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Abstract Outbound logistics network (OLN) in the down-
stream supply chain of a firm plays a dominant role in the
success or failure of that firm. This paper proposes the design
of a hybrid and flexible OLN in multi objective context. The
proposed distribution network for a manufacturing supply
chain consists of a set of customer zones (CZs) at known loca-
tions with known demands being served by a set of potential
manufacturing plants, a set of potential central distribution
centers (CDCs), and a set of potential regional distribution
centers (RDCs). Three variants of a single product classi-
fied based on nature of demand are supplied to CZs through
three different distribution channels. The decision variables
include number of plants, CDCs, RDCs, and quantities of
each variant of product delivered to CZs through a desig-
nated distribution channel. The goal is to design the network
with multiple objectives so as to minimize the total cost, max-
imize the unit fill rates, and maximize the resource utilization
of the facilities in the network. The problem is formulated as a
mixed integer linear programming problem and a multiobjec-
tive genetic algorithm (MOGA) called non-dominated sort-
ing genetic algorithm—II (NSGA-II) is employed to solve
the resulting NP-hard combinatorial optimization problem.
Computational experiments conducted on randomly gener-
ated data sets are presented and analyzed showing the effec-
tiveness of the solution algorithm for the proposed network.
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Introduction

A firm in a civilized and/or industrialized society exists
for the sole purpose of satisfying the needs of the society
through its value added products/services. The needs are bet-
ter addressed and well served if and only if a right prod-
uct/service reaches a right customer, at right place, in right
time, in right quantity, in right quality, and at a right price.
The onus of achieving all these deliverables rests with the
outbound logistics part of a supply chain. This emphasizes
the importance of a better designed and well balanced out-
bound logistics network in any supply chain.

The outbound logistics network design (OLND) in a sup-
ply chain is a strategic decision-making problem, which is
generally governed by multiple and conflicting objectives.
The network design is affected and governed by four factors
namely cost, quality, speed, and flexibility. The customers
expect to be served always with best possible quality at least
possible cost and at best possible levels of speed and flexi-
bility. Thus, the degree of success of an outbound logistics
network of a supply chain depends on how fast it is, how flex-
ible it is, and how efficient it is in delivering quality products
to its customers. The ever increasing levels of globalization
and competition are putting a demand for innovative and flex-
ible outbound logistics networks which can befittingly serve
the aforementioned objectives. Hence, this paper proposes
an innovative and flexible outbound logistics network for a
manufacturing supply chain where three variants of a single
product are shipped through three different delivery channels
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based on the nature of demand for each variant. The objective
of the paper is twofold: (1) to design an efficient outbound
logistics network which can deliver the product at desired
speed through flexible delivery channels, and (2) to find dif-
ferent configurations of the network when the parameters are
changed within the ambit of multiple objectives.

The remainder of the paper is organized as follows.
The related literature is presented in the following sec-
tion. Section 3 outlines the nature of the problem under
consideration. The mathematical model is presented in
section “Mathematical model”. Section “Multi objective
optimization” describes the concepts and principles of multi-
objective optimization, multi-objective genetic algorithms,
and non-dominated sorting genetic algorithm-II. The solu-
tion methodology employed for the resulting mixed integer
linear programming (MILP) problem and the computational
experiments carried out are discussed in section “Solution
methodology and computational experiments”. Results and
discussions are presented in section “Results and discus-
sions”. Section “Managerial insights” outlines the manage-
rial insights. Finally section “Conclusions” concludes the
paper.

Literature review

The logistics as well as supply chain network design is and
has been a favourite topic of study among the supply chain
research community. Since the emergence of supply chain
management (SCM) discipline in 1980s many have actively
studied and rigorously researched this topic and many facets
of the field have been showcased in different hues and cries.
Since this paper discusses and proposes the design of an inno-
vative hybrid and flexible outbound logistics network for a
multi-objective, multi-stage (or multi-echelon), determinis-
tic, single period, single country, and strategic decision mak-
ing problem in a manufacturing supply chain, we consider
here only the related literature which fall under this purview.

