
J Intell Manuf (2013) 24:1019–1031
DOI 10.1007/s10845-012-0643-8

Mass customization and personalization software development:
a case study eco-design product service system

Tsai Chi Kuo

Received: 13 May 2011 / Accepted: 7 April 2012 / Published online: 24 April 2012
© Springer Science+Business Media, LLC 2012

Abstract A large number of customers currently require
manufacturers to develop more flexible products to satisfy
their own personalization. Due to buyer’s market and short
product lifecycles, many industries are beginning to shift
from mass production to mass customization to satisfy their
customer requirements. The purpose of this research is to pro-
vide a model for enhancing the software component design in
order to improve quality and reusability, as well as to reduce
costs based on the concept of mass customization and person-
alization (MC&P). First, quality function deployment (QFD)
was used to find out what the customers think, and to deter-
mine the core functions and components of the software. The
mass customization technology was then used to aggregate
the software modules. Thirdly, the software costs for busi-
ness strategies, purchasing and renting under the customiza-
tion model were evaluated. Finally, a real case of Eco design
software in PSS was illustrated based on the model.

Keywords Mass customization · Personalization ·
Quality function deployment · Software renting ·
Product service system

Introduction

Historically, a huge gap has been found between the general
purpose, horizontally oriented, broad market technologies
supplied by software vendors and the specialized, vertically
oriented, custom solutions developed to automate proprietary
business processes. The gap might have been resulted from
a mismatch between the diversity of customer requirements

T. C. Kuo (B)
Department of Industrial and Systems Engineering, Chung Yuan
Christian University, Chung Li, Taiwan, ROC
e-mail: tckuo@cycu.edu.tw

and economies of scale in the software industry. Every cus-
tomer differs from the other in his or her demands and those
needs can only be satisfied by a custom solution. However,
software vendors who struggle to keep their development
costs under control are compelled to respond to the custom-
ers’ requirements as if they were identical (Greenfield 2007).
Mass customization (MC) has been proved as an effective
strategy to reduce the above gap. It conduces to standardized
goods or services, but at the same time incorporates custom-
ization for the final product or service to a certain degree.

MC focuses on the means of efficiently producing and
maintaining multiple similar software products, taking into
account and making good use of the similarities and differ-
ences in customer demands (Krueger 2001). This is a long
practiced strategy in the automotive industry. Here, the focus
is on creating a single production line out of which a car
model that satisfies both mass production and customization
is produced.

Two popular tactics are generally used in MC for soft-
ware and product development. They are modular design and
delayed differentiation, respectively. Modular design, a kind
of component design, is a form of standardization (Stevenson
2009). Modular could also be applied to production system
that is called modular production system (Rogers and Bottaci
1997). Several other studies have proved such a component
design useful in developing software systems (Kotonya et al.
2003; Brown and Wallnau 1998; Crnkovic 2001; Crnkovic
and Larsson 2002). Delayed differentiation is a postpone-
ment tactic which is used to delay the completion of a product
until the final demands have become clear. Differentiation of
the products takes place in the final stage so as to effectively
fulfill customer needs. Delayed differentiation of custom-
ers’ preferences does not only achieve the differentiation of
the end-products, but also helps to reduce the development
costs.

123

1020 J Intell Manuf (2013) 24:1019–1031

Fig. 1 The software development for standardization and customiza-
tion

Although the MC technique has been widely used in soft-
ware development, certain critical problems associated with
it have remained unsolved. The first problem is that finding
customer requirements is still difficult. Customers are always
looking for highly personalized and software and thereby,
meeting their unique requirements has become a challenge
for the software vendors. This problem often involves qual-
ity issues. The second problem is that designing software
for reuse is difficult if not impossible. Felice (1998) indi-
cated that engineering software is usually not designed for
reusability. However, software developers always seek to
standardize their software to enhance reusability and reduce
costs. Finally, costs may constitute another problem asso-
ciating with quality and component reusability. Generally,
higher software reusability indicates lower customer satis-
faction and lower costs.

In the midst of the world-wide economic downturn, many
enterprises are trying to reduce the average cost of their infor-
mation systems (IS). Instead of purchasing software, there is
a trend of enterprises pursuing after renting services on web-
based platforms. Most enterprises need an affordable ‘total
investment’ for their complex information systems. Here,
the total investment includes hardware, training, installation
fees, and maintenance fees. However, irrespective of enter-
prises’ renting or purchasing services, customers still prefer a
software system that not only satisfies their requirements, but
also lowers their costs. Thus, developing a software system
that can both satisfy customer needs and keep the develop-
ment costs under control has posed a challenge to the enter-
prises. The above problems could be illustrated in Fig. 1.

The purpose of this research is to provide a model
for enhancing the software component design in order to
improve quality and reusability, as well as to reduce costs
based on the concept of mass customization and personal-
ization (MC&P). First, quality function deployment (QFD)
was used to find out what the customers think, and to deter-
mine the core functions and components of the software.
The MC technology was then used to aggregate the software
modules. Thirdly, the software costs for business strategies,
purchasing and renting under the customization model were
evaluated.

The remainder of the paper has been structured as fol-
lows: “Relevant literature review” reviews relevant literature;
“Model for software development based on MC&P” details
the methodology for the development; “Case study and anal-
ysis” presents a description, evaluation and analysis of the
two business models; and lastly, “Conclusions” gives a dis-
cussion on the research findings.

Relevant literature review

Some of the critical issues in software development encom-
pass getting information on customer demands, using the
MC technology to find the core features, and minimizing the
development costs. The next three sections include a collec-
tion of relevant research. “Software development and QFD”
presents a review of former studies on software development
and QFD. “Mass customization and personalization for soft-
ware development” details MC and personalization in soft-
ware development and “Renting software service” discusses
issues relevant to renting software services.

