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Abstract In this study, an economic production quantity
(EPQ) model is generalized by considering maintenance and
production programs for an imperfect process involving a
deteriorating production system with increasing hazard rate.
There are two types of preventive maintenance (PM), namely
imperfect PM and perfect PM. The probability that perfect
PM is performed depends on the number of imperfect main-
tenance operations performed since the last renewal cycle.
Following a failure, the delayed repair performs some res-
torations and reduces production rate to restore the system
into an operating state (in-control state), but leaves its lower
production rate until perfect PM is performed. That is, the
production run period not always starts in normal production
rate. This study considers backorders, as well as loss of inven-
tory due to the lower production rate. For the EPQ model,
the optimum run time, which minimizes the total cost, is dis-
cussed. Various special cases are considered, including the
maintenance learning effect. Finally, a numerical example is
presented to illustrate the effects of PM ability, repair cost
and production decreasing rate on total costs and production
period.
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List of symbols

T Time of each production run
T1 Period of production stoppage and inventory

depletion; T1 = (
p
d − 1)T

* Implies an optimum value
p Normal production rate in units per year
Q Production lot
d Demand rate in units per year; p > d
α Production decreasing rate after delayed

repair
P̄j Probability that the first j PM are imperfect

PM; P̄0 = 1
p j Probability that PM is perfect following the

( j − 1) imperfect PM; p j = P̄j−1 − P̄j

{P̄j } Sequence of P̄j , j = 0, 1, 2, . . .

q j Probability that the j-th PM is an imperfect
PM; q j = P̄j/P̄j−1

θ j Probability that the j-th PM is a perfect
PM; θ j = 1 − q j

M Number of PM preceding the first perfect PM
Rm Cost of each PM
Rs Setup cost for each production run
Rms Sum of Rm and Rs; Rms = Rm + Rs

Rr Delayed repair cost of time lapse between
failure and perfect PM per unit of time,
including rework cost

Rb Backorder cost per unit
Rh Holding cost per unit per year of the product
J (T ; {P̄j }) Expected total production cost for the EPQ

model
X Time to failure of a new unit
F(t) Failure distribution function of X
f (t) Failure density function associated with F(t)
F̄(t) Survival function associated with F(t)
r The learning rate
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Introduction

In the competitive business environment, managers of manu-
facturing industries encounter the challenge everyday to find
ways of minimizing production costs by Anis and Daoud
(2004), Hajji et al. (2010) and Ouyang et al. (2002). Recently
considerable attention has been devoted to maintenance as an
integral aspect of production. Maintenance is launched when
equipment fails or as planned preventive maintenance (PM)
(Chiu 2010; Sheu et al. 2006; Radhoui et al. 2010; Liao et al.
2010). Manufacturers seek a production policy that also man-
ages inventory levels under uncertain production failure and
demand to provide better services than before to customers.
The economic production quantity (EPQ) model is a use-
ful inventory control model that has been studied in detail
(Chang and Ho 2010).

EPQ model can be considered as an extension to the well
known economic order quantity (EOQ) model that was intro-
duced by Harris (1913). Traditional EPQ models assume that
a production process always produces parts with perfect qual-
ity (Biskup et al. 2003). Production of defective items is a
feature of real production systems (Salameh and Jaber 2000).
Such a production process is called imperfect production (Liu
and Yang 1996). Furthermore, Rosenblatt and Lee (1986)
investigated the influence of process deterioration on opti-
mal EPQ.

As a result, random machine shifts from ‘in-control’ state
to ‘out-of-control’ state frequently occur during production
runs. Repair can restore a failed system to working order (‘in-
control’ state). Different actions are generally taken during
system repair, and affect the system differently following
repair. Major repairs reset the system failure intensity and
the system is restored to the “as good as new” state (Yang
and Klutke 2001). Minimal repairs do not improve the hazard
rate of the system, but simply restores the system to opera-
tional status (Barlow and Hunter 1960; Nakagawa and Kijima
1989; Ja et al. 2001). Biswas et al. (2003) showed that the
breakdown policy (delayed repair) can be applied to certain
situations following failures, such as ‘difficulty of access’,
and ‘cost constraints’, preventing continuous system moni-
toring, and also restricting the restoration of repaired units
until the next scheduled inspection period. In certain cases of
standby redundancy, the smaller redundant elements (spares)
begin to work only when the active element has failed, and
the failures are repaired until perfect PM. Smaller redun-
dancy facilities reduce the production rate. If the products
are performed at lower production rate during pre-determined
intervals, then stockout is unavoidable. In many practical sit-
uations, the occurrence of shortages in inventory is a natural
phenomenon due to various uncertainties. Hu et al. (2010)
considered the economic production run time problem with
imperfect production processes and allowable shortages.

