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Abstract This paper, an extension of our previous research,
deals with the problem of jointly optimizing maintenance,
production and inventory costs considering subcontracting
and product returns. The manufacturing system, which fails
randomly, has to satisfy a random product demand during
a finite planning horizon under a required service level.
The portion of products returned by the customers that are
still in saleable condition are collected in the principle store
from which customer demand is filled, while the portion that
are non-conformal are collected in a second store and then
remanufactured by a subcontractor. This study is validated
by a real industrial case presented in this paper.

Keywords Optimization · Integrated
production-maintenance strategies · Variable production
rates · Degradation · Functional age approach ·
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Introduction

The consideration of integrated maintenance policies and
production plans to achieve a global optimum has recently
become an important research area. There is still a lack of
tools to evaluate the production systems in the presence of
maintenance activities. Due to factors like random demand,
random failure, and inventory constraints, this problem is not
easy to model and solve.
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The linear decision rule developed by Holt et al. (1960)
can be considered as an important contribution for strategic
production planning decision. This analytical rule is deter-
mined from the minimization of quadratic cost functions
subject to inventory and workforce balance equations. As
a result, it provides an optimal smoothing solution for aggre-
gate inventory, production and workforce levels. Silva Filho
and Cezarino (2004) showed that it is possible to extend the
unconstrained HMMS model in order to deal with a chance-
constrained stochastic production planning problem under
the hypothesis of imperfect inventory information variables.
The HMMS model is usually applied as a benchmarking
tool for comparing different aggregate production planning
approaches as well as to provide managers with insights
about the use of the company’s material resources. However,
there are doubts about its applicability for practical indus-
trial purposes (APICS 1994), one being that quadratic cost
functions are a questionable assumption, and another being
that it fails to provide a reliable production plan since it does
not take into account constraints on the decision variables.
The first criticism is overcome by the argument that qua-
dratic costs are an interesting way of evaluating production
processes (Hax and Candea 1984); for example, quadratic
inventory costs (i.e. holding cost) are incurred for both neg-
ative (backorder) and positive inventory (Parlar 1985). By
contrast, the second criticism is more valid since not includ-
ing physical constraints into the problem formulation can
lead to dire consequences in practice.

The simultaneous study of maintenance policies and
production planning and control has been the subject of
several studies. The effect of maintenance policies on
just-in-time production systems has been studied by Abdul-
nour et al. (1995). Some studies have examined the conditions
of building buffer stocks to guarantee the continuous supply
of the subsequent production unit during the interruptions of
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service due to repair or preventive maintenance. Rezg et al.
(2004) presented a joint optimization of preventive main-
tenance and stock control in a production line made up of
N machines. In the same context of integrating maintenance
and production, Rezg et al. (2008) developed a mathematical
model and a numerical procedure which allow determining
a joint optimal inventory control and age-based preventive
maintenance policy for a randomly failing production sys-
tem. Chelbi and Ait-Kadi (2004) developed an analytical
model to determine both the buffer stock size and the pre-
ventive maintenance period for an unreliable production unit
which is subject to regular preventive maintenance of random
duration.

Other related works appearing in the literature include
Cheung and Hausman (1997), who simultaneously opti-
mize strategic stock and an age-based maintenance policy.
In the same context, Gharbi and Kenne (2000) and Kenne
and Gharbi (2001) studied the optimal flow control for a
manufacturing system subject to random failures, repair and
preventive maintenance. Recently, Chelbi and Rezg (2006)
developed an integrated model of production and inventory
for a randomly failing system subject to a minimum required
availability level.

Furthermore, in the manufacturing system field, the rela-
tionships between enterprises are leaning towards more coop-
eration and collaboration. In this context, many companies
employ subcontracting in order to compensate for inadequate
technology, to manufacture a product competitively or to
meet delivery deadlines. New maintenance/production strat-
egies which take into account subcontracting are studied by
Dellagi et al. (2007). Dellagi et al. (2007) developed and opti-
mized a new maintenance policy incorporating subcontractor
constraints. Its deals with a case study which demonstrates
the influence of the subcontractor constraints on the optimal
maintenance strategy adopted. Also dealing with this frame
work, Dahane et al. (2010) studied analytically the problem
of the integration of subcontracting activity and the number
of subcontracting tasks to be performed during a maintenance
cycle.

Many maintenance models assume that the system is
maintained under fixed operational and environmental con-
ditions. In this context, Özekici (1995) proposes to use an
intrinsic age of the system instead of the actual age to account
for variable environmental conditions, while Martorell et al.
(1999) use accelerated life models. Schutz et al. (2009) pro-
posed a model incorporating periodic and sequential pre-
ventive maintenance policies for a system that performs
various missions over a finite planning horizon. Each mis-
sion can have different characteristics that depend on oper-
ational and environmental conditions. Moreover, the failure
rate increases with time and according to the use of the equip-
ment, a situation seldom studied in the literature. Among
these works, we can cite Hu et al. (1994) who discussed

the optimality conditions of the hedging point policy for
production systems for which the failure rate of machines
depends on the production rate. Others like Liberopoulos,
G. and Caramanis (1994) studied the optimal flow control
of single-part-type production systems with homogeneous
Markovian machine failure rates dependent on the produc-
tion rate.

Motivated by the lack of consideration of the system’s fail-
ure rate variation as a function of the production rate, Hajej
et al. (2009) dealt with combined production and mainte-
nance plans for a randomly failing manufacturing system sat-
isfying a random demand over a finite horizon. In the case of
linear machine degradation, the failure rate depends on time
and on the production rate which is variable over the planning
horizon. Their approach is to establish an optimal production
plan combined with a preventive maintenance policy which
minimizes the total cost subject to a required service level
constraint. Hajej et al. (2011a), using an analytical approach
based on a stochastic optimization model and using the oper-
ational age concept, reveal the significant influence of the
production rate on the deterioration of the manufacturing
system and consequently on the integrated production/main-
tenance policy. For their part, Hajej et al. (2011b) dealt with
the problem of a joint maintenance and production policy
under a subcontracting constraint. They first establish an opti-
mal production plan which minimizes the total inventory and
production cost taking into consideration the subcontractor
constraint. Secondly, using this optimal production plan, they
derive an optimal maintenance schedule which minimizes the
total maintenance cost.

