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Abstract In this paper, a multi-product multi-machine
serial production line operated under a constant-work-in-
process protocol is considered. A mathematical model for
the system is first presented, and then an artificial bee col-
ony optimization algorithm is applied to simultaneously find
the optimal work-in-process inventory level as well as job
sequence order in order to minimize the overall makespan
time. Unlike many existing approaches, which are based on
deterministic search algorithms such as nonlinear program-
ming and mixed integer programming, the proposed method
does not use a linearized or simplified model of the system.
A production line simulator implemented on MATLAB is,
instead, employed to model the highly nonlinear dynamics
of the production line and is used to evaluate the candidate
solutions. The efficiency of the proposed approach, even for
systems of large sizes, is validated via numerical simulations.

Keywords Artificial bee colony · CONWIP · Production
control system

Introduction

Choosing the effective production control strategy is a vital
decision for managers in today’s competitive world class
manufacturing (WCM) arena.Companies are now contin-
uously facing serious challenges to improve their excel-
lence by increasing their overall productivity, reacting more
quickly and efficiently to the frequent changes of their
customer expectations, and producing with higher profit-
ability and quality but lower waste and cost. To this end,
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various manufacturing environments have been introduced
during the past two decades, among which are included mate-
rial requirements planning (MRP), manufacturing resource
planning (MRP II), theory of constraints (TOC), just-in-
time (JIT), agile manufacturing, CONstant work-in-process
(CONWIP), and more recently enterprize resource planning
(ERP).

The main focus of this study is on CONWIP production
control systems. From a control policy point of view, we
may classify the modern production systems into pure push-
based, pure pull-based, and hybrid push/pull environment. A
push control strategy (such as MRP) relies on existing inven-
tory level, part lead times, bill of materials, and forecasted
demands for scheduling its production jobs, and hence has
large lots, high inventories and/or wastes, and too much work-
in-process (WIP). Conversely, in a pull system, the start of a
new job is trigged by the end product orders with backward
information flow from the last work station to the initial one.
Therefore, it has small lots, low inventories and/or wastes,
and less WIP. In general, as mentioned in Li et al. (2007), pull-
based systems control WIP and observe throughput (total
number of finished jobs per period) by scheduling the releases
whilst push-based systems observe WIP and control through-
put (TH) by authorizing the releases. With respect to the rich
literature about comparing these two manufacturing scenar-
ios [see, e.g., Spearman et al. (1989, 1990), and Spearman and
Zazanis (1992)] most researchers choose pull over push sys-
tems because of three factors, namely, efficiency, robustness,
and observability. Having combined the advantages of push
systems (broad applicability to industrial and manufacturing
firms) with those of pull ones (superior performances in terms
of JIT operational and managerial concepts), some research-
ers proposed a number of hybrid push/pull production control
systems such as Drum-Buffer-Rope (DBR) model in Gol-
dratt and Cox (1985), CONWIP model in Spearman et al.

123



1146 J Intell Manuf (2013) 24:1145–1156

Fig. 1 A simple CONWIP scheme

(1990), and Generic Kanban model in Chang and Yih (1994).
Taking into account the benefits and drawbacks of each pol-
icy, the CONWIP system has attracted much more attention
due to its simplicity of implementation.

The primary mechanism of the CONWIP system is
described in Fig. 1. Similar to Kanban systems, CONWIP
uses cards to manage the number of WIPs. However, there is
only one set of cards flowing backward from the end of the
production line to its beginning in order to precisely mon-
itor current inventory level of the system under study. It is
assumed that as long as all required manufacturing modules
are accessible, the requested demands are taken into account
for early production. Inasmuch as no job can enter the sys-
tem without its related card, once completed in the last sta-
tion, the card is released and then sent back again to the
first station, where it is attached to the subsequent job to be
processed. Obviously, the system is identical to Kanban in
that the production of the first workstation is also activated
by the demand. In contrast, it differs from Kanban system
in the sense that CONWIP is only pulled between the last
and the first workstation, so it may be considered as a sin-
gle-stage Kanban. Accordingly, for sake of this reason, as
stated in Gaury et al. (2000), the implementation, modeling
and optimization of CONWIP production strategy is much
easier than Kanban. For more details about CONWIP sys-
tems and their differences with Kanban, we refer the readers
to Gstettner and Kuhn (1996), Hopp and Roof (1998), and
Marek et al. (2001).

It is worth to mention that in order to effectively set
up a CONWIP control system in a specific manufactur-
ing environment, some common issues have to carefully be
addressed. The most crucial ones are forecasting the backlog
list (which gives the sequence of orders to be introduced into
the line), determining the number of cards, and sequencing
the jobs in the system. Also due to some of its important mer-
its, such as flexibility and robustness in dynamic and uncer-
tain environments, CONWIP production control system has
been applied not only to various manufacturing firms but also
to different echelons of a supply chain in recent years (Knol-
mayer et al. 2002). And researches around these production
systems are keep continued.

The remainder of this paper is organized as follows. The
detailed literature review is presented in Section “Literature
Review”. Section “Problem Formulation” describes the prob-
lem formulation and model development. Artificial Bee Col-
ony optimization algorithm and its application for solving
the model are outlined in Section “Methodology”. Section
“Numerical Examples” verifies the efficiency of the pro-
posed approach via numerical examples. Finally concluding
remarks and future research directions are drawn in the last
section.