Software development and QFD

Generally, the development of a software system consists
of several common, interrelated phases that include sys-
tem requirement analysis, design coding, testing, deploy-
ment, maintenance and improvement (Hoch et al. 2000;
Sommerville 2007). Understanding customer needs is usu-
ally time consuming, for it requires performing system anal-
yses, developing program prototypes, as well as finalizing
systems.

In order to effectively and fully understand customer
needs, quality function deployment (QFD) has been used
and proven to be powerful in finding core functions of all
users (Barnett and Raja 1995; Tan et al. 1998; Haag et al.
1996; Jiao et al. 2007). QFD focuses on improving the qual-
ity of both the software development process and the prod-
ucts themselves (Shin and Kim 2000; Shen et al. 2001). It
could be viewed as a tool for cost-requirement negotiation.
Ramires et al. (2005) since it is understood as a matrix of
correlation values between requirements and specifications.
In QFD, due to the vagueness and uncertainty existing in
the importance attributed to judgement of customer require-
ments, it is very important to capture the degree of importance
of customer requirements. Kwong and Bai (2002) proposed
an AHP based on fuzzy scales to determine the importance
weights of customer requirements. Figure 2 illustrates the
QFD process in software development.

The relationship between customer requirements and soft-
ware functions are delineated by the QFD matrix. This matrix
is used in the following way (Haag et al. 1996; Liu 2000):

123

J Intell Manuf (2013) 24:1019–1031 1021

Fig. 2 QFD in software
development

(1) User requirements are solicited for relevant stakehold-
ers’ use and are placed on the left-hand side;

(2) With the help from the stakeholders, the requirements
are converted to technical specifications and are placed
on the top;

(3) The stakeholders are then invited to complete the matrix
with their perceived correlations;

(4) A list of requirements priorities is defined; and
(5) A list of technical specifications priorities is defined.

Mass customization and personalization for software
development

The concept of MC emerged in the late 1980s, and it can be
defined either broadly or narrowly (Silveira et al. 2001). From
a broad perspective, MC was first devised by Davis (1989)
and defined as the ability to provide individually designed
products and services to every customer through high-
process agility, flexibility, modularity, and reusability. MC
technologies have reshaped the approach previously been
taken in numerous industries, enabling them to perceive and
adapt to latent market niches by developing technical capa-
bilities to meet the diverse needs of target customers (Jiao and
Tseng 2000; Krishnapillai and Zeid 2006). Tseng and Jiao
(1996) states that the purpose of MC is to identify patterns of
customer needs with product families, along with common
building blocks of components, subassemblies, and mod-
ules with product fulfillment processes. Jose and Tollenaere
(2005) indicate that using platforms enables essential family
design savings and the ease of manufacturing. Personaliza-
tion, also referred to as customization or individualization,
addresses and meets customer requirements by considering
individual needs (Tseng et al. 2010). Unlike customization
that emphasizes product differentiation for market segments,
product differentiation tends to put its focus on the individual
customers. Prahalad and Ramaswamy (2000) researched on
distinguishing personalization and customization. According
to their research, personalization signifies the co-creation of
the experience including actual interactions whereas custom-
ization refers to selecting from various existing features.

The technique of MC and personalization for software
development focuses on how one can find and share the
same core components among software. Generally, a soft-
ware system consists of software components and software

Fig. 3 Different software through components sharing

applications. Software components are units of independent
design, production and deployment that interact and combine
with other components to form an independently functioning
software system (Heineman and Councill 2001; Szyperski
2002). A component design is a well-defined unit of software
that has a published interface and can be used in conjunction
with components to form larger units. Rodríguez et al. (2004)
provides a framework for analyzing reusability complexity
in component-based systems. They developed a cost model
on component composition under the condition that the com-
ponents were reused either to create a new system or modify
existing ones. Moreover, software applications could be tai-
lored to the customer and user needs and their components
could be replaced or outdated without affecting the other
parts of the application (Machiraju et al. 2000). Issa et al.
(2006) used the case patterns to estimate reusability in soft-
ware systems. The concept of product families was also used
for reusability (Bosch 2000). Deelstra et al. (2005) presented
a framework of terminology and concepts regarding product
derivation. The most important issues are central to finding
out the core features (components) shared among software
and to postpone varying the components to the last stage
of the development. In reference to Fig. 3, a good software
system should be applicable to different kinds of software
through component sharing.

Renting software service

Business firms have been increasingly turning to application
service providers (ASP) to seek solution to their information

123

1022 J Intell Manuf (2013) 24:1019–1031

system problems. Looking to outsource their IT departments
or relevant services, many of them have chosen to rent soft-
ware services from an independent entity organized to pro-
vide such services. As the economy matures, manufacturers
are asked to provide more than they were asked to. That is,
they have to serve their customers beyond merely the provi-
sion of material products.

In an Internet-based economy, the ASP model which
allows firms to rent applications has become as an alterna-
tive to software purchasing (Tian et al. 2002; Feng 2005).
In this way, many services are provided through web-based
software. Helander and Jiao (2002) elaborate on the tech-
nical aspects of e-product development-enabled MC. They
state that the system platform architecture would bring about
the development of industrial products for integrating design,
manufacturing, and logistics. For instance, HP and HP Finan-
cial Services provide a pay-per-use program which is unique
in the way that it fulfills the necessary capacity requirements
in real time and enables purchasing based on usage level.
HP products incorporating this program include notebooks,
desktops, servers, printers, and monitors. As part of the util-
ity pricing solutions of HP, pay-per-use helps customers align
their costs with their usage (signifying that customers pay less
when their usage time is low), and enhance management and
allocation of IT resources.