This paper stems from an actual case study of a low-
cost textile company whose randomly failing manufactur-
ing system has to satisfy a random product demand. We
develop a stochastic dynamic model in order to estab-
lish simultaneously optimal production and maintenance
plans taking into account the influence of products returned
by the customer, some of which are still new and there-
fore saleable, and others that are non-conformal which are
sent to the subcontractor for recycling and remanufactur-
ing.

This remainder of this paper is organized as follows. Sec-
tion “Modelling the production/maintenance problem” for-
mulates a general linear quadratic stochastic control model
that represents the production/maintenance policy of interest.
The decision variables are the production rate in each period
along with the preventive maintenance period. We deal with
this problem in the context, rarely considered in the literature,
where the system’s failure rate depends on both time and the
variable production rate. In section “Analytical study”, con-
sidering the influence of the variable production rates on the
degradation of the manufacturing system and based on the
functional age approach, we further develop the analytical
study of the total costs. An industrial example is discussed
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in section “Numerical example” and a general conclusion is
provided in section “Conclusion”.

Modelling the production/maintenance problem

In this section, a stochastic optimal control problem with con-
straints is formulated. It represents a production/maintenance
planning problem with constraints on inventory, produc-
tion and preventive maintenance variables. This optimization
model is developed from the classical HMMS model (Holt
et al. 1960).

Description of the industrial problem

The industrial case study upon which this research is based,
illustrated in Fig. 1, will now be described. It concerns a
low-cost textile company located in Morocco specialized in
manufacturing clothing for hunting and fishing, fashion prod-
ucts, uniforms, bedding, transport bags and fabric or leather
upholstery. The company achieved its success through a high
quality outsourcing network comprised of some of the best
clothing companies.

The company’s production system consists of a chain
stitching and assembly machine (machine M in Fig. 1) which
can achieve a volume of up to 20,000 pieces per day. The com-
pany also includes a central purchasing department located
in France (storage S1 in Fig. 1) which receives and strives
to meet random customer demands. In the event that, upon
the receipt of the product, the customer decides he is not sat-
isfied with its quality, he has the right to return the product
within a specific deadline. The returned products that are in
saleable condition are then stored in the central purchasing

department (S1) in order to be relisted for sale. Meanwhile,
the returned product that is defective will be repaired, recy-
cled or remanufactured by a subcontractor located in France
(storage S2 and machine Ms), following which the product
will be returned to the central purchasing department.

In terms of reliability, the production system is subject
to failures whose frequency increases with the production
rate variation and the natural degradation of the equip-
ment. The ensuing multi-criteria integrated maintenance/pro-
duction planning problem seeks to minimize the costs of
maintenance actions and the loss of customer demand while
improving the availability of the production equipment. On
the one hand, production planning is subject to the constraints
of time (delay), cost and quality product. On the other hand,
the maintenance plan, subject to the constraints of equip-
ment reliability, attempts to maximize the availability of the
production equipment taking into account the planning of
production tasks.

In this context, the research work proposed in this manu-
script is to determine joint maintenance and production plan-
ning policies taking into account not only the influence of
product returned by the customer but also that of the produc-
tion rate variation.

Mathematical formulation of the problem

Machine M is subject to random failures. The random sin-
gle-product demand, characterized by a normal probability
distribution with a known average and standard deviation, is
satisfied from S1. The finite horizon is divided into H pro-
duction periods of equal lengths Δt .

The costs of this system consist of the holding costs at
the two storages, the manufacturing production cost, the

S1 Random Demand 

Returned Products 

Market 

S2Ms

M 

Textile Plant 
located in Morocco 

Central Purchasing 
Departement located in 

France

Europeen 
Customers

Saleable Products 

( )1d tμ δ τ⋅ ⋅ −

Subcontractor located in France 

Defective Products 

( )1(1 )μ δ τ− ⋅ ⋅ −d t

u(k)

us(k) 

u2(k) 

Fig. 1 Problem description

123



592 J Intell Manuf (2014) 25:589–602

subcontractor’s remanufacturing cost and the maintenance
cost. The model is represented as an optimal control prob-
lem with two state variables, namely the inventory levels in
both storages, together with the three control variables, which
are: the manufacturing and remanufacturing rates as well as
the preventive maintenance periods over the finite horizon.

The probability degradation law of machine M is described
by the probability density function associated with its time to
failure, f (t). Its failure rate, λ(t), increases with both time
and the production rate, u(t). Failures of machine M can
be reduced through preventive maintenance activities sched-
uled periodically at certain time intervals. The subcontractor
machine Ms is characterized by its production rates us(k) at
each period k, its unit production cost C prsand its availability
rate βs .

The objective is to minimize the sum of the inventory costs
at the two stores, the manufacturing and remanufacturing
costs along with the costs associated with the maintenance
policy. Our approach is based on the estimation of the new
age of the machine called functional age. The model is in
Fig. 1.

Notation

The following parameters are used in the mathematical for-
mulation of the model:

μ Percentage of returned product that is saleable
and sent back to store S1

δ Percentage of backordered product
τ1 Backorder delay
Δt Length of a production period
H Number of production periods in the

planning horizon
H · Δt Length of the finite planning horizon
u(k) Production rate of machine M during period k

(k = 0, 1, . . ., H)

U = {u(0), u(2), . . ., u(H − 1)}
us(k) Production rate of the subcontractor machine

Ms during period k (k=0, 1,…,H)

u2(k) Rate at which product is withdrawn from store
S2 by the subcontractor M2during period
k (k=0, 1,…,H)

d(k) Average demand during period k (k=0, 1,…,H)

Vd(k) Variance of demand during period
k (k=0,1,…,H)

S1 (k) Inventory level of first store at the end of
period k (k=0, 1,…,H)

Ŝ1 (k) Average inventory level of first store during
period k (k=0, 1,…,H)

S2 (k) Inventory level of second store at the end of
period k (k=0, 1,…,H)