The product system can be produced more efficiently
using a PM program that significantly increases production
process reliability (Yang et al. 2008). PM is performed reg-
ularly at pre-determined intervals (Schutz et al. 2011). The
major difference between sequential PM policy and periodic
PM policy is that periodic PM involves performing PM at
fixed time intervals (Chiang and Yuan 2001; Nakagawa and
Yasui 1991), which do not exist for sequential PM (Lin et al.
2000; Nakagawa 1988). The perfect PM model is assumed
to return to an “as good as new” state following each PM
action. Tseng (1996) devised a perfect maintenance policy
to improve the reliability of deteriorating systems. However,
recognizing imperfect PM is more realistic. Nakagawa and
Yasui (1987) and Nakagawa (1979) introduced an imperfect
PM model, in which PM is “bad as old” with probability p,
and “good as new” with probability p̄ = 1 − p. Numerous
studies based on maintenance and production analyses have
attempted to apply the imperfect production model to vari-
ous real-world situations, including imperfect PM (Lin et al.
2003; Pham and Wang 1996). Ben-Daya (2002) assumed
that, following each PM, the system age reduces proportional
to the PM level for an integrated EPQ model with imperfect
process.

This investigation assumes that the probability of perfect
PM depends on the number of imperfect maintenance oper-
ations performed since the previous renewal cycle. The pur-
pose of this paper is to extend the model of Liao et al. (2009)
incorporating delayed repair, variable production rate and
backorder to study the joint effects of PM cost, setup cost,
backorder cost, holding cost and production rate.

Section “General model” describes the integrated mainte-
nance and production programs in the EPQ model. Follow-
ing a failure, the delayed repair performs some restorations
and reduces production rate. The proposed model incorpo-
rates the occurrence of inventory shortages due to insufficient
production following lower production rate. Restated, PM is
performed after production run period. The integrated EPQ
model is determined, and used to identify the optimal pro-
duction policy.

The remainder of this study is organized as follows: Sec-
tion “Special cases” details various special cases. Section
“Example and analysis” then presents numerical results for
special cases. Next, a study is conducted to examine the
effects of these parameters on the solution. Finally, the last
section presents “Concluding remarks”.

General model

PM helps maintain a production system in top operating
conditions. This section considers a generalized EPQ model
with backorder, delayed repair and PM using the following
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PM scheme. A system is classified as one of two PM types;
that is, following periodic PM, the system may be either (1)
unchanged, or (2) renewed. Type I PM is termed imperfect
PM, while type II PM is labeled as perfect PM. This system
enables the probability of type II PM to depend on the number
of PM undertaken since the previous renewal cycle. Further-
more, M denotes the number of PM until the occurrence of
the first type II PM. Additionally, let P̄j = P(M > j). That
is, P̄j represents the probability that the first j outcomes
are type I PM. Based on Sheu et al. (2006), we assume
that the domain of P̄j is {0, 1, 2, . . .}, and that 1 = P̄0 >

P̄1 ≥ P̄2 ≥ · · ·. The probability P̄j does not increase with
the number of PM items j . The notation {P̄j } is used as an
abbreviation for a sequence of probabilities. Furthermore, let
p j = P(M = j) = P̄j−1 − P̄j = P̄j−1

(
1 − P̄j/P̄j−1

)
,

with domain {1, 2, 3, . . .}. Consequently, if the j-th PM
occurs, a PM is either type I with probability q j = P̄j/P̄j−1,
or type II with probability θ j = 1 − q j .