Renting software system could be viewed as a use-oriented
product service system (PSS). Under such a system, the ser-
vice provider retains the ownership of the tangible product
of the firm and sells the functions of the product via modified
distribution and payment systems. For instance, a firm may
actually ‘rent’ the applications software under some lease-
type agreement, under which it is responsible for software
installation and subsequent upgrades. By virtue of such an
agreement, the firm must also provide a highly skilled expert
to troubleshoot computer-networking, systems-administra-
tion, and applications-deployment issues (Singh et al. 2004).
To implement the use-oriented PSS, the maintenance system
is the key issue. Kuo (2011) discusses the different usage
concepts of products and analyzes required maintenance and
service costs of rented and purchased products in different
models so as to help enterprises evaluate product operation
and sales models.

Model for software development based on MC&P

Figure 4 shows the QFD MC&P software development
model. The model employed in the research consists of three
steps. First, QFD was used to grasp the core of customer
voices and to formulate modules. The next step involved
constructing a system design and evaluating the quality of
the modules. At the stage of the system design, component

Select and
Evaluate Levels

Customization
Level

Business Strategy
. Rent
. Buy
. Web-based System
. Customized System

ISO/ IEC
9126

Cost
Evaluation

Voices of
Customer

. Mass Customization Modules

. Mass Personalization Modules

Existing
Modules

Module
Design

Module
Formulation

QFD

Fig. 4 MC&P model for software development

reusability was evaluated based on ISO/IEC 9126-1 (2001).
The evaluation of software development took place last.

Step 1: Quality function deployment (QFD)

In QFD, to produce a customer-oriented product, it is of great
importance to gather and analyze the voices of the custom-
ers. In this research, QFD was used to find the core customer
requirements and transform the demands into a series of soft-
ware modules.

Customer requirements come from a wide variety of
sources: surveys, focus groups, interviews, trade shows, com-
plaints, and expert opinions (Gryna 2001). Thereafter, cus-
tomer needs were transformed into technical attributes. In
reality, customer needs are considered and fulfilled when
specified technical attributes are completed. Software QFD is
a quantitative method that translates the voices of customers
into relevant technical attributes.

Suppose that there are m customer requirements (CRs),
denoted by Vi , i = 1, 2, . . ., m. In addition, there are n
software functions (SFs) denoted by SF j , j = 1, 2, . . . , n.
For each Vi , the weighting is evaluated by a group of
q experts. Let the weighting for each Vi , be denoted as
wi j (i = 1, 2, . . . m; j = 1, 2, . . . , q) and the weight-
ing of i th CR as jth expert. Since there are q experts,
the weighting values of i th CR for q experts are cal-
culated and averaged based on the harmonic mean.

123

J Intell Manuf (2013) 24:1019–1031 1023

System

MC
Sub

System

MC
Sub

System

Personal
System

...

Module 1 Module 2 Module m
...

Sub
Module

Sub
Module

Sub
Module

...

. Functionality

. Reliability

. Usability

. Efficiency

. Maintainability

. Portability

Requirement 1

Requirement 3

Requirement 2

Requirement 5

Requirement m

Requirement 4

Requirement 6

...

Evaluation
for each module

Fig. 5 To aggregate the voices of customer to be modules and sub-modules

The harmonic mean was used in the research to calculate
the average of a set of numbers. Typically, it is appropriate
for situations when the average of rates is desired. For each
W j ,

W j = q
∑q

i=1
1

wi j

(1)

Let U be the relationship matrix between CR and SF with
elements Ui j , indicating the strength of the impact of j th SF
toward fulfilling the i th CR. In the software QFD approach,
Ui j can be quantified by a selected scale, such as 1, 3, and,
9 to denote weak, medium, and strong need relationships.
Based on the construction of HoQ, U∗

i j , the normalized Ui j

can be interpreted as the contribution of the j th SF toward
the complete fulfillment of the i th CR when the target of the
j th SF is met.

U∗
i j = Ui j

∑n
i=1

∑k
j=1 Ui j

(2)

Step 2: Modular design

After determining the software functions, software devel-
opers began to clarify the level of customer requirements
and to produce sub-modules or modules. Assume there are
k software modules, denoted as Fk , where k = 1, 2, . . . f .
For each SF j will be quantified the relationship with Fk ,
denoted as Vik . The scale 1, 3, and, 9 were used to denote
weak, medium, and strong relationships. SF j is then to be
designed in the module Fk if Vik has the maximum value.
(Max Vik, then SFi ⊂ Fk)

In addition, when it comes to engaging with customers,
it has been found that the customers are always concerned
with whether or not the existent system was suitable for
their companies. Reusability has been evaluated constantly
to determine whether the system should be rebuilt after cus-
tomer needs were known. To solve the problem, the system
was divided into subsystems, modules, or sub-modules. Also,
differentiation of products or service and fulfillment of cus-
tomer requirements were postponed to the final stage. Fig-
ure 5 shows the divided system as modules and sub-modules.
Satisfying the required variables of the customer by integrat-
ing the sub-modules is a critical task for system developers.

To ensure software quality, ISO/IEC 9126 was used to
analyze each module. ISO/IEC 9126 is one of the most com-
monly used software development quality standards. The
fundamental objective of ISO/IEC 9126 is to address some
of the well known human biases that can adversely affect
the delivery and perception of a software development pro-
ject. These biases include changing priorities after the start
of a project or not having any clear definitions of “success”.
Since MC&P is used to determine most customer needs, it is
very important to understand customer satisfaction. ISO/IEC
9126 specifies six characteristics for the external quality of a
software product. They are functionality, reliability, usabil-
ity, efficiency, maintainability, and portability. The six char-
acteristics are listed in Table 1. By using this evaluation,
the software enterprise will be able to understand customer
satisfaction.

For module or sub-module i , customers evaluated the six
ISO/IEC 9126 characteristics on a 1–5 scale. The customer
evaluations were used to determine mass customization lev-
els or mass personalization levels.