Ŝ2 (k) Average inventory level of second store during
period k (k=0, 1,…,H)

C pr Unit production cost of machine M
C prs Unit production cost of subcontractor

machine Ms

Cs Inventory holding cost of one product unit
during one period at the two stores

CM Total maintenance cost
C pm Preventive maintenance action cost
Ccm Corrective maintenance action cost
mu Monetary unit
Umax Maximal production rate of machine M1

θ Probability index related to customer satisfaction
and expressing the service level

f (t) Probability density function associated with
the time to failure of M1

F(t) Probability distribution function associated with
the time to failure of M1, F(t) = ∫ t

0 f (x)dx
R(t) Reliability function, equal to 1-F(t)
λn(t) Nominal failure rate corresponding to the

maximal production rate
λk(t) Machine failure rate function during period k

(k = 0, 1,…,H )
βs Machine Ms availability rate
S0

1 Initial inventory level of first store
S0

2 Initial inventory level of second store

The problem formulation

The main objective of this subsection is to describe the math-
ematical model of the problem. The idea is to minimize the
expected production and holding costs and the maintenance
cost over a finite time horizon. The demand is satisfied at the
end of each period.

This kind of problem can be formulated as a stochastic
quadratic optimization problem under a stock threshold level
constraint, with the production rates corresponding to each
period as the decision variables. Let fk(S1(k), S2(k), u(k))

represent holding and production costs and CM (U, N ) rep-
resent maintenance costs according to the production plan
defined by the vector U and the number of preventive main-
tenance actions N . We formulate the problem as follows:

Min
(U,N )

({
H−1∑

k=0

fk (S1 (k) , S2 (k) , u (k))

+ fH
(
S1 (H) , S2 (H)

)
}

+ {CM (U, N )}
)

(1)

Subject to:

S1 (k + 1) = S1 (k) + us (k) + u (k)

+μ · δ · d (k − τ1) − d (k) k = 0, 1, . . . , H − 1 (2)

Prob [S1 (k + 1) ≥ 0] ≥ θ k = 0, 1, . . . , H − 1 (3)

S2 (k + 1) = S2 (k) + (1 − μ) · δ · d (k − τ1)
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−u2 (k) k = 0, 1, . . . , H − 1 (4)

us (k) = βs · u2 (k) 0 < βs < 1 (5)

0 ≤ u (k) ≤ Umax k = 0, 1, . . . , H − 1 (6)

Observe that the expected total cost incurred during the
last period H does not depend on the production rate u(k).
The criterion f (·) is generic but whenever convexity is
assumed, the uncertainties can be handled directly by com-
puting the expected value of the cost. The maintenance cost
CM (·) is characterized by the preventive and corrective main-
tenance costs and the expected number of failures. Constraint
(2) denotes the inventory balance equation for the princi-
ple store. The service level requirement constraint for each
period is expressed by constraint (3). The index θ is a mea-
sure of the probability chosen by the manager in the range
[0,1] which can be interpreted as the tradeoff between back-
logged sales (by choosing θε[0, 1/2]) and customer satis-
faction (θε[1/2, 1]). For example θ = 0.95 implies demand
is expected to be satisfied at least 95 % of time (i.e. high
customer service level), whereas θ = 0.2 means that back-
logging occurs at least 80 % of the time (i.e., low customer
service level). The inventory balance equation for the second
store is described by constraint (4). The relation (5) defines
the subcontractor production rate according to their avail-
ability βs . Finally, the last constraint defines an upper bound
on the production level during each period k.

The production policy

The randomness of demand is handled by using the cer-
tainty-equivalence principle while the use of a quadratic cost
function allows penalizing both excess and shortage in the
inventory level.

The expected cost including production and holding costs
for the period k is given by:

fk(S1(k), S2(k), u(k))

= fu(k)(u (k) , us (k)) + fs(k)(S1 (k) , S2 (k))

where the expected production costs for period k = fu(k),

(u(k), us(k)) = C pr × E
{
u (k)2}+ C ps × E

{
us (k)2} and

the expected holding costs of period k = fs(k) (S1(k), S2(k))

= Cs × (
E
{

S1 (k)2} + E
{

S2 (k)2})

Note that E{} denotes the mathematical expectation oper-
ator.

The quadratic total expected cost of production and inven-
tory over the finite horizon H · Δ t can then be expressed as
follows:

f (u) = Cs ×
(

E
{

S1 (H)2
}

+ E
{

S2 (H)2
})

+
H−1∑

k=1

[
C pr × u (k)2 + C ps × E

{
us (k)2

}
+ Cs

×
(

E
{

S1 (k)2
}

+ E
{

S2 (k)2
})]

with k ∈ {0, 1, . . . , H − 1} (7)

The maintenance policy

The maintenance strategy under consideration is the well
known preventive maintenance policy with minimal repair
at failure.

The interval [0, H ] is partitioned equally into N parts each
of length T . Perfect preventive maintenance or replacement
is performed periodically at times i · T , i = 0, 1, . . ., N ,
following which the unit is as good as new. When a unit
fails between preventive maintenance actions, only minimal
repair is made (returning the unit to the state “as bad as old”),
and hence the failure rate remains undisturbed by any repair
at failure. It is assumed that the repair and replacement times
are negligible.

It is assumed that the total time required to perform both
types of maintenance activities (preventive and corrective)
does not exceed the horizon H . Using the Cox model (Cox
1972), which established a parametric relationship between
risk factors (related to the operational and environmental con-
ditions of each period) and the hazard rate, we define a fail-
ure law that establishes a parametric relation between the
production rate of each period and the nominal distribution.

We assume that:

λk (t, u (k)) = λn (t) · g (u (k)) (8)

where λk (t, u (k)) represents the instantaneous failure rate
function at period k as a function of the production rate
u(k), λn (t)is the failure rate for nominal conditions which is
equivalent to the failure rate with maximal production, and
g (u (k)) = u(k)

Umax
.