To model the problem, the inventory cycle is divided into
two major periods: inventory building period (production run
period) and inventory depletion period (production stoppage
period). T and T1 represent the occurrence times of the inven-
tory building and inventory depletion periods, respectively.
Figures 1, 2 and 3 illustrate the different inventory cycle types

of the EPQ model. Moreover, the following assumptions are
made:

1. The demand rate, setup cost and holding cost are known
constants.

2. Backorder is permitted in inventory depletion period.
3. The original system begins operating at time 0. The

production process starts in an in-control state and per-
fect items are produced.

4. At the start of each inventory cycle, the setup cost Rs

will be incurred and the state of the process is assumed
not always to be restored to normal production rate.
The cycle time for each production lot is T . PM is per-
formed after production run period. The cost of each
PM is Rm .

5. A system has two types of PM at cumulative production
run time j · T ( j = 1, 2, . . .), based on outcome:

• type-I PM (imperfect PM) results in the unit having
the same failure rate as before PM, with probability
q j = P̄j/P̄j−1

(
0 ≤ q j < 1

)
,

• type-II PM (perfect PM) makes the unit as good as
new, with probability θ j = 1 − q j .

6. Following a perfect PM, the system returns to age 0.

Fig. 1 The inventory cycle of
the EPQ model with normal
inventory building and depletion
period
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Fig. 2 The inventory cycle of
the EPQ model with delayed
repair and backorder
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Fig. 3 The inventory cycle of
the EPQ model starts in lower
production rate
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7. If failure occurs, the system shifts into the “out-of-
control” state, and delayed repair is performed imme-
diately. The delayed repair performs some restorations
and production rate reduces to (1 − α)p, then returns
the system to an operating state, but leaves its lower
production rate until perfect PM. That is, the produc-
tion process returns to the in-control condition, but
leaves its hazard rate unchanged. The backorder occurs
due to insufficient production after delayed repair. The
delayed repair cost is Rr and backorder cost per unit is
Rb.

8. The repair times are negligible.
9. The PM work must finish before next inventory cycle.

Then, the PM time must be less than or equal to T1.
10. 1 − d

p − α > 0. That is, backorder is not allowed in
inventory building period.

Let DTj be the failure time of the j th inventory cycle ( j =
1, 2, . . .). In addition, the expected failure time for one inven-
tory cycle is

∑∞
j=1 E[DTj ].

∞∑

j=1

E[DTj ] =
∞∑

j=1

P̄j−1
∑∞

j=1 P̄j−1

⎡

⎢
⎣

jT∫

(j−1)T

( jT − t) f (t) dt

⎤

⎥
⎦

+
∞∑

j=1

P̄j−1
∑∞

j=1 P̄j−1
(T · F(( j − 1) · T )). (1)

The first term on the right-hand side of equation (Eq. 1) is
the mean failure time till production stoppage period when
failure occurs at inventory cycle j ( j = 1, 2, . . .); the system

enters ( j − 1) successive type I PM, so the delayed repair is
performed and the production rate decreases immediately, as
shown in Fig. 2. The second term is the situation that the pro-
duction run period starts in lower production rate, as depicted
in Fig. 3.

Figure 2 show that the breakdown occurs at times X during
the time interval (( j−1)T , jT). The reduction in the inventory
is αp( jT − X) due to the lower production rate after delayed
repair. The inventory level ispT (1− d

p )−αp( jT − X) at the
end of the production run period. Then, the backorder quan-
tity is αp( jT − X). This change in the lower production rate
due to delayed repair will affect the next inventory cycle until
perfect PM. The inventory level is pT (1 − d

p ) − αpT at the
end of the following production run period and the backorder
quantity is αpT , as shown in Fig. 3.