123

1024 J Intell Manuf (2013) 24:1019–1031

Table 1 Six characteristics of ISO/IEC 9126-1 (2001) used to evaluate software quality

Characteristics Sub characteristics Description Scale (1–5) Compliance

Functionality Suitability The module/system is suitable to solve our problem
Accuracy The module/system could perform the function properly
Interoperability Client need to operate in different OS
Security Store data can be based on user profile

Reliability Maturity The module/system is ready to use
Fault tolerance Complete a transaction cycle without execution errors
Recoverability Use secondary server if main server fails

Usability Understandability Organize items logically in the interface design
Learn ability Provide online explanations of operation
Operability Provide online help
Attractiveness Alert the new function is available

Efficiency Time behavior It must be used in the future
Resource utilization The system/module must be used

Maintain ability Analyzability Need a expert to operate the system/module
Change ability It could be further developed
Stability It allows mistakes
Testability It does not need to change in the future

Portability Adaptability Export to integrate with other system
Install ability Need to be installed

Ai =
6∑

i=1

Ci =
6∑

i=1

Wi

(∑n
j=1 Ci j

5n

)

(3)

where

Ai is the mass customization level or mass personalization
level

Ci : the aggregate value any ith characteristic of ISO/IEC
9126

Ci j : the customization level evaluation for any jth criteria
in ith characteristic

Wi : the weighting for each ith characteristic,
∑m

i=1 Wi = 1.
n: the no of experts

After calculating Ai , Ai was compared to an upper bond
(UB) and a lower bond (LB). If Ai was greater than UB,
module i was added to the core system. If Ai was between
UB and LB, module i was revised for MC. If Ai was less
than LB, module i was revised for mass personalization.

Step 3: Cost evaluation

During cost evaluation, the software developer (P1) and the
customer (P2), engage in negotiations concerning software
requirements and software costs. P1 can choose between two
options: customized software or web-based software. P2 can
choose between two options: purchase or lease. The options
for P1 and P2 are shown in Table 2.

Determination of the customization level follows that of
the cost. It is assumed that costs in all systems comprise three
parts:

• Ccore : The core module of the software system. Gen-
erally, it is the fundamental part of a system. Example
of them may include the algorithm, the mathematical
method, the main database engine, etc.

• CRevised : The modules or solutions are applicable to most
enterprises. Example are the solution for one or certain
industries, the input/output, or the flow processes.

• CPersonalized : Driven by the customer because of the
requirements of enterprise culture and organization.

Thus, the cost function is listed as follows:

C P1
ES_construction = CES

Core + CES
Revised + CES

Personalized (4)

C P1
WBS_construction = CWBS

Core + CWBS
Revised + CWBS

Personalized (5)

where
C P1

ES_construction It is the cost for P1 to construct a onetime
embedded system (ES) that includes costs of CCore, CRevised,
and CPersonalized.

C P1
WBS It is the cost for P1 to construct a web-based

system (WBS) that includes costs of CCore, CRevised, and
CPersonalized.

The cost equations are denoted as follows, with the nota-
tion listed in Table 2. The variables description is also detailed
in Table 3.

P1Buy
ES_profit = C P2

ES_pay−C P1
ES_construction (6)

P2Buy
ES_cost = C P2

ES_pay−C P2
ES_annual_maintenance (7)

P1Rent
ES_profit = C P2

ES_annual_rent_pay

−C P1
ES_construction−C P1

ES_annual_maintenance (8)

P2Rent
ES_cost = −C P2

ES_annual_rent_pay (9)

123

J Intell Manuf (2013) 24:1019–1031 1025

Table 2 Developer and customer options

(P1) (P2)

Buy Rent

Develop customized software modules
(

P1Buy
ES_profit, P2Buy

ES_cost

) (
P1Rent

ES_profit, P2Rent
ES_cost

)

Develop a web-based platform
(

P1Buy
WBS_profit, P2Buy

WBS_cost

) (
P1Rent

WBS_profit, P2Rent
WBS_cost

)

ES_profit: the profit to buy an embedded system (ES),
ES_cost: the cost to buy an embedded system
WBS_profit: the profit to lease a web based system, and
WBS_cost: the cost to lease a web based system

Table 3 Mathematic notations

Variables Description Variables Description

P1Buy
ES_profit Profit of P1 that P2 buys an ES P1Buy

WBS_profit Profit of P1 that P2 pays for WBS by times
C P2

ES_pay Cost of P2 to pay for an ES C P2
WBS_pay_bytimes Cost that P2 uses WBS by times

C P1
ES_construction Cost of P1 to construct the ES C P1

WBS_construction Cost for P1 to construct the WBS

P2Buy
ES_cost The cost that P2 buys an embedded system C P1

WBS_annual_maintenance Cost for P1 to maintain WBS annually

C P2
ES_annual_maintenance Cost of P2 to maintain en ES P2Buy

WBS_cost Cost that P2 uses WBS by times

P1Rent
ES_profit Profit of P1 that P2 rent the ES annually P1Buy

WBS_profit Profit of P1 that P2 use WBS annually
C P2

ES_annual_rent_pay Cost of P2 to pay annual rent C P1
WBS_annual_rent Cost for P2 to use WBS annually

C P1
ES_annual_maintenance Cost of P1 for ES annual maintenance C P1

WBS_annual_maintenance Cost of P1 to maintain WBS annually
P2Rent

ES_cost Cost for P2 to rent the ES annually P2Rent
WBS_cost Cost for P2 to rent the WBS annually

P1Buy
WBS_profit = C P2

WBS_pay_bytimes

−C P1
WBS_construction−C P1

WBS_annual_maintenance

(10)

P2Rent
WBS_profit = −C P2

WBS_pay_bytimes (11)