For the maintenance strategy, the idea is to minimize
the total cost of maintenance taking into account the costs
incurred by the preventive and corrective maintenance
actions and the expected number of failures that can occur
during the production horizon H ·Δt . This strategy, based on
the functional age concept, reveals the significant influence
of the production rate on the deterioration of the manufac-
turing system. Formally, the maintenance cost is expressed
as follows:

CM (U (u(1), u(1), . . . u(H − 1)) , N )

= C pm × (N − 1) + Ccm × ϕM (U, N ) (9)

where ϕ (U, N )is the average number of failures as a func-
tion of the production plan defined by the vector Uand the
number of preventive maintenance actions N .
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Analytical study

Production policy

The purpose of this subsection is to develop and optimize the
expected production and holding costs over the finite time
horizon H such that the demand is satisfied at the end of
each period. The problem can be formulated as a stochas-
tic optimization problem under a threshold inventory level
constraint. Due to the stochastic nature of our problem, the
constraints and the dimensionality, to try to obtain an opti-
mal solution can become a hard task. An approach that trans-
forms the stochastic problem into a deterministic equivalent
is necessary. This deterministic problem maintains the main
properties of the original problem, that is, the linearity of the
inventory balance equation (2), the convexity of the HMMS’s
functional costs described by equation (7) and the random
demand described by Gaussian processes.

Before proceeding, the following notation is introduced:
Mean variables: E {S1 (k)} = Ŝ1 (k) , E {S2 (k)} =

Ŝ2 (k) , E{u(k)} = û (k) , E{us(k)} = ûs (k)

Variance variables: Vu(k) = Vus (k) = 0. (Note that this
reflects the fact that the control variables u(k) and us(k) are
deterministic).

Production and inventory costs

Let us now convert the objective function (1) to a determin-
istic equivalent.

Lemma 1

f (u) =
H∑

k=0

Cs ×
[

Ŝ1 (k)2 + Ŝ2 (k)2 +
(

k · δ2 · (1 − μ)2

+
(

k + (k − 1) · (μ · δ)2
))

· σ 2
d

]

+
H−1∑

k=1

(
C pr × û (k)2 + C ps × ûs (k)2

)
(10)

Proof It is assumed that the demand variable has its first and
second statistic moments perfectly known for each period k,

that is, E {d (k)} = d̂ (k) and Vd(k) = σ 2
d for each k.

The inventory variables S1(k)and S2(k) are statistically
described respectively by their means E {S1 (k)} = Ŝ1 (k)

and E {S2 (k)} = Ŝ2 (k) as well as their variances VS1(k) =
E{(S1(k) − Ŝ1(k))2} and VS2(k) = E{(S2(k) − Ŝ2(k))2}

The inventory balance equation (2) can be reformulated
as:

Ŝ1 (k + 1) = Ŝ1 (k) + ûs (k) + û (k)

+μ · δ · d̂ (k − τ1) − d̂ (k) k = 0, 1, . . . , H − 1

(11)

Likewise, the inventory balance equation (4) can be refor-
mulated as:

Ŝ2 (k + 1) = Ŝ2 (k) + (1 − μ) · δ · d̂ (k − τ1) − û2 (k) (12)

• If we take the difference between Eqs. (2) and (11) we
obtain:

S1 (k + 1) − Ŝ1 (k + 1) =
(

S1 (k) − Ŝ1 (k)
)

+
⎛

⎜
⎝us (k) − ûs (k)
︸ ︷︷ ︸

0

⎞

⎟
⎠ +

⎛

⎜
⎝u (k) − û (k)
︸ ︷︷ ︸

0

⎞

⎟
⎠

+μ · δ ·
(

d (k − τ1) − d̂ (k − τ1)
)

−
(

d (k) − d̂ (k)
)

⇒
(

S1 (k + 1) − Ŝ1 (k + 1)
)2 =

((
S1 (k) − Ŝ1 (k)

)

+ μ · δ ·
(

d (k − τ1) − d̂ (k − τ1)
)

−
(

d (k) − d̂ (k)
))2

⇒ E

{(
S1 (k + 1) − Ŝ1 (k + 1)

)2
}

= E

{(
S1 (k) − Ŝ1 (k)

)2
}

+E

{

(μ · δ)2
(

d (k − τ1) − d̂ (k − τ1)
)2
}

+E

{(
d (k) − d̂ (k)

)2
}

+2 · E
{(

S1 (k)− Ŝ1 (k)
)

·μ · δ ·
(

d (k − τ1)−d̂(k − τ1)
)}

−2 · E
{(

S1 (k) − Ŝ1 (k)
)

·
(

d (k) − d̂ (k)
)}

−2 · E
{(

d (k) − d̂ (k)
)

·μ·δ·
(
d (k − τ1) − d̂ (k − τ1)

)}

Since S1(k) and d(k) are independent random variables,
we can deduce that:

E
{(

S1 (k) − Ŝ1 (k)
)

·
(

d (k) − d̂ (k)
)}

= E
{

S1 (k) − Ŝ1 (k)
}

E
{

d (k) − d̂ (k)
}

E
{(

S1 (k) − Ŝ1 (k)
)

· μ · δ ·
(

d (k − τ1) − d̂ (k − τ1)
)}

= μ · δ · E
{

S1 (k) − Ŝ1 (k)
}

· E
{

d (k − τ1) − d̂ (k − τ1)
}

E
{(

d (k) − d̂ (k)
)

· μ · δ ·
(

d (k − τ1) − d̂ (k − τ1)
)}

= μ · δ · E
{

d (k − τ1) − d̂ (k − τ1)
}

· E
{

d (k) − d̂ (k)
}

Hence

E
{

S1 (k) − Ŝ1 (k)
}

= E {S1 (k)}−E
{

Ŝ1 (k)
}
=0

E
{

d (k) − d̂ (k)
}

= E {d (k)} − E
{

d̂ (k)
}

= 0

E
{

d (k − τ1) − d̂ (k − τ1)
}

= E {d (k − τ1)}
−E

{
d̂ (k − τ1)

}
= 0
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Therefore

⇒ E

{(
S1 (k + 1) − Ŝ1 (k + 1)

)2
}

= E

{(
S1 (k) − Ŝ1 (k)

)2
}

+ (μ · δ)2

·E
{(

d (k−τ1)−d̂ (k−τ1)
)2
}

+E

{(
d (k)−d̂ (k)

)2
}

If we assume that VS1 (k = 0) = 0 and that σdk is constant
and equal to σd for all periods, we can deduce that

Vs1 (k + 1) = Vs1 (k) +
(
(μ · δ)2 + 1

)
· σ 2

d k ≥ 1, τ1 ≥ 1

For k = 0, Vs1 (1) = σ 2
d ,

Vs1 (k) = σ 2
d

(
k + (k − 1) · (μ · δ)2

)

Since VS1(k) = E
{
(S1(k) − Ŝ1(k))2

}
= E

{
S1 (k)2} −

Ŝ1 (k)2, we can write

E
{

S1 (k)2
}

− Ŝ1 (k)2 = σ 2
d

(
k + (k − 1) · (μ · δ)2

)
.