From Eq. (1), we have

∞∑

j=1

E[DTj ] =
∞∑

j=1

P̄j−1
∑∞

j=1 P̄j−1

jT∫

(j−1)T

F(t) dt

=
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt . (2)

Following a perfect PM without failure, as shown in Fig. 4 or
a failure occurs at inventory cycle j and the system is renewed
at perfect PM, as depicted in Fig. 5, the system resets to age
0.
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Fig. 4 The system is renewed at perfect PM without failure
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Fig. 5 The failure occurs at inventory cycle j and the system is renewed at perfect PM

The EPQ model with maintenance and production pro-
grams is

J (T ; {P̄j }) = Holding cost + Setup cost + PM cost

+delayed repair, cost + backorder cost. (3)

The various costs of EPQ model are derived as follows:

1. Holding cost per year.

The reduction in the inventory is αp
∑∞

j=1 E[DTj ] due
to the lower production rate after delayed repair. Inven-
tory level must subtract loss of finished goods inventory,
and the holding cost is

Rh

2

⎡

⎣p · T

(
1 − d

p

)
− αp

∞∑

j=1

E[DTj ]
⎤

⎦ = Rh

2

×
⎡

⎢
⎣p · T

(
1 − d

p

)
− αp

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦ .

2. Setup cost is d
p·T Rs in a year, where d

p·T is the number
of production cycles per year.

3. Cost of PM.
For each inventory cycle, the PM process accrues once,
and hence the expected PM cost is Rm . Cost of PM is

d
p·T Rm in a year.

4. Delayed repair cost is

d
p·T

(

Rr ×
∞∑
j=1

E[DTj ]
)

= d
p·T Rr

∞∑
j=1

(P̄j−1−P̄j)∑∞
j=1 P̄j−1

×
jT∫

0
F(t) dt in a year.

5. Backorder cost is

d
p·T

(

Rbαp ×
∞∑
j=1

E[DTj ]
)

= d
p·T αpRb

∞∑
j=1

(P̄j−1−P̄j)∑∞
j=1 P̄j−1

×
jT∫

0
F(t) dt in a year.

The expression for J (T ; {P̄j }) can be obtained as follows:

J (T ; {P̄j })
= 1

2

[
p · T

(
1 − d

p

)

−αp
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦ · Rh

+ d

p · T

⎡

⎣Rs + Rm + (Rr + αpRb)

×
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦
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= 1

2

[
p · T

(
1 − d

p

)

−αp
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦ · Rh

+ d

p · T

⎡

⎣Rms + (Rr + αpRb)

×
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦ . (4)

Find the optimal time T ∗; Q∗ can be easily determined by
pT ∗, which minimize J (T ; {P̄j }). Differentiating J (T ; {P̄j })
with respect to T and set the derivation to zero.

pRh T 2

2

⎡

⎣
(

1 − d

p

)
− α

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

j F( jT )

⎤

⎦

+ d

p

⎡

⎣(Rr + αpRb)

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT F( jT )

−Rms − (Rr + αpRb)

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

F(t) dt

⎤

⎥
⎦ = 0

(5)

The following theorem demonstrates that a unique solution
exists which satisfies Eq. (5) under certain reasonable condi-
tions. Therefore, T ∗ can easily be determined by any numer-
ical search procedure, for example bisection search.

Theorem 1 If
∑∞

j=1
(P̄j−1−P̄j )∑∞

j=1 P̄j−1
[( d

p Rr +αd Rb)
∫ jT

0 td F(t)−
αpRh T 2

2 j F( jT )] is strictly increasing in T ; then there exists
a finite and unique optimal solution T ∗ which minimizes
J (T ; {P̄j }), and

J (T ∗; {P̄j })

= pT ∗
(

1 − d

p

)
Rh − αpRh

2

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

×
⎛

⎜
⎝

jT∗∫

0

F(t) dt + jT∗F( jT ∗)

⎞

⎟
⎠

+
(

d

p
Rr + αd Rb

) ∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

j F
(

jT ∗) . (6)

Proof See Appendix 1

Special cases

Case 1: P̄0 = 1; P̄j = 0( j = 1, 2, . . .)