Literature review

Different aspects of the CONWIP system such as operation,
applicability, and also comparisons of CONWIP with other
production systems can be found in the literature, and are well
classified by Framinan et al. (2003). Lambrecht and Segaert
(1990) use CONWIP in a merging/assembly line and also
make some comparisons with the single Kanban system. It
is shown there that, with the use of both analytical and simu-
lation models, CONWIP surpasses single Kanban in case of
variable processing times. Hopp and Spearman (1991) pro-
pose the CONWIP flowshop system in which the machines
are subject to exponential failures and repairs, but processing
times are deterministic. They compare two methods for esti-
mating throughput as a function of WIP level with the help of
closed queueing network. Bonvik et al. (1997) point out that,
in a CONWIP system, high inventories may appear in front of
some machines because of high processing time or machine
breakdown. This occurs since there is no mechanism present
to individually limit the WIP level in each part of a system. In
order to overcome this shortcoming and combine the advan-
tages of CONWIP (low overall WIP with high throughput)
with those of Kanban, they propose a Hybrid Kanban/CON-
WIP control strategy by adding Kanban cells to CONWIP.
Hopp and Roof (1998) propose a new method, namely statis-
tical throughput control (STC), which uses real-time data to
adjust WIP level under a make-to-order CONWIP protocol
subject to environmental changes. This study can be cate-
gorized as card controlling, which deals with devising some
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rules in order to maintain or change the current number of
cards with respect to certain events such as abrupt changes
in the demand. Although they employ simulation and con-
sider single and multiple products with shared resources and
assembly systems, their method does not rely on steady-state
conditions.

Golany et al. (1999) propose a mathematical model to
address the optimal number of cards and job sequencing
simultaneously in a multi-cell, multi-family production envi-
ronment with different routes, and solve it via a simulated
annealing (SA) heuristic. Moreover, they compare two vari-
ations of CONWIP control policies, the multi-loop CON-
WIP system (in which containers are restricted to stay in
given cells) and the single-loop CONWIP system (in which
containers can circulate everywhere within the system), and
show the superiority of the latter in all scenarios through
simulations. Framinan et al. (2006) suggest a new procedure
for card controlling which can be applied both to make-to-
stock and make-to-order environments, and examine it on
the CONWIP system. This procedure deals with adding or
subtracting extra cards along with consistently monitoring
throughput rate or service level. And in order to reach a tar-
get throughput rate, they use only two parameters, namely,
the initial Kanban cards of the CONWIP system and the num-
ber of maximum (initial) extra cards. They also demonstrate
that their method is robust pertaining to the values of the
required parameters. In (Herer and Masin 1997) a determin-
istic mathematical programming model is developed for a
multi-product CONWIP flowshop system in order to find the
optimal job order and schedule, given demand and forecasted
rate of throughput, via linear programming (LP). The goal
of this model is to minimize total cost function consisting
of finished goods holding cost, shortage cost, WIP holding
cost, and overtime cost. However, they do not consider lot
sizes and the effects of bottleneck machine on job orders, and
do not propose an algorithm to efficiently solve their model.
Luh et al. (2000) study Sikorsky Aircraft as a single CON-
WIP job shop production line, and develop a mathematical
programming model in order to minimize weighted penalties
on tardiness and earliness at a given WIP level. The model is
partially solved by dynamic programming (DP) and heuristic
methods with the help of Lagrangian Relaxation. Zhang and
Chen (2001) propose an integer nonlinear mathematical pro-
gramming method to find the optimal job sequencing and lot
sizes in a single serial production line with a specified number
of cards under a CONWIP protocol. Unbalanced workload
term has been included in this model. Having linearized the
objective function, they solve the model directly for a number
of examples using LINGO software. Cao and Chen (2005)
consider an assembly station feeding by two parallel fabrica-
tion lines. The model is partially linearized and a nonlinear
mixed integer programming algorithm is proposed in order
to obtain simultaneously the optimal job sequencing and lot

sizes. However, WIP level and number of containers are not
discussed in their study. Li et al. (2007) consider two dis-
tinct mathematical models on a single serial CONWIP line
system, one is a make-to-stock environment in which it is
desired to simultaneously settle the optimal lot size of each
item on the part list and job sequencing, and another is a both
make-to-stock and make-to-order environment with known
part list for which it is aimed to determine the number of
cards and job sequencing. The objective function of the first
model is to minimize the setup costs along with unbalanced
workload at the bottleneck machine, while the latter is to
minimize the total makespan. They have applied SA algo-
rithm to solve the models and have verified their method by
computational results obtained from a series of examples.

More recently, Ip et al. (2007) consider a lamp assem-
bly production line making more than 100 kinds of prod-
ucts with discrete distribution processing time and demands.
They formulate the optimization model in a way that min-
imizes the total cost of production process while keeping
the average shortage probability of demands below a thresh-
old value. Having examined a single-loop and multi-loop
CONWIP protocols for the assembly line, the authors clearly
illustrates the predominance of the former policy over the
latter one. Khojasteh-Ghamari (2010) develops a framework
for performance analysis between KANBAN and CONWIP
systems based on Activity Interaction Diagram and Critical
Circuit analysis. The author displays that in those production
control mechanism, the performance measures such as sys-
tem throughput is strongly affected by critical circuit; hence
parameters like initial inventories at workstations, Kanban
card distribution in the KANBAN system, and total num-
ber of circulating cards in the CONWIP system may change
the placement of the critical circuit and subsequently affects
the system practice. Furthermore, Based on Little’s law and
theory of token transaction systems, Sato and Khojasteh-
Ghamari (2010) propose an integrated framework for design
of card-based production control systems. The authors study
the interdependent dynamics of average WIP, average cycle
time and average throughput rate in a sub-network of produc-
tion process with FIFO control policy and periodic behavior.
Having employed the critical circuit concept in feedback con-
trolled manufacturing structure, they demonstrate that there
is no universal superiority between CONWIP and KANBAN
especially in a tree-shaped mechanism.