Hence,

E
{

S1 (k)2
}

= σ 2
d

(
k + (k − 1) · (μ · δ)2

)
+ Ŝ1 (k)2 (13)

• If we take the difference between Eqs. (4) and (12) we
obtain:

S2 (k + 1) − Ŝ2 (k + 1)

=
(
S2 (k) − Ŝ2 (k)

)
+ (1 − μ) ·δ·

(
d (k − τ1) −d̂ (k−τ1)

)

⇒ E

{(
S2 (k + 1) − Ŝ2 (K + 1)

)2
}

= E

{(
S2 (k) − Ŝ2 (k)

)2
}

+ (1 − μ)2 · δ2 · E

{(
d (k − τ1) − d̂ (k − τ1)

)2
}

+2 · (1 − μ) · δ · E
{(

d (k − τ1) − d̂ (k − τ1)
)

·
(

S2 (k) − Ŝ2 (k)
)}

Since S2(k) and d(k −τ1) are independent random variables,
we can deduce that:

(1 − μ) · δ · E
{(

d (k − τ1) − d̂ (k − τ1)
)

·
(

S2 (k) − Ŝ2 (k)
)}

= (1 − μ) · δ · E
{(

d (k − τ1) − d̂ (k − τ1)
)}

·E
{(

S2 (k) − Ŝ2 (k)
)}

with

E
{(

d (k − τ1) − d̂ (k − τ1)
)}

= E
{
d (k − τ1)

} − E
{
d̂ (k − τ1)

} = 0

E
{(

S2 (k) − Ŝ2 (k)
)}

= E
{

S2 (k)
} − E

{
Ŝ2 (k)

} = 0

Therefore,

⇒ E
{

S2 (k + 1) − Ŝ2 (K + 1)
}

= E

{(
S2 (k) − Ŝ2 (k)

)2
}

+ (1 − μ)2 · δ2 · E

{(
d (k − τ1) − d̂ (k − τ1)

)2
}

⇒ Vs2 (k + 1) = Vs2 (k) + δ2 · (1 − μ)2 · σ 2
d

If we assume that VS2 (k = 0) = 0 and that σdk is constant
and equal to σd for all the periods, we can deduce that:

Vs2 (k) = k · δ2 · (1 − μ)2 · σ 2
d

Since V arS2(k) = E

{(
S2 (k) − Ŝ2 (k)

)2
}

= E
{

S2 (k)2}−
Ŝ2 (k)2,

We can write E
{

S2 (k)2}− Ŝ2 (k)2 = k ·δ2 ·(1 − μ)2 ·σ 2
d .

Hence,

E
{

S2 (k)2
}

= k · δ2 · (1 − μ)2 · σ 2
d + Ŝ2 (k)2 (14)

Substituting (13) and (14) in (7) we obtain:

f (u) = Cs ×
(

E
{

S1 (H)2
}

+ E
{

S2 (H)2
})

+
H−1∑

k=1

(
C pr × u (k)2 + C ps × E

{
us (k)2

})

+
H−1∑

k=1

Cs ×
(

E
{

S1 (k)2
}

+ E
{

S2 (k)2
})

with k ∈ {0, 1, . . . , H − 1}

=> f (u) =
H∑

k=0

Cs ×
[

Ŝ1 (k)2 + Ŝ2 (k)2

+k · δ2 · (1 − μ)2 · σ 2
d +

(
k + (k − 1) · (μ · δ)2

)
· σ 2

d

]

+
H−1∑

k=1

(
C pr × û (k)2 + C ps × ûs (k)2

)

Service level constraint

Constraints on state and decision variables significantly
increase the complexity of solving an optimization problem.
Generally in stochastic cases it is complicated just to guar-
antee feasibility, though one possibility of overcoming such
difficulty is to consider probabilistic constraints. Another
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important transformation changes the service level constraint
into equivalent, but deterministic, inequalities by specifying
through the following lemma a minimum cumulative produc-
tion quantity depending on the service level requirements.

Lemma 2 We recall that θ defines the targeted service level
as expressed by constraint (3), repeated below:

Prob [S1 (k + 1) ≥ 0] ≥ θ with 0 ≤ u (k) ≤ Umax.

Then, for k = 0, 1, . . . , H − 1 we have:

Prob
(
S1 (k + 1) ≥ 0

) ≥ θ ⇒
(

u (k) ≥ (
Vd(k) × Vd(k−τ)

)

×ϕ−1 (θ) − S1 (k) − us (k) + d̂ (k) − μ · δ · d̂ (k − τ1)
)

k = 0, 1, . . . , H − 1 (15)

ϕ : Cumulative Gaussian distribution function with mean(
1

Vdk−τ
× d̂(k) − δ

Vd
× d̂(k − τ)

)
. and finite variance

((
1

Vd,k−τ

)2 × Vd,k +
(
− δ

Vd

)2 × Vd,k−τ ≥ 0

)

ϕ−1 : Inverse distribution function

Proof

S1 (k + 1)

= S1 (k) + us (k) + u (k) + μ · δ · d (k − τ1) − d (k)

Prob (S1 (k + 1) ≥ 0) ≥ θ

Prob
(
S1 (k) + us (k) + u (k) + μ · δ · d (k − τ1)