This case involves an operating system that must be as good
as new following PM. From Eqs. (4) and (6),

J (T ; {1, 0, 0, . . . , 0})

= 1

2

⎡

⎣pT

(
1 − d

p

)
− αp

T∫

0

F(t) dt

⎤

⎦ · Rh

+ d

pT

⎛

⎝Rms + (Rr + αpRb)

T∫

0

F(t) dt

⎞

⎠ , (7)

J (T ∗; {1, 0, 0, . . . , 0}) = pT ∗
(

1 − d

p

)
Rh

−αpRh

2

⎛

⎝
T ∗∫

0

F(t) dt + T ∗ · F(T ∗)

⎞

⎠

+
(

d

p
Rr + αd Rb

)
F(T ∗). (8)

Case 2: P̄0 = 1; P̄j = q j ( j = 1, 2, . . .), 0 ≤ q < 1, q̄ =
1 − q

Here, a random number M , of instances of PM until a
type II PM is performed, is geometrically distributed. PM
is “bad as old” with probability q, and “good as new” with
probability q̄ = 1 − q. Using Eqs. (4) and (6),

J (T ; {q j })

= 1

2

⎡

⎢
⎣p · T

(
1 − d

p

)
− αpq̄2

∞∑

j=1

q j−1

jT∫

0

F(t) dt

⎤

⎥
⎦· Rh

+ d

p · T

⎡

⎢
⎣Rms + (Rr + αpRb) q̄2

∞∑

j=1

q j−1

jT∫

0

F(t) dt

⎤

⎥
⎦,

(9)

J (T ∗; {q j })

= pT ∗
(

1 − d

p

)
Rh − αpRh

2
q̄2

∞∑

j=1

q j−1

×
⎛

⎜
⎝

jT∗∫

0

F(t) dt + jT∗F( jT ∗)

⎞

⎟
⎠

+
(

d

p
Rr + αd Rb

)
q̄2

∞∑

j=1

q j−1 j F( jT ∗). (10)
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Case 3: P̄0 = 1; P̄1 �= 0; P̄j = P̄1 · jb( j = 1, 2, . . .),

0 < r < 1

Given instruction and through repetition, PM workers learn
to perform tasks more effectively. This study applies the tra-
ditional learning curve model to the PM model, substitut-
ing P̄j for total direct labor hours per unit. The probability
P̄j resembles bile duct injury rate as in Moore ane Bennett
(1995) and quality by Li and Rajagopalan (1997). Follow-
ing the discussion, a learning curve is developed, and the
following assumptions are made;

1. P̄j−1 > P̄j ( j = 1, 2, . . .).

2. If each doubling of the number of PM reduces imper-
fect PM probability by (1 − r), then P̄j = P̄1 jb( j =
1, 2, . . .).

3. b = log r
log 2 .

In this case, learning curves provide their greatest advan-
tage in performing the early PM in response to new causes
of failure. As the number of times PM has been performed
becomes large, the learning effect is less noticeable. That is,
P̄j − P̄j+1 > P̄j+1 − P̄j+2( j = 1, 2, . . .). Using Eqs. (4)
and (6),

J (T ; {1, P̄1, P̄1 · 2b, . . .})

= Rh

2

[
p · T

(
1 − d

p

)]
− αp

[ (
1 − P̄1

)

1 + P̄
∑∞

j=2 ( j − 1)b

×
T∫

0

F(t) dt + P̄1

∞∑

j=2

( j − 1)b − jb

1 + P̄1
∑∞

j=2 ( j − 1)b

×
jT∫

0

F(t) dt

⎤

⎥
⎦ + d

p · T
{Rms + (Rr + αpRb)

×
⎡

⎣ (1 − P̄1)

1 + P̄
∑∞

j=2 ( j − 1)b

T∫

0

F(t) dt

+P̄1

∞∑

j=2

( j − 1)b − jb

1 + P̄1
∑∞

j=2 ( j − 1)b

jT∫

0

F(t) dt

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
. (11)

and

J (T ∗; {1, P̄1, P̄1 · 2b, . . .})
= pT ∗

(
1 − d

p

)
Rh − αpRh

2

×
⎡

⎣
(
1 − P̄1

)

1 + P̄1
∑∞

j=2 ( j − 1)b

⎛

⎝
T∗∫

0

F(t) dt + T∗F
(
T ∗)