Considering the high complexity of production system
models, typically a simplified model is instead used to find
the optimal WIP level and job sequencing in a CONWIP
system. Linearizing the model, and considering a single bot-
tleneck machine to be able to model the unbalanced workload
constraints are a few examples of such simplifying assump-
tions (Li et al. 2007; Cao and Chen 2005; Herer and Masin
1997). However, even the corresponding optimization prob-
lem are often NP-complete (Garey and Johnson 1979), and

123



1148 J Intell Manuf (2013) 24:1145–1156

hence are intractable for close to real world problems which
dealt with large number of parts, machines, and production
lines. Also less attention is paid in the literature to simulta-
neously finding the optimal WIP level and job sequencing
due to this complexity. To overcome these shortcomings, we
apply the ABC algorthim (Karaboga 2005), a novel heuristic
optimization approach, to simultaneously finding the optimal
WIP level and job sequencing with the aim of minimization
the overall makespan time in a multi-product multi-machine
serial production line under a CONWIP protocol. The highly
nonlinear dynamics of the system is modeled via a produc-
tion line simulator implemented on MATLAB, and is used
to evaluate the candidate solutions. Numerical examples val-
idate the efficacy of the proposed approach even for systems
of large size.

Problem formulation

In this paper we consider a single serial production line with
a number of machines processing a number of different part
types. Each part is to be processed by all the machines sequen-
tially. There is a process time associated with each pair of
(machine, part type), which may differ from part to part for
a certain machine. Also, there is a set up time required to
change the line from processing one part type to another
type. It is also assumed that the line uses a CONWIP pro-
duction control strategy. In addition, there is a demand list
determining the number of required parts of each type. And
the following assumptions are further presumed to hold:

– The process is not interrupted due to the limited raw
material

– There is no machine breakdown
– Set up times and process times are fixed and deterministic
– Parts are processed with all machines sequentially

The objective function is to find the optimal WIP level (card
setting) and job sequencing discipline in order to minimize
the total makespan time. To the best of the authors’ knowl-
edge and as pointed out in Section “Literature Review”, card
setting and job sequencing are treated separately in the litera-
ture. However, it is beneficial to consider these two problems
at the same time since they both affect the performance of
the CONWIP system. This problem can be categorized as
NP-complete, and hence is intractable for close to real world
problems dealing with large number of part types, several
machines and production lines. This is due to the fact that flow
shop sequencing problems are typically NP-hard (Garey and
Johnson 1979). Therefore the common practice is to apply
a non-traditional heuristic approach like Genetic Algorithm
(GA), hill climbing, tabu search, SA, Particle Swarm Optimi-
zation (PSO), Ant Colony Optimization (ACO), Sheep Flock

Heredity Algorithm (SFHA), and Biogeography-Based Opti-
mization (BBO) to address the optimization problem.

In this research, we choose ABC algorithm due to its sim-
plicity and ease of implementation (Singh 2009) and also its
proven excellence to other non-traditional population-based
algorithms in terms of employing fewer control parameters
and efficiency for solving multimodal and multidimensional
optimization problems. We refer readers to Karaboga and
Akay (2009) for an elaborate comparative study of ABC to
Evolution Strategy (ES), GA, PSO, and Differential Evolu-
tion (DE).

The following parameters are used in developing the math-
ematical model of the system:

n the number of different part types
Pi part type i , i = 1, . . . , n
m the number of machines in the line
di the number of required parts of type Pi in the demand

list, i = 1, . . . , n
β weight associated with the unbalanced workload cost

Ti j the setup time required to switch the line from process-
ing part type Pi to part type Pj , i, j = 1, . . . , n, and
i �= j . Ti j = 0 for i = j

Pi j the processing time of machine i on part type Pj , i =
1, . . . , m and j = 1, . . . , n

The decision variables are:

yi j =
⎧
⎨

⎩

1, if part type Pi is followed by part type Pj ,

i, j = 1, . . . , n, and i �= j
0, otherwise

εk the difference between the line workload on kth batch
and (k − 1)th batch, k = 2, . . . , n

The decision variables yi j should satisfy following con-
straints:

n∑

j=1
j �=i

yi j = 1, i = 1, . . . , n (1)

n∑

i=1
i �= j

yi j = 1, j = 1, . . . , n (2)

Following these notations and using Mixed Integer Non-
Linear Programming (MINLP) approach, the optimization
problem can be formulated as

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑

i=1

n∑

j=1
j �=i

yi j Ti j + β

n∑

k=2

εk

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3)
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The first term in (3) corresponds to the setup time required
to switch from processing the current part type to the next one
for a specific job sequencing. The second term is a penalty
term to achieve production smoothness, where β is the weight
associated with the unbalanced workload cost. This means
that at each setup, the line should process an amount of work
similar to the previous setup. This is one of the key CONWIP
requirements and can be achieved by requiring the following
constraint for the solution of (3).

|Wk − Wk−1| < εk, k = 2, . . . , n (4)

where Wk and Wk−1 are the line workloads on the kth and
(k −1)th part batches. Calculating Wk is highly complicated
and depends on many parameters such as the part processing
times Pi j , setup times Ti j , WIP level, demand list, and job
sequencing. Deterministic search algorithms, such as inte-
ger programming require simplified (and usually linear) esti-
mates for Wk . This can be done (e.g. Cao and Chen) by assum-
ing that the line work load on a part batch is determined by the
bottleneck machine in the line, and there is only one bottle-
neck station. Under these assumptions Wk can be estimated
as