−d (k) ≥ 0
) ≥ θ

Prob
(
S1 (k) + us (k) + u (k) + μ · δ · d (k − τ1) ≥ d (k)

)

≥ θ

Prob
(

S1 (k) + us (k) + u (k) + μ · δ · d (k − τ1) − d̂ (k)

≥ d (k) − d̂ (k)
)

≥ θ

Prob
(

d (k) − d̂ (k) ≤ S1 (k) + us (k) + u (k)

+μ · δ · d (k − τ1) − d̂ (k)
)

≥ θ

Prob
(

d (k) − d̂ (k) − μ · δ · d (k − τ1) + μ · δ · d̂ (k − τ1)

≤ S1 (k) + us (k) + u (k) − d̂ (k) + μ · δ · d̂ (k − τ1)
)

≥θ

Prob

⎛

⎝
d (k) − d̂ (k) − μ · δ ×

(
d (k − τ) − d̂ (k − τ)

)

Vd,k × Vd,k−τ

≤ S1 (k) + us (k) + u (k) − d̂ (k) + μ · δ · d̂ (k − τ1)

Vd,k × Vd,k−τ

)

≥ θ

��

Prob

(
1

Vd,k−τ

× d (k) − d̂ (k)

Vd,k
− μ · δ

Vd,k

×d (k − τ) − d̂ (k − τ)

Vd,k−τ

≤ S1 (k) + us (k) + u (k) − d̂ (k) + μ · δ · d̂ (k − τ1)

Vd,k × Vd,k−τ

)

≥ θ (16)

Note that X =
(

d(k)−d̂(k)
Vd,k

)
is a Gaussian random variable

with an identical distribution as d(k).

and that Y =
(

d(k−τ1)−d̂(k−τ1)
Vd,k−τ1

)
is a Gaussian random

variable with an identical distribution as d(k − τ).
This formulation is equivalent to Prob(A × X + B × Y ≤

C) ≥ θ with A = 1
Vd,k−τ

and B = − μ·δ
Vd,k

.

X ′ = A× X is a Gaussian random variable with an identi-
cal distribution as fX ′ = 1

A × f
( y

A

)
, with mean A× d̂(k) =

1
Vd,k−τ

× d̂(k) and variance A2 × Vd,k =
(

1
Vd,k−τ

)2 × Vd,k ≥
0 while Y ′ = B × Y is a Gaussian random variable with
an identical distribution as fY ′ = − 1

B × f
( y

B

)
, with mean

B × d̂ (k − τ1) = − μ·δ
Vd,k

× d̂ (k − τ1) and variance B2 ×
Vd,k−τ1 =

(
μ·δ
Vd,k

)2 × Vd,k−τ1 ≥ 0.

Thus T ′ = X ′ +Y ′ is a Gaussian random variable with an
identical distribution as h = fX ′ ∗ fY ′ , with mean A×d̂ (k)+
B × d̂ (k − τ1) and variance A2 × Vd,k + B2 × Vd,k−τ ≥ 0
with A = 1

Vd,k−τ
and B = − μ·δ

Vd,k
.

ϕ is a cumulative Gaussian distribution function of T ′.

(16) ⇒ ϕ

(
S1 (k) + us (k) + u (k) − d̂ (k) + μ · δ · d̂ (k − τ1)

Vd,k × Vd,k−τ

)

≥ θ

(17)

Since lim ϕdk = 0
dk→−∞

and lim ϕdk = 1
dk→+∞

, the function φdk is strictly

increasing, and we note that it is indefinitely differentiable.
That’s why we conclude that ϕdk is invertible.

Thus,

S1 (k) + us (k) + u (k) − d̂ (k) + μ · δ · d̂ (k − τ1)

Vd,k × Vd,k−τ
≥ ϕ−1 (θ)

(18)

=> u (k) ≥ (
Vd,k × Vd,k−τ

) × ϕ−1 (θ) − S1 (k)

−us (k) + d̂ (k) − μ · δ · d̂ (k − τ1)

It can consequently be concluded that

Prob
(
S1 (k + 1) ≥ 0

) ≥ θ ⇒ (
u (k) ≥ (

Vd,k × Vd,k−τ

)

×ϕ−1 (θ) − S1 (k) − us (k) + d̂ (k)

−μ · δ · d̂ (k − τ1)
)

k = 0, 1, . . . , H − 1
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Maintenance policy

For the maintenance policy, we seek to determine the optimal
maintenance strategy characterized by the optimal number
N∗ of preventive maintenance actions and the time between
them T ∗, as given by Eq. (19).

T ∗ = H

N∗ (19)

The analytic expression of the total maintenance cost is as
follows, with N ∈ {1, 2, 3 . . .}.
CM (U, N ) = (N − 1) · C pm + Ccm · ϕM (U, N ) (20)

where ϕM (U, N )corresponds to the expected number of fail-
ures that occur during the horizon H, considering the pro-
duction rate in each production period Δt . We recall that
the manufacturing system considered in this study is com-
posed of a machine M characterized by the reliability func-
tion Rk(t, u(k)) (k = 0, 1. . .N − 1).

The average number of failures is defined as follows:

ϕM (U, N ) =
dim(U )∑

i=0

tpi+1∫

tpi

λpi+1 (t, u(k)) dt (21)

where tpi = tpi−1 + Δt, (tp0 = 0), the system age at the
end of period pi , and λpi (t, u(k))= the failure law after pi

periods.
However, the relationship defined by Eq. (21) is not accu-

rate because it does not ensure the continuity of the reliability
function. This situation is rectified via the use of the func-
tional age concept. In essence, if two successive production
periods pi [(i − 1) · Δt, i · Δt] and pi+1[i · Δt, (i + 1) · Δt]
have different production rates ui and ui+1, the continuity
of the reliability function requires that the following relation
holds.