⎞

⎠

+P̄1

∞∑

j=2

( j − 1)b − jb

1 + P̄1
∑∞

j=2 ( j − 1)b

×
jT∗∫

0

F(t) dt + jT∗F( jT ∗)

⎤

⎥
⎦

+
(

d

p
Rr + αd Rb

)[
(1 − P̄1)

1 + P̄1
∑∞

j=2 ( j − 1)b
F(T ∗)

+P̄1

∞∑

j=2

( j − 1)b − jb

1 + P̄1
∑∞

j=2 ( j − 1)b
j F( jT ∗)

⎤

⎦ . (12)

Case 4: P̄0 = 1; P̄j = q jβ ( j = 1, 2, . . .), 0 ≤ q <

1, β > 0

Here, a random number M , of instances of PM until a per-
fect PM is performed, follows a discrete Weibull distribution.
From Eqs. (4) and (6),

J (T ; {q jβ }) = 1

2

⎡

⎢
⎣p · T

(
1 − d

p

)

−αp
∞∑

j=1

(
q( j−1)β − q jβ

)

∑∞
j=1 q( j−1)β

jT∫

0

F(t) dt

⎤

⎥
⎦ · Rh

+ d

p · T

⎡

⎢
⎣Rms + (Rr + αpRb)

×
∞∑

j=1

(
q( j−1)β − q jβ

)

∑∞
j=1 q( j−1)β

jT∫

0

F(t) dt

⎤

⎥
⎦ . (13)

and

J (T ∗; {q jβ })

= pT ∗
(

1 − d

p

)
Rh − αpRh

2

∞∑

j=1

(
q( j−1)β − q jβ

)

∑∞
j=1 q( j−1)β

×
⎛

⎜
⎝

jT∗∫

0

F(t) dt + jT∗F( jT ∗)

⎞

⎟
⎠ +

(
d

p
Rr + αd Rb

)

×
∞∑

j=1

(
q( j−1)β − q jβ

)

∑∞
j=1 q( j−1)β

j F( jT ∗). (14)

Example and analysis

Two tables list optimal times T ∗ and the expected cost for
the special cases. Table 1 lists the special case 1. Table 2
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Table 1 Optimal policy and optimal expected cost given the parameters
in special case 1

Special case 1

α Rr /Rms P̄0 = 1; P̄j = 0 ( j = 1, 2, . . .)

T ∗ J (T ∗; {1, 0, 0, . . . , 0})
0.05 0.5 0.3409 206.0201

2 0.3383 206.7559

3 0.3366 207.2322

0.1 0.5 0.3587 206.6960

2 0.3555 207.3806

3 0.3535 207.8715

0.15 0.5 0.3798 208.0528

2 0.3759 208.7212

3 0.3734 209.1665

presents special cases 2, 3 and 4. The following cost and dis-
tribution parameters of the special cases are considered to
illustrate the policy; p = 1550, d = 650, Rms = 80, Rr =
0.05–3.0 Rms, Rh = 0.7, α = 0.05–0.1, r or q = 0.01–
0.4, Rb = 0.2, F(t) = gam f (t; 2) (gamma Cdf with shape
parameter 2).

The parameters q, r, α, β or Rr/Rms were varied to clar-
ify their influence on the optimal solution. Tables 1, and 2,
and Figs. 6 and 7 summarize the results, and illustrate the
following.

1. The total cost J (T ; {P j }) and optimal time T ∗ increase
with increasing α. Decreasing total cost requires focusing
on reducing α with each failure.

2. As Rr/Rms increases, the optimal time T ∗ falls and the
total cost J (T ; {P j }) become large. Restated, it is best
to perform inventory building frequently when Rr/Rms

is high.