Researchers in the past have studied OLND in supply
chains under various names and terminology. To quote them,
we find in the literature terms like ‘supply chain network
design (SCND)’, ‘production-distribution network design
(PDND)’ ‘production-distribution system design (PDSD)’,
‘logistics network design (LND)’, ‘outbound supply chain
network design (OSCND)’, ‘supply chain configuration
(SCC)’, ‘supply chain design (SCD)’, etc., where majority of
these connote the similar meaning and concept of planning
and designing the physical structure of downstream supply
chain, with a significant variation in case of SCC and SCD
which do consider the entire gamut of supply chains i.e. from
suppliers to customers.

Distribution, in plain terms, refers to the steps taken to
move and store a product from the manufacturer stage to

a customer stage in the supply chain. Distribution is a key
driver of the overall profitability of a firm because it affects
both the supply chain cost and the customer experience
directly (Chopra et al. 2008). They assert that logistics net-
work design decisions have a significant impact on perfor-
mance because they determine the supply chain configura-
tion and set constraints within which the other supply chain
drivers can be used either to decrease supply chain cost or
to increase responsiveness. Furthermore, it is widely felt and
critically investigated that a distribution plan with low cost
and high customer satisfaction in SCM is the need of present
day industries (Lim et al. 2006).

Distribution system design (Goetschalckx 2008) focuses
on the following five interrelated decisions:

1. Determining the appropriate number of plants and dis-
tribution centers

2. Determining the location of each plant and distribution
center

3. Determining the customer allocation to each plant and/or
distribution center

4. Determining the product allocation to each plant and/or
distribution center

5. Determining the throughput and storage capacity of each
plant and/or distribution center

The aforementioned steps imply that an outbound logistics
network in a supply chain needs to be configured and/or rec-
onfigured quickly and efficiently as and when it is affected
by technological, economical, political, and environmental
changes. Most of the literatures in OLND address this major
aspect of research: Dogan and Goetschalckx (1999), Ioan-
nou (2005), Rabbani et al. (2008), Altiparmak et al. (2009),
Gebennini et al. (2009), Chandra and Grabis (2009), Kazemi
et al. (2009), Cintron et al. (2010), Paksoy and Cavlak (2011)
etc.

Designing and managing an outbound logistics network is
an important strategic decision in supply chains which typ-
ically span over 10–15 years. Thanh et al. (2008), Bachlaus
et al. (2008), Manzini and Gebennini (2008), Manzini et al.
(2008), Kauder and Meyr (2009), Manzini and Bindi (2009),
Tiwari et al. (2010) etc have effectively addressed the stra-
tegic nature of decision making in planning and designing
outbound logistics networks.

The facilities in an outbound logistics network are found
spatially dispersed across a given geographic area. This spa-
tial factor leads to multi-stage or multi-echelon structure in
the outbound logistics network and such networks are stud-
ied by various researchers (Syarif et al. 2002; Syarif and Gen
2003; Jayaraman and Ross 2003; Gen et al. 2006; Jawahar
and Balaji 2009 etc.)

The literature abounds with rich review works in the area
of outbound logistics network. The readers are referred to
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Fig. 1 Traditional outbound logistics network

Vidal and Goetschalckx (1997), Sarmiento and Nagi (1999),
Goetschalckx et al. (2002), and Melo et al. (2009).