Ru(i)(tu(i)) = Ru(i+1)(tu(i)) (22)

where
tu(i) : system age at the end of the period where the pro-

duction rate is equal to u(i).
Ru(i) : reliability function corresponding to the production

rate u(i).
From this relationship, we note that the reliability func-

tion at the end of period pi is equal to the reliability function
of the beginning of period pi+1. Therefore, this relation to
hold, the production rate u(i) during i ·Δt is equivalent to the
production rate u(i + 1) during a different duration denoted
dui+1. This new duration characterizes the operational age
of the system and Eq. (22) becomes:

Ru(i)(tu(i)) = Ru(i+1)(�u(i+1)) (23)

where �u( j+1) = ∑ j
i=1 du(i) j = {1, 2, . . ., H} represents

the functional age of the system at the beginning of period
i + 1.

The average number of failures occurring during the pro-
duction plan is given by:

ϕM (U, N ) =
N∑

n=1

⎛

⎜
⎝

f (n)∑

i=d(n)

�i +σi∫

�i

λi (t, u(i))dt

⎞

⎟
⎠

︸ ︷︷ ︸
average number of f ailure
f or each P M intervals

(24)

We assume that notation �i = �u(i)

We can observe from Fig. 2 that the production periods
can be linked to several maintenance intervals. For example,
the production period p2 is divided between maintenance
intervals A and B. So, the preventive maintenance intervals
are constituted of several production periods. The mainte-
nance interval B is composed of parts of production periods
p2 andp4 and all of period p3.

Calculating the average number of failures that occur dur-
ing the production plan is determined for each maintenance
interval, which is itself divided into several production peri-
ods. Consequently, it’s necessary to know the values of d(n)
and f (n) that respectively represent the beginning and the
end periods of the interval n = {1, 2, . . ., N }.

The duration of these production periods for each interval
is denoted σi , with σi ≤ Δt . Note from Fig. 2 that the produc-
tion periods p2 and p4 are represented respectively by d(B)

and f (B) for the maintenance interval B. The duration of
production period p2 in this interval is given by (2 ·Δt − T ),
and the duration of period p4 is equal to (2 · T − (3 · Δt)).

From Eq. (8):

λi (t, u(i)) = u(i)

Umax
· λn(t) (25)

Hence

ϕM (U, N ) =
N∑

n=1

⎛

⎜
⎝

f (n)∑

i=d(n)

�i +σi∫

�i

u(i)

Umax
· λn(t)dt

⎞

⎟
⎠ (26)

Although the failure rate varies according to the production
rates, the system reliability must be continuous over time.
Thus, the role of the functional age is to guarantee the conti-
nuity of the reliability function by defining a representative
duration of the system age. Consequently, the determination
of the functional age requires knowledge of the reliability at
the end of the previous period as well as the production rates
for the previous and next periods.

With the functional age-based model, the virtual age is
given by:
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Fig. 2 Maintenance policy
example

t=0 

period p1 period p2 period p3 period p4

Interval  C Interval  B Interval  A 

Δt Δt Δt 

σu(1) σ u(2) σ u(3)σ u(2)

Lemma 3

�i = R−1
i

(
Ri−1

(
tu(i−1)

))
i ≥ 2 with tu(i) = �i−1 + σu(i)

(27)

σu(i) : duration of period corresponding to the beginning
and the end of each maintenance interval

As the case, the duration of a period is expressed by:

σu(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δt if d (n) �= i �= f (n)
d(n)∑

l=1
Δt − (n − 1) · T if d (n) = i �= f (n)

n · T −
f (n)−1∑

l=1
Δt if d (n) �= i = f (n)

T if d (n) = i = f (n)

For the more detailing of the functional age concept, see the
Appendix.

Numerical example

The effectiveness of the method discussed in the previous
section is illustrated here via a numerical example. A com-
pany whose sales are subject to the effects of seasonality
seeks to develop a production plan which minimizes total
cost over a finite planning horizon H = 72 periods each
of Δt = 1 month duration. For the maintenance policy, the
machine M has a degradation law characterized by a Wei-
bull distribution with scale and shape parameters respectively
equal to β = 16.79 and α = 3, while Ccm = 3000 mu and
C pm = 500 mu. The only information known about Ms is
its availability rate βs = 0.9. In the case of not satisfaction
of customer with the product’s quality, he has the right to
return it within a specific deadline. The returned products

defined by a rate δε {0.1, 0.3, 0.5}. The products witch are
in saleable condition will be stored in the central purchasing
department in order to be relisted for sale and is defined by a
rate με{0.5,0.8}. Meanwhile, the returned products that are
defective will be repaired, recycled or remanufactured by a
subcontractor located in France, following which the prod-
uct will be returned to the central purchasing department is
given by the following rate (1 − μ).

The values of the other parameters are as follows:
C pr = 7 mu, C prs = 25 mu, Umax = 500, θ = 0.9,

Cs = 0.65 mu, S0
1 = 0, S0

2 = 0, Vdk = 4.52 and τ1 = 1.
The average demand is presented in Table 1 below
The economically production plans

(
U∗ = {u∗(0), u∗(2),

. . . , u∗(H − 1)}) of principle machine are presented in
Figs. 3, 4, and 5.

Case1: μ = 0.5: Figs. 3, 4, 5, 6, 7, and 8.
Case2:μ = 0.8: Figs. 9, 10, and 11.
Figures 6, 7, 8, 9, 10, and 11 show the following results,

where ζ* is the optimal total cost: The above figures illus-
trates the minimum total cost for different values of the
number, N , of PM actions to be performed. For each value
of δ and μ, we calculate the economical production plan
and the optimal number of preventive maintenance. The
obtained minimal total cost for each value of δ and μ as
following:

For μ = 0.5
For δ = 0.1 : N∗ = 4, ζ ∗ = 761.88 mu and T ∗ =

H/N∗ = 18Δt .
For δ = 0.3 : N∗ = 3, ζ ∗ = 731.46 mu and T ∗ =

H/N∗ = 24Δt .
For δ = 0.5 : N∗ = 2, ζ ∗ = 548.05 mu and T ∗ =

H/N∗ = 36Δt .
For μ = 0.8

Table 1 The monthly mean demand

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

350 420 340 392 431 444 442 340 392 375 392 400

350 370 395 415 431 444 442 340 392 375 400 420

350 340 392 370 431 392 500 350 320 420 365 480

300 290 360 370 460 460 358 400 442 340 392 375

400 431 400 390 350 290 358 360 460 442 392 450

400 450 360 350 300 392 375 400 431 400 390 450
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k

δ

Fig. 3 Optimal production plan for δ = 0.1

δ

Fig. 4 Optimal production plan for δ = 0.3

δ

Fig. 5 Optimal production plan for δ = 0.5

δ

Fig. 6 Optimal total cost forδ = 0.1(N∗ = 4, ζ ∗ = 761.88 mu)

For δ = 0.1 : N∗ = 4, ζ ∗ = 741.89 mu and T ∗ =
H/N∗ = 18Δt .