Wk =
n∑

i=1

xik

⎛

⎜
⎜
⎜
⎝

di Pb
i +

n∑

j=1
j �=i

yi j Ti j

⎞

⎟
⎟
⎟
⎠

(5)

where Pb
i denotes the process time of part Pi by the bottle-

neck machine and

xik =
{

1, if the kth part batch is of type Pi

0, otherwise
(6)

xik’s should satisfy the following constraints:

n∑

i=1

xik = 1, k = 1, . . . , n (7)

n∑

k=1

xik = 1, i = 1, . . . , n (8)

n∑

k=2

xi(k−1)x jk = yi j , i, j = 1, . . . , n (i �= j) (9)

However, heuristic search algorithms such as the one
employed in the present work, do not require such a sim-
plified formula and can easily handle problems involving
complicated nonlinear models. This is one of the advantages
of the present work over the existing approaches to CON-
WIP production planning. In this work, we use a production
line simulator implemented in MATLAB to calculate the line
workload on part batches under each setting.

Methodology

Artificial bee colony

Since its introduction by Karaboga (2005), ABC optimi-
zation approach has been successfully utilized in many
optimization problems arose from various disciplines includ-
ing supply chain management (Kumar et al. 2010), produc-
tion scheduling (Pan et al. 2011), clustering (Zhang et al.
2010), vehicle routing problem (Szeto et al. 2011), set cov-
ering (Sundar and Singh 2010), reliability redundancy allo-
cation (Yeh and Hsieh 2011), and large scale engineering
design optimization (Akay and Karaboga 2010). In this evo-
lutionary algorithm, there are three foraging groups of bees:
employed bees, onlooker bees, and scout bees. A bee going
to the food source which is visited by itself in the last round
is called an employed bee. An onlooker bee, on the other
hand, waits on the dance floor to gather information about
the positions and the nectar (fitness) of the food sources from
the employed bees and then chooses one of them probabi-
listically. A bee doing a random search for food sources is
called a scout bee. Employed and onlooker bees are respon-
sible for exploitation part of the search while the scout bees
carry out the exploration part. The number of food sources
is equal to the number of employed bees; in other words,
for any food source there exists a unique employed bee.
The number of onlooker bees is assumed to be the same
as that of employed bees. An employed bee correspond-
ing to an exhausted food source becomes a scout bee. A
food source (i.e. a solution) is assumed to be exhausted if
its quality is not improved after a certain number of cycles
called limit. The employed and onlooker bees also do a
local search in the neighborhood of their food sources and
switch to them if they have more nectar (higher fitness). The
detailed steps taken in a typical ABC algorithm are listed
below:

– Initialize the population of the solutions xi

– Evaluate the population using the fitness function
– While the maximum cycle number is not reached
– Produce new random solutions vi in the neighborhood

of the existing solutions (xi ) for the employed bees
– Replace xi with the newly generated solution vi if its

fitness is higher than xi

– Assign probabilities to the solutions xi according to their
finesses

– Assign a solution to each onlooker bee based on the prob-
abilities of xi ’s, and produce random solutions vi for the
onlookers in the neighborhood of xi ’s

– Replace xi in the memory of an onlooker bee with vi , if
its fitness is higher than xi

– Determine an abandoned solution and replace it with a
new randomly generated solution for the scout bee
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– Memorize the best solution found so far
– End While

The probabilities using which the onlookers choose food
sources xi are calculated as

pi = f i t (xi )
∑n

j=1 f i t (x j )
(10)

where n is the size of the population and f i t (xi ) is the fitness
of solution xi .

Finding the optimal WIP level and job sequencing

To solve this problem using the ABC algorithm, we fix the
WIP level in each run and then we use an ABC search to find
the optimal job sequencing. Each solution xi is a vector in
which xi ( j) represents the j th part type to be processed in
the production line. Assuming the number of part types being
n, the space of possible solutions is of size n!, which makes
the search intractable using deterministic search methods for
large values of n. The function f (xi ) to be minimized is the
makespan time corresponding to the job sequencing xi . We
assign the following fitness function f i t (xi ) to any solution
xi

f i t (xi ) = 1

1 + f (xi )
(11)

This fitness function will be used in evaluating the population
and the associated probabilities for every solution according
to (10). A very important step in any ABC algorithm is how
to choose a random solution vi in the neighborhood of xi . In
the case where the search space for xi is continuous, this is
simply done by randomly choosing a solution xk and letting
vi to be a randomly selected point on the segment between xi

and xk . However, this method is not applicable to the discrete
search spaces, which makes the problem more challenging.
In this paper we employ the following algorithm to construct
vi from xi

– j = 1
– While ( j ≤ n)
– Generate a random number p ∈ [0, 1]
– If p > pth or xi ( j) ∈ {vi (1), . . . , vi ( j−1)}, then choose

vi ( j) randomly from {1, . . . , n}\{vi (1), . . . , vi ( j − 1)},
otherwise, set vi ( j) = xi ( j)

– j = j + 1
– End While

In the above algorithm, pth is a threshold used to keep vi

close to xi . It is clear that to keep vi closer to xi , pth should
be chosen close enough to 1.

We run this algorithm for every possible WIP level vary-
ing from 1 to the size of the demand list to find the opti-
mal job sequencing in each case. Finally we choose the job
sequencing with the minimum WIP level associated with the
minimum makespan time.