The ambit and complexity of outbound logistics net-
works design (OLND) in supply chains is such that they
often have more than one objective. The multiple objec-
tives are also conflicting in nature, thereby making the supply
chain decision makers’ job tough and challenging. The sup-
ply chain research community has contributed immensely
to this domain of active research (Shen and Daskin 2005;
Ding et al. 2006; Altiparamak et al. 2006; ElMaraghy and
Majety 2008; Farahani and Elahipanah 2008; Kim and Moon
2008; Cheng et al. 2009; Cheng and Ye 2011; Pishvaee
et al. 2010; Bhattacharya and Bandyopadhyay 2010; Liao
et al. 2011). All these research works deal with either two or
more than two objectives which are conflicting among them-
selves. Undoubtedly, the minimization of the total cost of
the outbound logistics network is the most common among
the objectives considered. Some researchers have consid-
ered maximization of profit after tax, minimization of inven-
tory levels at different echelons, maximization of customer
demands through fill rates, and maximization of responsive-
ness through shorter delivery lead times among others.

However, the unique feature of these works is that they
all, as depicted in Fig. 1, have considered a traditional out-
bound logistics network, which means a multi-echelon (or
multi-stage) outbound logistics network where goods move
serially one after the other from the point of production (i.e.
manufacturing plants) to the point of consumption (i.e. cus-
tomers). However, the present-day complexity of customers’
needs and demands warrant innovatively designed outbound
logistics networks which are cost efficient, responsive, and
also flexible. According to the best knowledge of the authors,
in the recent past, Lin et al. (2009) presented an integrated
multistage logistics network model where goods are deliv-
ered through three different delivery channels: normal deliv-
ery, direct delivery, and direct shipment so as to satisfy the
varying needs of the customers. In practice, industrial giants
like Dell and Grainger have already put in place and prac-
ticing innovatively designed outbound logistics networks for

their line of activity (Chopra et al. 2008), and the respective
industry has witnessed how far they have succeeded with
their approaches. Furthermore, Chopra et al. (2008) opine
that there is still enough room and scope for conceptualiz-
ing, planning, and designing innovative outbound logistics
networks to cater to the ever changing customers’ needs and
industry trends. Thus, this paper contributes an innovative
concept and design to this line of research. The nature and
functioning of the proposed hybrid and flexible outbound
logistics network for a manufacturing supply chain is nar-
rated in the following section.

Problem environment

Today many industries are faced with the customers’ desire
for an increased variety of product variants (Bilgen and
Günther 2010); and it very aptly applies to automotive
industry where product variety leads to product diversity
(Jiao et al. 2007). The automotive manufacturing supply
chain is and has been a vibrant field of business and offers
enough scope to study and implement the concepts of SCM.
The automotive industry adopts a consumer focus in its devel-
opment strategy to offer broader product ranges with shorter
model lifetimes (Chandra and Kamrani 2003). The fast-paced
technological developments and rapidly changing customer
tastes and demands for innovative styles and designs make
automotive industry market highly volatile and evolving in
nature. The situation is further aggravated by stiff compe-
tition and global marketing. This forces the industry to roll
out new models and/or improved variants and roll back the
models which have sluggish movement. The overall result is
the shorter and shorter life of automotive goods. In such a
scenario, the traditional outbound logistics network happens
to be a redundant and outdated one. Hence, an innovative
and effective outbound logistics network needs to be devised
for the present-day automotive industry. And this research
makes a contribution in this direction.

The proposed outbound logistics network for an automo-
tive manufacturing supply chain is hybrid and flexible in
the sense that a separate distribution strategy and channel
is employed for each variant/item of a product based on the
nature of demand. There will be three variants/items of a
product which are classified based on nature of demand. They
are fast moving item, slower moving item, and very slow
moving item. Different distribution strategies are adopted for
these items. Fast moving items will be stocked and delivered
by regional distribution centers (RDCs) which are situated
closer to customer zones (CZs). Central distribution centers
(CDCs) which are situated nearer to the plants will stock and
deliver slower moving items to CZs. Plants with in-house
storage facility will stock and deliver very slow moving items
directly to CZs. Figure 2 depicts the concept of a hybrid and
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Fig. 2 Hybrid and flexible outbound logistics network