Table 2 Optimal policy and optimal expected cost with the parameters in special case 2, 3 and 4

α Rr /Rms r or q Special case 2 Special case 3 Special case 4a Special case 4b

P̄j = q j or P̄j = q jβ ,

β = 1
P̄j = P̄1 · jb, P̄1 = r P̄j = q jβ , β = 0.5 P̄j = q jβ , β = 1.5

T ∗ J (T ∗; {q j }) T ∗ J (T ∗; {1, P̄1,

P̄1 · 2b, . . .})
T ∗ J (T ∗; {q jβ }) T ∗ J (T ∗; {q jβ })

0.05 0.5 0.01 0.3408 205.9816 0.3408 205.9817 0.3408 205.9920 0.3408 205.9922
0.10 0.3407 206.1448 0.3406 206.1116 0.3405 206.4374 0.3406 206.0520
0.20 0.3404 206.2789 0.3404 206.4822 0.3402 207.3943 0.3404 206.1281
0.30 0.3401 206.5042 0.3407 207.5316 0.3406 208.9211 0.3403 206.2829
0.40 0.3398 206.8489 0.3427 209.9561 0.3419 210.8154 0.3401 206.4164

2 0.01 0.3382 206.8201 0.3382 206.8204 0.3381 206.8205 0.3381 206.6296
0.10 0.3369 207.3036 0.3367 207.3550 0.3348 208.6013 0.3370 206.9994
0.20 0.3351 208.0103 0.3344 209.0131 0.3298 212.9549 0.3359 207.4583
0.30 0.3329 209.0089 0.3314 213.5013 0.3253 219.5724 0.3347 207.9568
0.40 0.3302 210.4250 0.3306 224.4800 0.3232 228.0677 0.3333 208.5549

3 0.01 0.3364 207.3010 0.3364 207.3015 0.3363 207.3345 0.3363 207.0168
0.10 0.3344 208.0254 0.3342 208.1723 0.3313 210.0983 0.3347 207.6289
0.20 0.3318 209.1798 0.3305 210.6054 0.3233 216.5688 0.3330 208.3074
0.30 0.3285 210.7025 0.3257 217.4931 0.3159 226.5296 0.3312 209.0710
0.40 0.3244 212.8078 0.3230 234.0421 0.3115 239.2480 0.3291 209.9777

0.1 0.5 0.01 0.3798 208.0366 0.3798 208.0365 0.3799 208.0810 0.3795 208.0246
0.10 0.3803 208.1333 0.3804 208.1506 0.3818 208.4234 0.3799 208.0936
0.20 0.3811 208.2959 0.3821 208.4472 0.3866 209.1695 0.3804 208.198
0.30 0.3822 208.4986 0.3872 209.2479 0.3949 210.3845 0.3809 208.2795
0.40 0.3838 208.7774 0.4006 211.0845 0.4064 211.8278 0.3815 208.3689

2 0.01 0.3758 208.7720 0.3758 208.7722 0.3758 208.8206 0.3755 208.6141
0.10 0.3747 209.2388 0.3746 209.3061 0.3735 210.4633 0.3745 208.9365
0.20 0.3732 209.9067 0.3732 210.8260 0.3715 214.5774 0.3736 209.3884
0.30 0.3714 210.8184 0.3736 215.1009 0.3723 220.9047 0.3725 209.8094
0.40 0.3694 212.1529 0.3823 225.5412 0.3781 229.0427 0.3714 210.4083

3 0.01 0.3732 209.2396 0.3732 209.2400 0.3731 209.2700 0.3729 208.9846
0.10 0.3711 209.9390 0.3709 210.0531 0.3684 211.8648 0.3712 209.5645
0.20 0.3683 210.9806 0.3676 212.3581 0.3622 218.0826 0.3693 210.1532
0.30 0.3649 212.4013 0.3653 218.9761 0.3586 227.7438 0.3674 210.8768
0.40 0.3608 214.3736 0.3710 235.0474 0.3608 240.2389 0.3651 211.6768
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Fig. 6 Optimal policy and optimal expected cost with α = 0.05 in special cases 2, 3 and 4

Fig. 7 Optimal policy and optimal expected cost with α = 0.1 in special cases 2, 3 and 4

3. When q or r is low, the total cost J (T ; {P j }) decreases.
It needs to focus on developing maintenance ability to
reduce total cost.

4. Figure 6 show that the optimal time T ∗is decreased as
q or r increases with α = 0.05 and Rr/Rms = 2 ∼ 3.
The optimal time T ∗is increased as q or r increases with
α = 0.15 and Rr/Rms = 0.5, as depicted in Fig. 7. The
savings in holding cost from reduced production rate may
affect the production policy.