Numerical examples

Example 1

In this example, we consider a single serial CONWIP pro-
duction line with 3 machines, producing 12 part types. All 12
part types are processed by 3 machines sequentially, and it is
assumed that all the assumptions mentioned in Section “Prob-
lem Formulation”. are hold. Processing times on 3 machines
for 12 products are generated randomly with uniform distri-
bution over {1, . . . , 30} and are shown in Table 1. Sequence
dependent set up times are also generated randomly with uni-
form distribution over {1, . . . , 9}. These numbers are shown
in Table 2, with Ti j denoting the set up time required to
change from processing part type Pi to processing part type
Pj (for instance, T12 in this production line is 4 time units).
Finally, Table 3 shows the number of parts to be produced
through the production line. We also choose the weight asso-
ciated to the unbalanced workload β = 1.

Artificial bee colony

For any WIP level, the search space for finding the optimal
job sequencing has 12! elements. It is well known that for
any heuristic algorithm, the initial parameter setting highly
affects the performance of the method. Therefore the control
parameters of the ABC algorithm are chosen as follows. The
colony size is set to be 50, which corresponds to 25 employed
bees and also 25 onlookers, and is based on Karaboga and
Basturk (2008)’s approach in order to reduce the number
of control parameters. The maximum number of cycles is

Table 1 Part processing times

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Machine1 9 7 22 9 12 20 17 28 9 12 17 19

Machine2 11 5 4 16 4 8 6 14 4 8 6 7

Machine3 3 10 8 30 19 26 9 2 15 27 8 11
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Table 2 Sequence dependent setup times

Ti j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12

i = 1 0 4 5 7 1 4 7 3 6 4 9 4

i = 2 2 0 4 2 8 7 6 5 2 8 3 9

i = 3 7 2 0 6 4 1 1 4 8 3 7 3

i = 4 6 7 9 0 9 6 8 1 3 9 2 5

i = 5 3 9 5 8 0 8 5 7 1 6 8 3

i = 6 4 4 6 7 5 0 4 9 7 2 3 8

i = 7 2 6 2 9 3 9 0 4 3 1 7 2

i = 8 9 8 7 5 7 4 6 0 8 7 3 1

i = 9 7 2 1 5 3 9 8 9 0 4 5 8

i = 10 2 5 4 3 8 4 6 3 9 0 1 3

i = 11 3 7 5 8 4 2 4 2 4 3 0 5

i = 12 6 1 8 6 2 5 7 7 5 5 7 0

Table 3 Demand list

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Demand 5 7 4 6 9 3 7 5 9 3 5 7

Table 4 Makespan time and optimal job sequencing for various WIP
levels

WIP level Makespan Optimal job sequencing

1 2509 P9 P11 P6 P10 P7 P1 P5 P12 P8 P4 P2 P3

2 1386 P1 P5 P12 P3 P9 P2 P4 P8 P11 P10 P6 P7

3 1265 P2 P1 P11 P4 P8 P10 P6 P3 P9 P12 P5 P7

4 1189 P10 P11 P9 P7 P1 P5 P12 P2 P4 P8 P6 P3

5 1107 P4 P8 P11 P6 P1 P5 P12 P9 P7 P2 P10 P3

6 1063 P4 P8 P2 P1 P5 P11 P6 P10 P7 P3 P9 P12

7 1047 P2 P6 P3 P9 P11 P4 P8 P5 P12 P1 P10 P7

8 1045 P9 P5 P12 P11 P6 P4 P8 P1 P2 P10 P7 P3

9 1043 P4 P8 P2 P12 P5 P1 P11 P10 P9 P7 P6 P3

10 1040 P4 P8 P10 P1 P2 P9 P5 P12 P7 P11 P6 P3

11 1040 P4 P8 P10 P1 P2 P9 P5 P12 P7 P11 P6 P3

12 1040 P4 P8 P10 P1 P2 P9 P5 P12 P7 P11 P6 P3

13 1040 P4 P8 P10 P1 P2 P9 P5 P12 P7 P11 P6 P3

1500 which can provide an acceptable convergence speed
for search. Also the limit successive iteration value, as shown
by Karaboga (2009), plays an important role on the perfor-
mance of ABC heuristic for solving function optimization
problems. We decide to adopt Szeto et al. (2011)’s approach
and sets the limit value to be proportional to the number of
part types produced. Additionally, the threshold probability
is chosen to be pth = 0.8.

Accordingly, the optimal job sequencing and makespan
time for various WIP levels are shown in Table 4 and Fig.2.
As can be seen, up to some point, any increase in the WIP
level leads to a decrease in the makespan time and conse-
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Fig. 2 CONWIP system performance for optimal job sequencing

quently alter the optimum job sequence order. However, a
single specified point, increasing WIP level will not improve
the performance of the system (WIP level 10 in this example).
This is the best WIP level in the sense that its correspond-
ing optimal job sequencing results in the minimum possible
makespan time, and using a higher WIP level cannot improve
the performance of the system.

Genetic algorithm

We also apply GA approach to solve this example. Briefly,
each gene is defined as a job performed on each part and
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Table 5 CPU time (seconds)

Number of Cards ABC GA

1 4 29

2 6 45

3 10 105

4 18 121

5 37 367

6 48 415

7 56 482

8 69 594

9 92 676

10 132 705

the corresponding chromosome is job sequence vector on
the whole set of machines. The initial population is cre-
ated using Random Permutation Job Sequence (RPJS) pro-
cedure and besides the roulette wheel selection is employed
for electing among chromosomes at each iteration. Not sur-
prisingly, the final solution of GA is identical to that from
ABC (i.e. WIP level of 10 and minimum makespan time
of 1040 units). However, as indicated in Table 5, the CPU
time needed to perform GA procedure across different WIP
levels is significantly higher than that resulted from ABC
algorithm. So we can conclude that the algorithm proposed
in this study extremely outperforms GA approach in term of
time domain.