P1Rent
WBS_profit = C P2

WBS_annual_rent

−C P1
WBS_construction−C P1

WBS_annual_maintenance

(12)

P2Rent
WBS_cost = −C P2

WBS_annual_rent (13)

Case study and analysis

Recently, many enterprises are forced to comply with many
environmental regulations, such as ROHS, WEEE, and
REACH directives, and so on. All these directives require the
enterprises to not only introduce a green design system but
also to integrate green supply chain management. To com-
ply with these directives, some big enterprises have provided
financial and technical supports to integrate their design sys-
tem and manage their supply chain. However, as for small
and medium sized manufactures (SMEs), they are usually
hesitant when it comes to introducing a new system in the
beginning. The following explains the hesitant attitude: (1)
the demands are uncertain; (2) they lack adequate expertise to
ensure that the problems will be effectively handled; (3) the

installation fees are typically too high for them; and (4) they
fear this system would bring about high maintenance costs.
Since there exist many requirement uncertainties, these enter-
prises are faced with a dilemma of whether to buy or to rent
a software system.

In this study, a recyclability evaluation software (RES)
product service system (PSS) was developed for an SME.
The SME wanted a RES tool to integrate eco-design capa-
bility into their design flow, to meet customer requirements.
Due to its small scale, the company has used a system which
was not fully applicable. Since their customers’ requirements
were not well defined, the company could not determine if
their customers’ requirements for RES PSS were tempo-
rary requirements or long-term requirements. Considering
resource and cost issues, two solutions were recommended:
SME could choose either to buy or to lease a software service.
If the SME opts for purchase, it then needs to develop a com-
prehensive plan. However, if the company chooses to rent
software, the company could meet their customers’ require-
ments temporarily, but the company may need to spend more
money to meet future requirement changes. Here is the flow
for SME to solve the problem.

Quality function deployment

In the beginning, the software developer (P1) provided a
well-defined system for the customer (P2) to evaluate his

123

1026 J Intell Manuf (2013) 24:1019–1031

or her own requirements. The voices of the customers were
collected and analyzed by using the Delphi method. Then,
four components were formulated as follows: (A1) verifica-
tion of the input and output format; (A2) 3R DB, 3R data
calculation engine; (A3) the analysis tool for development;
and (A4) disassembly processes management. Table 4 shows
the quality function deployment of the case study. The cus-
tomer requirements (CRs) have been translated into software
functions (SF).

Modular design

All the function requirements were turned into the sys-
tem modules. Here, the expected function requirements and
modules were evaluated by the experts. The users will
determine the module could include the functions. The
maximum results are shown in Table 5. For example, the
function of ‘material classification important interface’ could
either integrate with the modules of ‘Verify the Input and
outputs format, 3R DB’, or ‘The analysis tool development’.
However, the integration of the function with the module,
Verify the Input and outputs format, 3R DB’, will be pre-
ferred because such integration yields to a higher relation
value. The same criteria were also applied to other func-
tions.

Then each module was evaluated based on ISO/IEC
9126.Then, the enterprise could determine their UB and LB
percentage of MC&P level. In determining the customiza-
tion level in this real case, it was assumed that UB and LB
were set to 85 and 60 %, respectively, by P2. Of course, the
higher the UB, the lower cost P2 is. A higher UB indicates
that a solution that is accepted by most customers is being
used by the SME. This will therefore result in a lower cost.
A lower LB means that the SME fails to satisfy the mod-
ule of the software. Figure 6 shows the evaluation results.
A2 module was 87 %, which was greater than 85 %. There-
fore, the enterprise believed the company could use the A2
module directly. For modules A1 and A4, the results fell
between 60 and 85 %, signifying that existing modules could
only be used after several revisions. The evaluation result
for A3 module was under 60 %, meaning that the module
was unsuitable for the case company. Results are shown in
Fig. 6.

After the determination of the modules, the development
of sub-modules A1 and A4 was evaluated. The same cri-
teria were also used to evaluate the sub-modules, and the
results are shown in Fig. 5. Because sub-modules A1.1,
A1.2, A1.3, and A1.6 were evaluated to be greater than
85 %, they could be used for the core system directly. Sub-
modules A1.4, A1.5, and A1.7 should be revised according
to the enterprise flow because the evaluation fell between
60 and 85 %. According to the results, the other sub-
modules A1.8 and A4.2 should be excluded for system

development. Figure 7 shows the results of the evalua-
tion.

Cost evaluation

The determination of modules and sub-modules was fol-
lowed by the definition of the business strategies. Data were
collected from the case company and are summarized in
Table 6.

The payoff for the software developer and potential cus-
tomer was also calculated according to the present value.
Therefore, all income or costs should be transformed into
the present value shown in Table 7.

Present value = Annual payment ∗[(1+r)n −1]/[r ∗ (1+
r)n]

where n is the depreciation year (5 years in this case), and
r is the annual interest rate (5 % in this instance).

In Table 7, if P2 chooses the ‘Buy’ option, P1 must select
the “web-based platform development” option because P2
wants to minimize the cost, whereas P1 wants to maximize
profit. Here is another example: if P1 chooses the ‘develop
customized software’ option, P2 can then only select the
“rent” option. However, by taking this option, P1 will not be
able to maximize its profits. Though not achieved easily, this
option is also considered an efficient solution. The potential
reasons are listed as follows:

(1) P1 and P2 do not show the amount of cost to be paid
and accepted in different business models.

(2) Cost ratio of renting and purchasing may be inappro-
priate for the model.

(3) For a web-based system, system effectiveness should
take into account a large number of customers. There-
fore, the renting cost for a buyer would be down,
whereas renting profit for the developer would have
risen.

(4) Usage time also affects the results.