5. Increasingβ(β > 0) reduces the expected cost J (T ; {P j }).
Moreover, q j < q j+1 < 1( j = 1, 2, . . .) when 0 < β <

1, and 1 > q j > q j+1( j = 1, 2, . . .) when 1 < β. That
is, it will be cost effective to improve q j . Special case

2 can also be obtained for a special case 4 with β = 1,
where the expected cost J (T ; {P j }) with β = 1.5 is
better than that in the special case 2.

Concluding remarks

This article presents an integrate EPQ model that incorpo-
rates production and maintenance programs has been ana-
lyzed. This model considers the impact of restoration action
such as delayed repair and periodic PM on the damage of
a deteriorating production system. At the beginning of the
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production cycle, the state of the process is assumed not
always to be restored to normal production rate. The con-
ditions are studied in the case of the EPQ model undergoing
a backorder due to lower production rate after delayed repair.
The model for optimizing the times T ∗ was examined. The
nature of a PM process and policy produces the hypothesis
that the probability of perfect PM being obtained depends on
the number of imperfect PM performed since the previous
renewal cycle. The results of investigating the optimal pol-
icy conditions demonstrate that such a policy is more general
and flexible than policies already reported in the literature.
Special cases were examined in detail. Using an example
demonstrated that the optimal run times T ∗ were found in
special cases. Analysis reveals the effect of the input param-
eters on the solution, and also obtains some further insights.

This study finds that developing maintenance ability
reduces production related costs. If a maintenance techni-
cian training and accreditation program can be established,
analysts can use the information to develop PM and pro-
duction plans and the product system can be produced more
efficiently using an integrated EPQ model that links mainte-
nance programs.

Appendix

Proof of Theorem 1

d

dT
J (T ; {P̄j }) = 0

implies Eq. (5).

pRh T 2

2

⎡

⎣
(

1 − d

p

)
− α

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

j F( jT )

⎤

⎦

+ d

p

⎡

⎢
⎣(Rr + αpRb)

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

td F(t) − Rms

⎤

⎥
⎦ = 0

(A1)

Let Q(T ) be the left-hand side of Equation (A1).

Q(T ) = pRh T 2

2

⎡

⎣
(

1 − d

p

)
− α

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

j F( jT )

⎤

⎦

+ d

p

⎡

⎢
⎣(Rr + αpRb)

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

jT∫

0

td F(t) − Rms

⎤

⎥
⎦ .

(A2)

Q(T ) is strictly increasing when
∑∞

j=1
(P̄j−1−P̄j)∑∞

j=1 P̄j−1

[ ( d
p Rr+

αd Rb)
∫ jT

0 td F(t)− αpRh T 2

2 j F( jT )
]

is also strictly increas-
ing.

Q(0) = pRh · 0

2

[(
1 − d

p

)
− 0

]

+ d

p

⎡

⎣(Rr + αpRb)

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

0∫

0

td F(t) − Rms

⎤

⎦

= − d

p
Rms < 0, (A3)

Q(∞) = ∞. (A4)

If
∑∞

j=1
(P̄j−1−P̄j )∑∞

j=1 P̄j−1
[( d

p Rr + αd Rb)
∫ jT

0 td F(t) − αpRh T 2

2 j

× F( jT )] is strictly increasing in T , then Q(0) < 0 and
Q(∞) > 0.

Thus from the strictly increasing property of Q(T ), there
exists a unique and finite T ∗, (0 < T ∗ < ∞) satisfying Eq.
(5), which minimizes J (T ; {P̄j }). If T ∗ is the solution, then
from Eq. (5),

J (T ∗; {P̄j }) = pT ∗
(

1 − d

p

)
Rh − αpRh

2

∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

×
⎛

⎜
⎝

jT∗∫

0

F(t) dt + jT∗F
(

jT ∗)
⎞

⎟
⎠ +

(
d

p
Rr + αd Rb

)

×
∞∑

j=1

(
P̄j−1 − P̄j

)

∑∞
j=1 P̄j−1

j F
(

jT ∗) . (A5)
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