Table 6 Sequence dependent setup times

Ti j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11

i = 1 6 8 8 2 4 5 3 9 9 6 3

i = 2 2 1 9 3 4 10 6 2 1 7 7

i = 3 10 5 8 2 8 3 5 3 6 1 9

i = 4 7 7 8 5 2 3 6 9 2 8 10

i = 5 5 7 10 1 3 3 10 10 8 4 3

i = 6 5 7 10 1 3 3 10 10 8 4 3

i = 7 6 2 3 9 4 5 8 2 2 3 8

i = 8 8 9 1 6 5 4 3 2 10 8 2

i = 9 3 8 3 4 8 8 1 7 10 10 7

i = 10 1 3 1 4 1 9 6 2 6 7 4

i = 11 6 3 6 4 1 10 5 8 7 10 3

i = 12 10 5 5 9 6 1 2 5 7 5 8

i = 13 7 6 8 2 1 10 1 7 8 5 1

i = 14 1 9 9 1 2 7 1 3 1 7 8

i = 15 8 9 10 6 6 5 4 7 2 3 3

i = 16 5 2 9 4 4 1 3 2 1 3 8

i = 17 3 7 1 4 5 5 9 6 1 10 9

i = 18 5 9 1 4 10 7 3 3 9 6 2

i = 19 1 3 4 8 8 7 3 6 2 9 4

i = 20 9 4 5 9 5 7 2 1 3 2 8

i = 21 10 2 10 2 8 6 2 5 1 3 5

Ti j j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19 j = 20 j = 21

i = 1 9 1 4 6 10 3 8 6 9 4

i = 2 2 4 7 7 9 1 10 9 9 8

i = 3 8 10 3 3 7 8 1 4 10 3

i = 4 10 9 8 1 10 3 2 4 6 1

i = 5 3 8 6 7 6 5 7 1 8 2

i = 6 3 8 6 7 6 5 7 1 8 2

i = 7 3 4 10 10 10 8 4 6 8 10

i = 8 2 4 4 5 1 1 2 6 4 5

i = 9 7 9 3 7 3 8 8 7 4 1

i = 10 3 10 9 6 4 9 10 2 4 1
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Table 6 continued

Ti j j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19 j = 20 j = 21

i = 11 4 5 4 7 8 6 7 9 7 8

i = 12 9 8 3 5 8 2 2 5 7 7

i = 13 1 5 4 8 4 4 6 1 5 7

i = 14 4 8 4 5 3 6 6 5 9 10

i = 15 3 7 3 2 6 9 7 9 5 3

i = 16 9 10 10 1 5 2 4 1 8 2

i = 17 5 3 8 7 8 2 4 9 6 1

i = 18 4 4 6 7 9 9 4 5 2 5

i = 19 1 5 7 6 3 9 9 2 5 9

i = 20 8 6 9 4 3 9 1 5 2 4

i = 21 2 4 1 9 2 1 5 10 3 3

Table 7 Part processing times

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Machine1 14 20 28 28 37 45 20 4 2 3 12

Machine2 4 13 37 8 32 25 44 4 37 32 37

Machine3 37 30 19 30 9 39 12 30 33 45 32

Machine4 38 29 8 20 30 16 44 27 5 34 20

Machine5 10 13 16 39 27 19 9 34 23 5 9

Machine6 1 10 19 33 13 23 14 39 22 33 2

Machine7 11 3 45 18 16 23 23 10 33 17 20

Machine8 10 20 14 31 20 37 29 19 39 1 4

Machine9 38 40 36 38 44 40 14 3 19 28 45

Machine10 39 4 12 21 29 34 45 28 33 14 29

Machine11 12 11 9 7 2 9 10 4 21 12 1

Machine12 12 1 5 12 10 28 31 12 16 21 29

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

Machine1 11 18 34 34 9 38 9 38 14 45

Machine2 28 38 28 31 31 11 39 44 26 8

Machine3 33 45 32 33 24 45 1 30 34 5

Machine4 34 42 29 15 12 10 16 41 8 34

Machine5 28 3 21 38 14 9 31 20 9 21

Machine6 2 30 18 26 8 19 26 15 33 16

Machine7 23 44 31 23 38 21 7 28 28 12

Machine8 12 7 34 3 36 21 4 26 10 45

Machine9 33 1 1 42 27 27 15 23 41 39

Machine10 10 20 31 32 2 14 2 36 14 41

Machine11 32 4 16 11 17 10 18 9 2 11

Machine12 34 39 11 17 12 19 18 10 36 19

Example 2

In order to demonstrate the applicability of our approach
close to real world situations, we here examine a more

elaborate case. Thus in the following example, there are
21 part types to be manufactured by a 12-machine ser-
ial production line under a single loop conwip protocol.
Similarly the set up time, processing time, and demand
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Table 8 Demand list

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Demand 10 5 2 6 7 12 7 9 2 12 17 8