flexible outbound logistics network. Further the proposed
delivery channels are based on the related delivery lead time
involved in each case. The expected delivery lead time will
be short, moderate and longer for fast, slower and very slow
moving items respectively. The point of storage for each cat-
egory of product is based on the possible roll-back strategy
in future. According to this very slow moving items are held
in plant itself, and slower moving items are stocked in CDCs
which are closer to plants. Then as and when new items and/or
improved items are released, they will be stocked in RDCs
and existing fast moving items will gradually become slower
moving items and will be shifted back to CDCs. The slower
moving items will gradually become very slow moving items
and thus will be shifted back to plants, and existing very slow
moving items will thus become redundant and vanish from
the scene. This process will keep on continuing as long as a
firm is in business.

Mathematical model

In this section, we present the mathematical model developed
for designing the proposed deterministic, single country, sin-
gle period, multi objective, multi echelon, hybrid, and flexible
OLN. The resulting model is a MILP model and it is NP-hard
in nature (Amiri 2006). First of all, we give here below the
assumptions used in framing the mathematical model:

� There are maximum four echelons with logistic facilities
such as Plants, CDCs, RDCs and CZs

� The problem is modelled and solved for a single time
period

� The values of customer demands and other model param-
eters are fixed and thus model is deterministic in nature

� The model is domestic in nature i.e. it refers to a sin-
gle country and the CZs are at known locations and are
dispersed geographically

� The model has multiple objectives: minimization of total
cost of OLN, maximization of performance measures
such unit fill rate (UFR) and resource (facility) utiliza-
tion (RU) subject to a host of capacity, demand, flow, and
other resource constraints

� There will be three delivery channels: fast moving items
are delivered to CZs from RDCs; slower moving items
are delivered to CZs from CDCs, and very slow moving
items are delivered to CZs from Plants.

� The fast moving items and slower moving items are sup-
plied to RDCs and CDCs respectively from the Plants.

� Lot-splitting is allowed
� Multi-sourcing is allowed i.e. more than one facility can

serve a CZ for satisfying the demand of a particular item
� Shortages are not allowed

It is expected to achieve the following objectives on solving
the developed mathematical model:

� To determine the required number of Plants, CDCs, and
RDCs from among the potential locations so as to satisfy
the demands of the CZs

� To determine the quantities of product flow between the
facilities at different echelons

� To find the various possible configurations of the pro-
posed OLN for different optimum as well as desirable
levels of multiple objectives under consideration

Following are the notations used in the mathematical model:
Notations:

Indices
i : index of plant (i = 1, 2, . . . , I )
j : index of Central Distribution Center (CDC) ( j =

1, 2, . . . , J )
k : index of Regional Distribution Center (RDC) (k =

1, 2, . . . , K )
l : index of Customer Zone (CZ) (l = 1, 2, . . . , L)
p : index of fast moving item
q : index of slower moving item
r : index of very slow moving item

Parameters
I : number of plants
J : number of CDCs
K : number of RDCs
L : number of CZs
Pi : plant i
C DC j : CDC j
RDCk : RDC k
C Zl : CZ l
bp

i : production capacity for fast moving item p in
plant Pi
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bq
i : production capacity for slower

moving item q in plant Pi

br
i : production capacity for very slow

moving item r in plant Pi

d p
l : demand for fast moving item p from C Zl

dq
l : demand for slower moving item q from C Zl

dr
l : demand for very slow moving item r from C Zl

u p
k : upper bound of the storage capacity of RDCk

for fast moving item p
uq

j : upper bound of the storage capacity of C DC j

for slower moving item q
ur

i : upper bound of the storage capacity of Pi

very slow moving item r
fi : fixed cost of opening and operating plant Pi

f j : fixed cost of opening and operating C DC j

fk : fixed cost of opening and operating RDCk

U : maximum number of Pi to be opened
V : maximum number of C DC j to be opened
W : maximum number of RDCk to be opened
cq