The results of the case study: a web-based eco-design
product service system

Table 8 describes the modules and sub-modules for the sys-
tem. A1 and A4 were revised according to the customization
level of the enterprises. For A2 module, the 3R data calcula-
tion engine was employed for all users directly.

Conclusions

Though the Internet technology has been rapidly advancing,
web-based service models seem to be more suitable for the
current enterprises. This new trend enables software devel-

123

J Intell Manuf (2013) 24:1019–1031 1027

Ta
bl

e
4

T
he

vo
ic

es
of

cu
st

om
er

ar
e

tr
an

sl
at

ed
to

th
e

fu
nc

tio
n

re
qu

ir
em

en
ts

C
us

to
m

er
re

qu
ir

em
en

t
D

es
ir

e
re

qu
ir

em
en

t

W
ei

gh
ts

R
eg

ul
at

io
n

up
da

te
s

B
O

M
/

M
at

er
ia

l
im

po
rt

in
te

rf
ac

e

Pr
od

uc
t

da
ta

&
3R

ex
po

rt
in

te
rf

ac
e

M
at

er
ia

l
cl

as
si

-
fic

at
io

n
im

po
rt

in
te

rf
ac

e

M
at

er
ia

l
N

o.
m

ai
n-

te
na

nc
e

in
te

rf
ac

e

C
om

po
ne

nt
N

o.
m

ai
n-

te
na

nc
e

in
te

rf
ac

e

W
E

E
E

di
re

ct
iv

e
m

ai
n-

te
na

nc
e

in
te

rf
ac

e

D
is

as
se

m
bl

y
to

ol
m

ai
n-

te
na

nc
e

in
te

rf
ac

e

R
ep

or
t

ge
ne

ra
tio

n
fo

r
au

th
or

iz
at

io
n

3R
re

cy
cl

in
g

ra
te

da
ta

ba
se

R
eg

ul
at

io
n

m
an

ag
em

en
t

0.
05

1
0

0
9

9
D

at
a

in
pu

t&
ou

tp
ut

m
an

ua
lly

0.
08

1
9

3
9

9
9

3
9

3
D

at
a

in
pu

t&
ou

tp
ut

au
to

m
at

ic
al

ly
0.

12
1

1
1

1
1

1
3

3
E

as
ily

to
m

ai
nt

ai
n

da
ta

ba
se

0.
15

0
0

9
3R

da
ta

ca
lc

ul
at

io
n

en
gi

ne
0.

20
0

0
3

3
D

is
as

se
m

bl
y

pl
an

ni
ng

an
al

ys
is

0.
10

0
1

1
1

1
1

1
1

3
R

ec
yc

lin
g

pl
an

ni
ng

an
al

ys
is

0.
10

0
0

3
D

is
as

se
m

bl
y

re
po

rt
ge

ne
ra

tio
n

0.
05

1
1

1
1

1
1

1
1

R
ec

yc
lin

g
re

po
rt

ge
ne

ra
tio

n
0.

05
1

0
3

Se
cu

ri
ty

0.
10

0
0

9
To

ta
ls

co
re

0.
35

0.
99

0.
51

0.
99

0.
99

0.
99

1.
20

0.
87

2.
10

3.
15

W
ei

gh
t(

%
)

1
3

2
3

3
3

4
3

7
10

C
us

to
m

er
re

qu
ir

em
en

t
D

es
ir

e
re

qu
ir

em
en

t

R
ec

yc
lin

g
ra

te
ca

lc
ul

at
io

n

R
ec

ov
er

y
ra

te
ca

lc
ul

at
io

n

D
is

as
se

m
bl

y
se

qu
en

ce
an

al
ys

is

D
is

as
se

m
bl

y
to

ol
an

al
ys

is

D
is

as
se

m
bl

y
tim

e
an

al
ys

is

Pr
oc

es
s

m
an

ag
em

en
t

E
le

ct
ro

ni
c

si
gn

at
ur

e
Sy

st
em

in
te

gr
at

io
n

L
og

in
/o

ut
de

si
gn

R
eg

ul
at

io
n

m
an

ag
em

en
t

9
3

D
at

a
in

pu
t&

ou
tp

ut
m

an
ua

lly
3

3
1

9
3

3
D

at
a

in
pu

t&
ou

tp
ut

au
to

m
at

ic
al

ly
9

3
9

1
3

3
E

as
ily

to
m

ai
nt

ai
n

da
ta

ba
se

9
9

1
9

3
3

3R
da

ta
ca

lc
ul

at
io

n
en

gi
ne

9
3

1
1

3
3

D
is

as
se

m
bl

y
pl

an
ni

ng
an

al
ys

is
9

1
1

9
3

R
ec

yc
lin

g
pl

an
ni

ng
an

al
ys

is
3

D
is

as
se

m
bl

y
re

po
rt

ge
ne

ra
tio

n
3

R
ec

yc
lin

g
re

po
rt

ge
ne

ra
tio

n
3

3
3

3
3

3
Se

cu
ri

ty
3

3
9

To
ta

ls
co

re
4.

38
3.

15
2.

37
0.

65
2.

73
2.

10
0.

45
3.

00
1.