P13 P13 P13 P14 P15 P16 P17 P18 P19 P20 P21

Demand 19 2 6 6 15 1 3 8 18 1 3

Table 9 Makespan time and
optimal job sequencing for
various WIP levels

WIP level Makespan Optimal job sequencing

1 9963 P19 P14 P8 P21 P5 P1 P13 P11 P7 P2 P9 P20 P15 P6 P3 P10 P17 P12 P16 P4 P18

2 5816 P19 P14 P8 P10 P5 P1 P20 P11 P7 P2 P9 P13 P15 P6 P3 P21 P17 P12 P16 P4 P18

3 4954 P19 P14 P8 P10 P5 P1 P20 P11 P7 P2 P9 P13 P15 P6 P3 P21 P17 P12 P16 P4 P18

4 4379 P19 P14 P8 P10 P7 P1 P13 P15 P5 P2 P9 P20 P11 P6 P3 P21 P17 P12 P16 P4 P18

5 3954 P19 P14 P8 P10 P5 P1 P13 P11 P7 P2 P9 P20 P15 P6 P3 P21 P17 P12 P16 P4 P18

6 3723 P19 P14 P8 P10 P5 P1 P13 P11 P2 P7 P9 P20 P15 P3 P6 P21 P17 P12 P16 P4 P18

7 3511 P19 P14 P8 P10 P1 P5 P13 P11 P2 P7 P9 P20 P15 P3 P6 P21 P17 P12 P16 P4 P18

8 3451 P19 P14 P8 P10 P1 P5 P13 P11 P2 P7 P9 P20 P15 P3 P6 P21 P17 P12 P16 P4 P18

9 3451 P19 P14 P8 P10 P1 P5 P13 P11 P2 P7 P9 P20 P15 P3 P6 P21 P17 P12 P16 P4 P18

information are summarized in Tables 6, 7, and 8, respec-
tively.

Artificial bee colony

Following same steps as previous part, at each WIP level, the
optimal sequence path along with related makespan time are
abstracted in Table 9. Thus one should utilize only 8 cards
in this example to reach the best operating condition of the
system with regards to makespan time. Also as expected,
increasing WIP level will not change the optimum condi-
tion of the problem and hence we introduce this as the final
reachable solution.

Genetic algorithm

At this point, we try to solve the example by Genetic Algo-
rithm approach. Due to the fact that the dimension of the
problem is grown here, we investigate several different com-
binations of crossover and mutation procedures but no feasi-
ble solution can be found after hours of computation. Thus,
comparing to ABC algorithm, we infer that GA cannot be
able to address this example.

Conclusion

This paper considers a CONWIP-based serial production line
with a multi-product multi-machine environment in which

all product types follow the same path through all machines.
We assume deterministic processing and setup times with-
out machine breakdown and preemption presumption. A
Mixed Integer Non-Linear Programming (MINLP) approach
is applied to model the optimization problem with the aim of
minimizing the overall makespan time. Apart from simpli-
fying and linearization techniques, an ABC heuristic is then
proposed to find the optimal WIP level and job sequence
order simultaneously. Two sets of numerical case studies
are presented to show the viability of our proposed method
and their results are also compared with the non-traditional
Genetic Algorithm approach. It is shown that for both cases
the ABC method greatly outperforms Genetic Algorithm in
terms of run time. Namely in a small-sized problem, GA is
able to converge to final solution but at a much longer time
than ABC and for a large-sized dimension, Genetic Algo-
rithm cannot reach to the solution after hours of calculation.

Briefly, the most important contribution made in this
research is that our proposed modeling approach treats both
WIP inventory level and job sequencing at the same time.
In addition, our solution way does not use any simplifying
assumptions or linearization routine, and instead explores a
production line simulator developed on MATLAB for mod-
eling the nonlinear complex dynamics of the system and cal-
culating the correspondent fitness for candidate solutions.
lastly, as illustrated by numerical simulations, we indicate
that the proposed method can be applicable to industrial prob-
lems of a similar type but involving much more number of
parts and machines.
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At last, there are some directions which can be sought
for future research. For example, one can consider differ-
ent selections of machines for various types of products and
develop card-based production systems in a job shop, flow
shop, and assembly line settings. Alternatively, Multi-CON-
WIP control policy can be studied for such systems and
compared with single-loop CONWIP protocol across various
assumptions like machine failure, preemption and rework.
Also effects of randomness in processing and setup times
need to be examined for different problem dimensions.

Acknowledgments The authors are highly grateful to the anonymous
reviewers for their insightful comments that have significantly improved
the earlier version of this paper.

References

Akay, B., & Karaboga, D. (2010). Artificial bee colony algorithm
for large-scale problems and engineering design optimization.
Journal of Intelligent Manufacturing, Published online March
2010. doi:10.1007/s10845-010-0393-4.

Bonvik, A. M., Couch, C. E., & Gershwin, S. B. (1997). A comparison
of production-line control mechanisms. International Journal of
Production Research, 25(3), 789–804.

Cao, D., & Chen, M. (2005). A mixed integer programming model for a
two line CONWIP-based production and assembly system. Inter-
national Journal of Production Economics, 95(3), 317–326.

Chang, T. M., & Yih, Y. (1994). Generic Kanban systems for dynamic
environments. International Journal of Production Research, 32,
889–902.

Framinan, J. M., Gonzleza, P. L., & Ruiz-Usano, R. (2003). The CON-
WIP production control system: Review and research issues. Pro-
duction Planning and Control, 14, 255–265.

Framinan, J. M., Gonzleza, P. L., & Ruiz-Usano, R. (2006). Dynamic
card controlling in a Conwip system. International Journal of
Production Economics, 99(1/2), 102–116.

Garey, M. R., & Johnson, D. S. (1979). Computers and interactability:
A guide to the theory of NP-completeness. San Francisco: Free-
man.

Gaury, E. G. A., Pierreval, H., & Kleijnen, J. P. C. (2000). An evolu-
tionary approach to select a pull system among Kanban, Conwip
and Hybrid. Journal of Intelligent Manufacturing, 11, 157–167.

Golany, B., Dar-EL, E. M., & Zeev, N. (1999). Controlling shop
floor operations in a multi-family, multi-cell manufacturing
environment through constant work-in-process. IIE Transac-
tions, 31, 771–781.

Goldratt, E. M., & Cox, J. (1985). The goal. Croton-on-Hudson,
NY: North River Press.