For δ = 0.3 : N∗ = 3, ζ ∗ = 711.56 mu and T ∗ =
H/N∗ = 24Δt .

δ

Fig. 7 Optimal total cost for δ = 0.3(N∗ = 3, ζ ∗ = 731.46 mu)

δ

Fig. 8 Optimal total cost for δ = 0.5(N∗ = 2, ζ ∗ = 548.05 mu)

δ

Fig. 9 Optimal total cost for δ = 0.1(N∗ = 4, ζ ∗ = 741.89 mu)

δ

Fig. 10 Optimal total cost for δ = 0.3(N∗ = 3, ζ ∗ = 711.56 mu mu)

For δ = 0.5 : N∗ = 2, ζ ∗ = 458.52 mu and T ∗ =
H/N∗ = 36Δt .

Hence, the higher the value of δ (percentage of backor-
dered product) and μ (percentage of returned product that
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δ

Fig. 11 Optimal total cost for δ = 0.5(N∗ = 2, ζ ∗ = 458.52)

is saleable and sent back to store S1), the lower of the opti-
mal total cost and the number of preventive maintenance
actions. The best integrated policy consists in performing
two preventive maintenance actions over the time horizon
H.Δt at μ = 0.8 and δ = 0.5, yielding ζ ∗ = 458.52 mu.
This cost is significantly lower than that obtained for μ = 0.8
( δ = 0.1, δ = 0.3) and μ = 0.5(δ = 0.1, δ = 0.3, δ = 0.5).
This can be explained by the fact that, as δ increases, the
production rates decrease. Similarly if μ increases, the pro-
duction rates decrease, resulting in fewer preventive mainte-
nance actions.

Conclusion

Based on an industrial case study, this paper considered a
manufacturing system that is subject to random failures. A
minimal repair is performed each time a failure occurs. In
order to reduce the failure frequency, preventive maintenance
actions are scheduled as a function of the production rate. A
random product demand must be satisfied over a finite plan-
ning horizon with a given required service level. Meantime,
products returned by the customers which are in saleable
condition are re-stocked, while those returned products that

are non-conformal are sent to a subcontractor for recycling
and remanufacturing. A jointly optimal production plan and
preventive maintenance program is obtained via a linear qua-
dratic stochastic optimization problem. A key aspect of this
study is that the production system’s failure rate increases
with both time and the production rate. We used the HMMS
model with a maintenance policy based on the functional
age concept taking into consideration the influence of the
production rates on the system deterioration.

For future research, we propose to consider many practi-
cal situations in which preventive maintenance actions are
imperfect and have non-negligible durations. It would be
interesting to assess the impact of such a situation on the
optimal production plan.

Appendix

The following figure illustrated the concept of functional age.
Two production periods (period1 and period 2), with differ-
ent production rates (u(1) and u(2)), are represented by the
curves of reliability R1(t) and R2(t). The reliability of system
at the end of first production period (period 1) amounted to
R1(t1). In order to guarantee this reliability in the beginning
of the second period (period 2), we assumed that the system
worked during period d1 under the production rate u(2) of
second period (See Fig. a1).

The various steps for determining the functional age are
as following:

• Determination of date t1 using the production period
• Determination of the reliability R1(t1).
• determination of date Γ1 in function to reliability R1(t1)

= R2(Γ1)

The length of preventive maintenance intervals is fixed.
The maintenance plan time is divided into (N + 1) regular

Fig. a1 Functional age
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Fig. a2 Case 1

Fig. a3 Case 2

Fig. a4 Case 3

Fig. a5 Case 4

intervals. The preventive maintenances activities can be car-
ried out during the production period.

Hence, it is necessary to determine the periods correspond-
ing to the beginning and the end of each interval. (See Figs.
a2, a3, a4, a5).

• Case 1 if period pi ⊂ T , the production period is com-
pletely performed (d(n) �= i �= f (n)).

The duration of period pi in the interval n is given by:

σui = Δt

• Case 2 if period pi begins the preventive maintenance
interval and it does not finish (d(n) = i �= f (n))

The duration of period pi in the interval n is given by:

σui =
d(n)∑

l=1

Δt − (n − 1) · T

• Case 3 if period pi does not begins the preventive main-
tenance interval and it finishes (d(n) �= i = f (n))

The duration of period pi in the interval n is given by:

σui =n · T −
f (n)−1∑

l=1

Δt or σui =Δt −
⎛

⎝
f (n)∑

l=1

Δt − n · T

⎞

⎠

• Case 4 if period pi begins and finishes the preventive
maintenance interval (d(n) = i = f (n))

The duration of period pi in the interval n is given by:

σui = T

Finally, as the case, the duration of a period is expressed by:

σui =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δt si d (n) �= i �= f (n)
∑d(n)

l=1 Δt − (n − 1) · T si d (n) = i �= f (n)

n · T − ∑ f (n)−1
l=1 Δt si d (n) �= i = f (n)

T si d (n) = i = f (n)

The terms correspond to the periods at the ends of preventive
maintenance intervals, Pd(n) and Pf (n) are given by
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d (n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 i f n = 1

i solution of

⎧
⎪⎪⎨

⎪⎪⎩

i∑

l=1
Δt > (n − 1) · T

i−1∑

l=1
Δt ≤ (n − 1) · T

i f no

f (n) =

⎧
⎪⎨

⎪⎩

H i f n = H

i solution of

{∑i
l=1 Δt ≥ n · T

∑i−1
l=1 Δt < n · T

i f no
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