14
W

ei
gh

t(
%

)
14

10
7

2
9

7
1

9
4

123

1028 J Intell Manuf (2013) 24:1019–1031

Table 5 The modularity analysis for function requirements

Verify the input and
outputs format,
3R DB

3R data calculation
engine

The analysis tool
development

Disassembly
processes
management

Maximum

BOM/Material import interface 9a 9
Material classification import interface 9a 9
Material No. maintenance interface 9a 9
Component No. maintenance interface 9a 9
WEEE directive maintenance interface 9a 1 9
Disassembly tool maintenance interface 9a 9
Report generation for authorization 9a 9
3R Recycling rate database 9a 1 9
Recycling rate calculation 9a 9
Recovery rate calculation 9a 9
Disassembly sequence analysis 9a 9
Disassembly time analysis 9a 3 9
Process management 1 1 9a 9
System integration 1 3 3 9a 9
Log in/out design 3 9a 9

a The maximum value for each row

Fig. 6 The evaluation results of the customization level for four modules

opers to provide different business strategies for their cus-
tomers. In addition, the current enterprises are facing more
challenges in internal and external data sharing. Companies
need more understanding of their customers’ requirements
to integrate new information systems into their customers’
existing systems. Due to the customer requirements which
have remained unclear, enterprises have experienced diffi-
culties in decision making. Thus, they are faced with the
question of how much resource (human power and money)
they should be put into solving the problem. This study
developed a QFD software development model for MC&P,
used the QFD software development model to create a RES
PSS tool for a SME, and showed that the QFD software
development model can be used to create MC&P software

products. Although the QFD model has been considered as
a mature model, it is seldom used for software quality devel-
opment.

Also, as it was mentioned previously, the enterprises have
to consider how the customers’ problems can be solved.
Based on the concept of PSS, software developers have come
up with two kinds of solutions for the enterprises. That is,
they have to decide either to purchase or to rent a software
system. This study has developed a model for a software sys-
tem based on MC&P, as well as a simple and efficient con-
figuration tool that could enable customers to choose how
to develop, customize, or personalize their software. This
paper also considered the business models, and purchasing
and renting options for the customers, who made decisions

123

J Intell Manuf (2013) 24:1019–1031 1029

Fig. 7 The evaluation results of the customization level for sub-modules

Table 6 The value for each
variable NT Dollars Variables Value Variables Value

C P2
ES_pay 1,000,000 C P2

ES_annual_rent_pay 250,000
C P1

ES_construction 500,000 C P1
WBS_annual_rent 150,000

C P2
ES_annual_maintenance 100,000 C P2

WBS_pay_bytimes 3,000
C P2

ES_annual_rent_pay 250,000 C P1
WBS_construction 500,000

C P1
ES_annual_maintenance 250,000

Table 7 Profile and payoff for
customer and software
developer

a The lower cost for different
options

P1 (Software dealer) P2 (Customer)

Buy Rent

Develop customized software (500,000, −1,649,422) (149,422, −1,082,369a)
Develop a web-based platform (551,735, −300,000a) (798,843, −3,247,108)

relevants to personalized software strategies based on their
requirements and budgets.

This study can be viewed as a pilot research for cus-
tomization and personalization in software development. To
researchers who are interested in expanding the present work,
it is suggested that they spend some time and efforts invest-
ing in strengthening this model. Elements to be considered

may include the estimated sales volume of renting or pur-
chasing, and the maintenance fee. Furthermore, as for the
configuration tool, the fuzzy method can be used to deter-
mine the customization level. In terms of renting or purchas-
ing cost strategies, it is suggested that future studies employ
more sophisticated financial methods to obtain superior
results.

123

1030 J Intell Manuf (2013) 24:1019–1031

Table 8 System modules and
sub modules

Start project

Phase I—Function requirement Software QFD
Phase II—Module development A1. Verify the input and output format, 3R DB

A2. 3R data calculation engine
A3. The analysis tool development
A4. Disassembly processes management
A1. Verify the input and output format, 3R DB
A1.1 BOM/Material import interface
A1.2 Product data&3R export interface
A1.3 Material classification import interface
A1.4 Material No maintenance interface
A1.5 Component No. maintenance interface
A1.6 WEEE directive maintenance interface
A1.7 Disassembly tool maintenance interface
A1.8 Report generation for authorization

Phase II—Subsystem requirements A2. 3R data calculation engine
A2.1 Recycling rate calculation
A2.2 Recover rate calculation
A3. The analysis tool development
A3.1 Disassembly process generation
A3.2 Disassembly tree generation
A4. Disassembly processes management
A4.1 Process management
A4.2 Electronic signature (certification by third party)
A4.3 System integration

Aknowledgments The author would like to thank the College of
Electrical Engineering and Computer Science at Chung Yung Chris-
tian University for partially supporting this research under Contract No.
CYCUEECS-10001 and the National Science Council of the Republic
of China, Taiwan for financially supporting this research under contract
NSC 99-2621-M-033-002-MY3.

References

Barnett, W. D., & Raja, M. K. (1995). Application of QFD to the
software development process. International Journal of Quality
and Reliability Management, 12(6), 24–42.

Bosch, J. (2000) Design and use of software architectures: Adopting
and evolving a product line approach. New York, NY: Pearson
Education Addison-Wesley & ACM press

Brown, A., & Wallnau, K. (1998). The current state of CBSE. IEEE
Software, 1998, 37–46.

Crnkovic, I. (2001). Component-based software engineering: New
challenges in software development. Software Focus, 2(4), 127–
133.

Crnkovic, I., & Larsson, M. (2002). Challenges of component-based
development. Journal of Systems and Software, 61, 201–212.

Davis, S. (1989). From future perfect: Mass customizing. Planning
Review, 17(2), 16–21.

Deelstra, S., Sinnema, M., & Bosch, J. (2005). Product derivation in
software product families: A case study. Journal of Systems and
Software, 74(2), 173–194.

Felice, P. D. (1998). Why engineering software is not reusable:
Empirical data from an experiment. Advances in Engineering
Software, 29(2), 151–163.

Feng, S. C. (2005). Preliminary design and manufacturing plan-
ning integration using web-based intelligent agents. Journal of
Intelligent Manufacturing, 16(4–5), 423–437.

Greenfield, J. (2007). Mass customizing solutions. Methods & Tools,
Fall, 15(3), 27–39.