Gstettner, S., & Kuhn, H. (1996). Analysis of production control
systems Kanban and Conwip. International Journal of Production
Research, 34(11), 3253–3274.

Herer, Y. T., & Masin, M. (1997). Mathematical programming formu-
lation of CONWIP-based production lines; and relationships to
MRP. International Journal of Production Research, 35(4), 1067–
1076.

Hopp, W. J., & Spearman, M. L. (1991). Throughput of a constant work
in process manufacturing line subject to failures. International
Journal of Production Research, 29(3), 635–655.

Hopp, W. J., & Roof, M. L. (1998). Setting WIP levels with statistical
throughput control (STC) in CONWIP production lines. Inter-
national Journal of Production Research, 36(4), 867–882.

Ip, W. H., Huang, M., Yung, K. L., Wang, D., & Wang, X. (2007). CON-
WIP based control of a lamp assembly production line. Journal
of Intelligent Manufacturing, 18(2), 261–271.

Karaboga, N. (2009). A new design method based on artificial bee
colony algorithm for digital IIR filters. Journal of the Franklin
Institute, 346, 328–348.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization. Technical Report TR06 , Kayseri, Turkey: Erciyes
University.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial
bee colony (ABC) algorithm. Applied Soft Computing, 8, 687–
697.

Karaboga, D., & Akay, B. (2009). A comparative study of artifi-
cial bee colony algorithm. Applied Mathematics and Computa-
tion, 214(1), 108–132.

Khojasteh-Ghamari, Y. (2010). Developing a framework for perfor-
mance analysis of a production process controlled by Kanban
and CONWIP. Journal of Intelligent Manufacturing, Published
online October 2009. doi:10.1007/s10845-009-0338-y.

Knolmayer, G., Mertens, P., & Zeier, A. (2002). Supply chain man-
agement based on SAP systems. Berlin: Springer.

Kumar, S. K., Tiwari, M. K., & Babiceanu, R. F. (2010). Minimisation
of supply chain cost with embedded risk using computa-
tional intelligence approaches. International Journal of Produc-
tion Research, 48(13), 3717–3739.

Lambrecht, M., & Segaert, A. (1990). Buffer stock allocation and
assembly type production lines. International Journal of Opera-
tions and Production Management, 10(2), 47–61.

Li, N., Zhang, M. T., Deng, S., Lee, Z. H., Zhang, L., & Zheng, L.
(2007). Single-station performance evaluation and improvement

in semiconductor manufacturing: A graphical approach. Interna-
tional Journal of Production Economics, 107(2), 397–403.

Luh, P. B., Zhou, X., & Tomastik, R. N. (2000). An effective method
to reduce inventory in job shops. IEEE Transactions on Robotics
and Automation, 16, 420–424.

Marek, R. P., Elkins, D. A., & Smith, D. R. (2001). Understanding the
fundamentals of Kanban and CONWIP pull systems using sim-
ulation. In Proceedings of the 2001 winter simulation conference,
Vol. 2, pp. 921–929.

Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A
discrete artificial bee colony algorithm for the lot-streaming flow
shop scheduling problem. Information Sciences, 181(12), 2455–
2468.

Sato, R., & Khojasteh-Ghamari, Y. (2010). An integrated framework
for card-based production control systems. Journal of Intelli-
gent Manufacturing, Published online June 2010. doi:10.1007/
s10845-010-0421-4.

Singh, A. (2009). An artificial bee colony algorithm for the leaf-con-
strained minimum spanning tree problem. Applied Soft Comput-
ing, 9(2), 625–631.

Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1989). A hierarchi-
cal control architecture for constant work-in-process (CONWIP)
production systems. Journal of Manufacturing and Operations
Management, 2, 147–171.

Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). Conwip:
a pull alternative to Kanban. International Journal of Production
Research, 28, 879–894.

Spearman, M. L., & Zazanis, M. A. (1992). Push and Pull Production
Systems: Issues and Comparison. Operations Research, 40(3),
521–532.

Sundar, S., & Singh, A. (2010). A hybrid heuristic for the set covering
problem. Operational Research: An International Journal, Pub-
lished online September 2010. doi:10.1007/s12351-010-0086-y.

Szeto, W. Y., Wu, Y., & Ho, S. C. (2011). An artificial bee colony
algorithm for the capacitated vehicle routing problem. European
Journal of Operational Research, 215(1), 126–135.

123

http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s10845-009-0338-y
http://dx.doi.org/10.1007/s10845-010-0421-4
http://dx.doi.org/10.1007/s10845-010-0421-4
http://dx.doi.org/10.1007/s12351-010-0086-y


1156 J Intell Manuf (2013) 24:1145–1156

Yeh, W. C., & Hsieh, T. J. (2011). Solving reliability redundancy alloca-
tion problems using an artificial bee colony algorithm. Computers
and Operations Research, 38(11), 1465–1473.

Zhang, W., & Chen, M. (2001). A mathematical programming model
for production planning using CONWIP. International Journal
of Production Research, 39(12), 2723–2734.

Zhang, C., Ouyang, D., & Ning, J. (2010). An artificial bee
colony approach for clustering. Expert Systems with Applica-
tions, 37, 4761–4767.

123


	Artificial bee colony algorithm for CONWIP production control system in a multi-product multi-machine manufacturing environment
	Abstract
	Introduction
	Literature review
	Problem formulation
	Methodology
	Artificial bee colony
	Finding the optimal WIP level and job sequencing

	Numerical examples
	Example 1
	Artificial bee colony
	Genetic algorithm

	Example 2
	Artificial bee colony
	Genetic algorithm


	Conclusion
	Acknowledgments
	References


