance alternatives. Figure 6
displays the optimized Pareto frontier. Table 10 presents
the comparison between the BOHGA and the conven-
tional GA. Table 11 presents the maintenance periods of
the 15 components associated with the five alternatives.
The established BOHGA outperforms the conventional
GA in terms of the closeness and diversity metrics.

Although the practicality of the BOIPM model and the
effectiveness of the established BOHGA are verified in this
study with three simulated cases generated randomly, other

Fig. 6 Pareto frontier solutions of the BOHGA and the conventional
GA of simulated case 3

Table 10 Comparison between the BOHGA and the conventional GA
for simulated case3

Metrics Conventional GA BOHGA

Closeness metric 0.035 0.037

Diversity metric 0.139 0.078

simulated cases beyond the scope of this study do yield sim-
ilar results.

Conclusions

This study has aimed primarily at solutions of the pre-
ventive maintenance problem for a series-parallel system
under an imperfect maintenance plan. A bi-objective imper-
fect preventive maintenance model that simultaneously opti-
mizes mean system reliability and total maintenance cost
was established. Additionally, a customized BOHGA was
established to efficiently optimize the BOIPM model estab-
lished. Three simulated cases verified the efficacy of the
established approach. The incorporation of the UCCREM
into the GA significantly contributed to the efficacy of the

Table 9 Maintenance periods of components for alternatives of simulated case 2

Alternatives Components Total maintenance
cost

Mean system
reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 – – – – – 21 34 19 33 30 22 – 26 3 – 170 0.9889

2 – – – – – 21 34 6 33 30 22 – 18 3 29 215 0.9946

3 – – – – – 21 34 4 33 30 8 – 18 3 29 255 0.996

4 – – – – – 3 34 19 26 30 22 40 18 3 29 330 0.997

5 – – – – – 3 34 6 26 30 8 19 18 3 17 390 0.9976

“–” indicate no maintenance is required
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Table 11 Maintenance periods of components for alternatives of simulated case 3

Alternatives Components Total maintenance
cost

Mean system
reliability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7 7 7 7 4 3 6 7 6 6 4 7 3 3 5 1,460 0.5094

2 7 7 7 7 4 3 6 7 6 6 4 7 3 3 3 1,520 0.5677

3 7 7 7 7 4 3 6 7 6 6 4 3 3 3 3 1,655 0.6006

4 7 7 7 7 4 3 6 7 3 6 3 3 3 3 3 1,815 0.6190

5 4 7 6 7 4 3 6 7 3 3 3 3 3 3 3 1,990 0.6249

BOHGA. Moreover, a Pareto-based technique was employed
to determine superior GA chromosomes and thereby guide
the search. Based on the results obtained with the established
approach, the following are suggested:

1. The UCCREM can appropriately evaluate the extent to
which maintaining an individual component in a series-
parallel system benefits the overall system reliability
and total maintenance cost over the operational lifetime.
Accordingly, incorporating the concept of component
importance into the UCCREM and in turn the GA, thus
laying the foundations of the BOHGA, can greatly ben-
efit efficiency when optimizing the BOIPM model for
solutions.

2. Predetermining the optimal settings of the search para-
meters of the BOIPM model through systematic exper-
iments and data analysis using the RSM, instead of
the conventional trial-and-error procedure, can improve
the searching ability of meta-heuristic algorithms such as
the GA.

3. The established approach can efficiently provide diver-
sified imperfect preventive maintenance alternatives, as
system reliability and total maintenance cost are con-
sidered simultaneously to satisfy practical requirements.
Therefore, decision makers can select the most appropri-
ate alternative to fulfill practical requirements of system
reliability under constraints on maintenance resources.

4. Finally, despite the Pareto-based technique primarily
emphasizing non-dominated solutions to produce the
GA offspring, the search mechanism for multi-objective
models still has room for improvements, such as employ-
ing a hybrid meta-heuristic algorithm rather than merely
the GA evolution procedure.
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