Gryna, F. M. (2001). Quality planning and analysis: From product
development through use. New York: McGraw-Hill International
Edition.

Haag, S., Raja, M., & Schkade, L. (1996). Quality function deploy-
ment usage in software development. Communications of the
ACM, 39, 41–49.

Heineman, G. T., & Councill, W. T. (2001). Component-based software
engineering: Putting the pieces together. Boston, MA: Addison-
Wesley.

Helander, M. G., & Jiao, J. (2002). Research on e-product development
(ePD) for mass customization. Technovation, 22(11), 717–724.

Hoch, D. J., Roeding, C. R., Purkert, G., Kindner, S. K., Ralph, M.
(2000). Secrets of software success: Management insights from
100 software firms around the world. Boston

ISO/IEC 9126-1. (2001). Software engineering—product quality—Part
1: Quality model.

Issa, A., Odeh, M., Coward, D. (2006), Using case patterns to esti-
mate reusability in software systems. Information and Software
Technology, 48(9),836–845, Publisher: Elsevier.

Jiao, J., & Tseng, M. M. (2000). Understanding product family for
mass customization by developing commonality indices. Journal
of Engineering Design, 11, 225–243.

Jiao, J., Simpson, T. W., & Siddique, Z. (2007). Product family
design and platform based product development: A state-of-the-
art review. Journal of Intelligent Manufacturing, 18(1), 5–29.

Jose, A., & Tollenaere, M. (2005). Modular and platform methods for
product family design: Literature analysis. Journal of Intelligent
Manufacturing, 16(3), 371–390.

123

J Intell Manuf (2013) 24:1019–1031 1031

Kotonya, G., Sommerville, I., & Hall, S. (2003). Towards a classi-
fication model for component based software engineering. In:
Proceedings of the 29th Euromicro Conference (Vol. 43). Wash-
ington, DC: IEEE computer society.

Krishnapillai, R., & Zeid, A. (2006). Mapping product design speci-
fication for mass customization. Journal of Intelligent Manufac-
turing, 17(1), 29–43.

Krueger, C. W. (2001). Software mass customization. Austin: BigLever
Software, Inc.

Kuo, T. C. (2011). Simulation of purchase or rental decision-making
based on product service system. The International Journal of
Advanced Manufacturing Technology, 52(9–12), 1239–1249.

Kwong, C. K., & Bai, H. (2002). A fuzzy AHP approach to the
determination of importance weights of customer requirements
in quality function deployment. Journal of Intelligent Manufac-
turing, 13(5), 367–377.

Liu, X. F. (2000). Software quality function deployment. IEEE Poten-
tials, 19(5), 14–16.

Machiraju, V., Dkkhil, M., Griss, M., & Wurste, K. (2000). E-service,
management requirements. Alto, CA: HP Laboratories, Palo.

Prahalad, C. K., & Ramaswamy, V. (2000). Co-opting customer
competence. Harvard Business Review, 78(1), 79–87.

Ramires, J., Antunes, P., & Respício, A. (2005). Software require-
ments negotiation using the software quality function deploy-
ment. Lecture Notes in Computer Science, 3706, 308–324.

Rodríguez, I., Núñez, M., & Rubio, F. (2004). A formal frame-
work for analyzing reusability complexity in component-based
systems. Information and Software Technology, 46(12), 791–804.

Rogers, G. G., & Bottaci, L. (1997). Modular production systems:
A new manufacturing paradigm. Journal of Intelligent Manufac-
turing, 8(2), 147–156.

Shen, X. X., Tan, K. C., & Xie, M. (2001). implementation of
quality function deployment based on linguistic data. Journal of
Intelligent Manufacturing, 12(1), 65–75.

Shin, J. S., & Kim, K.-J. (2000). Complexity reduction of a design
problem in QFD using decomposition. Journal of Intelligent Man-
ufacturing, 11(4), 339–354.

Silveira, G. D., Borenstein, D., & Fogliatto, F. S. (2001). Mass custom-
ization: Literature review and research directions. International
Journal of Production Economics, 72, 1–13.

Singh, C., Shelorb, R., & Jiangc, J. (2004). Gary Kleind, Rental
software valuation in IT investment decisions. Decision Support
Systems, 38, 115–130.

Sommerville, I. (2007). Software engineering, 8th edn. New York,
NY: Adison-Wesley Longman Publishing CO..

Stevenson, W. L. (2009). Operations management. Boston: McGraw-
Hill Irwin.

Szyperski, C. (2002). Component software: Beyond object-oriented
programming, 2nd edn. Boston, MA: Addision-Wesley Profes-
sional.

Tan, K. C., Xie, M., & Chia, E. (1998). Quality function deployment and
its use in designing information technology systems. International
Journal of Quality and Reliability Management, 15(6), 634–645.

Tian, G. Y., Yin, G., & Taylor, D. (2002). Internet-based manufactur-
ing: A review and a new infrastructure for distributed intelligent
manufacturing. Journal of Intelligent Manufacturing, 13(5), 323–
338.

Tseng, M., & Jiao, J. (1996). Design for mass customization. CIRP
Annals-Manufacturing Technology, 45(1), 153–156.

Tseng, M. M., Jiao, R.-J., & Wang, C. (2010). Design for mass person-
alization. CIRP Annals-Manufacturing Technology, 59, 175–178.

123

	Mass customization and personalization software development: a case study eco-design product service system
	Abstract
	Introduction
	Relevant literature review
	Software development and QFD
	Mass customization and personalization for software development
	Renting software service

	Model for software development based on MC&P
	Step 1: Quality function deployment (QFD)
	Step 2: Modular design
	Step 3: Cost evaluation

	Case study and analysis
	Quality function deployment
	Modular design
	Cost evaluation
	The results of the case study: a web-based eco-design product service system

	Conclusions
	Aknowledgments
	References