i j : unit cost of producing and shipping
item q from Pi to C DC j

cp
ik : unit cost of producing and shipping

item p from Pi to RDCk

cr
il : unit cost of producing and shipping item r

from Pi to C Zl

cq
jl : unit cost of handling and shipping item q

from C DC j to C Zl

cp
kl : unit cost of handling and shipping item p

from RDCk to C Zl

Decision variables
xq

i j : quantity of slower moving item q
transported from plant Pi to C DC j

x p
ik : quantity of fast moving item p

transported from plant Pi to RDCk

xr
il : quantity of very slow moving item r

transported from plant Pi to C Zl

xq
jl : quantity of slower moving item q

transported from C DC j to C Zl

x p
kl : quantity of fast moving item p

: quantity of fast moving item p
zi : 1 if plant Pi is opened; 0 otherwise
z j : 1 if C DC j is opened; 0 otherwise
zk : 1 if RDCk is opened; 0 otherwise

Objective functions:

Min Z

=

⎡
⎢⎢⎢⎣

I∑
i=1

J∑
j=1

xq
i j cq

i j +
I∑

i=1

K∑
k=1

x p
ik c p

ik +
I∑

i=1

L∑
l=1

xr
il cr

il

+
J∑

j=1

L∑
l=1

xq
jl cq

jl +
K∑

k=1

L∑
l=1

x p
kl cq

kl +
I∑

i=1
fi zi +

J∑
j=1

f j z j +
K∑

k=1
fk zk

⎤
⎥⎥⎥⎦

(1)

Max UFR

= 100

⎡
⎣

(∑I
i=1

∑L
l=1 xr

il + ∑J
j=1

∑L
l=1 xq

jl + ∑K
k=1

∑L
l=1 x p

kl

)
(
d p

l + dq
l + dr

l

)
⎤
⎦

(2)
MaxRU

= 100

[∑I
i=1

∑L
l=1 xr

il + ∑J
j=1

∑L
l=1 xq

jl + ∑K
k=1

∑L
l=1 x p

kl

ur
i + uq

j + u p
k

]

(3)

Constraints:

I∑
i=1

xq
i j ≥

L∑
l=1

xq
jl , ∀ j (4)

I∑
i=1

x p
ik ≥

L∑
l=1

xq
kl , ∀k (5)

L∑
l=1

xr
il ≤ br

i , ∀i (6)

J∑
j=1

xq
i j ≤ bq

i , ∀i (7)

K∑
k=1

x p
ik ≤ bp

i , ∀i (8)

I∑
i=1

xr
il ≥ dr

l , ∀l (9)

J∑
j=1

xq
jl ≥ dq

l , ∀l (10)

K∑
k=1

x p
kl ≥ d p

l , ∀l (11)

I∑
i=1

zi ≤ U (12)

J∑
j=1

z j ≤ V (13)

K∑
k=1

zk ≤ W (14)

xq
i j , x p

ik, xr
il , xq

jl , x p
kl ≥ 0, ∀i, j, k, l (15)

zi , z j , zk ∈ {0, 1} , ∀i, j, k (16)

The three objectives of the model are depicted in Eqs. (1)–
(3). Equation (1) defines the objective of minimizing the total
cost of OLN, comprising of production costs, handling costs,
transportation costs, and fixed costs of opening and operating
the potential facilities. Equation (2) represents the maximiza-
tion of a performance measure called unit fill rate (UFR) i.e.
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the extent to which a facility can readily satisfy the demand
received from a CZ from the available inventory. Equation
(3) defines the maximization of another performance mea-
sure called resource utilization (RU) i.e. the extent to which
the levels of floor capacity of the facilities can be utilized.
All the three objectives are supposed to be optimized subject
to a host of capacity, demand, flow, and other resource con-
straints. Among the constraints, Eqs. (4) and (5) enforce the
constraints of flow of conservation between the facilities at
different echelons. The constraints on production capacities
at potential plants are imposed by Eqs. (6)–(8). The extent of
demands for the items to be satisfied at different CZs is pro-
vided by Eqs. (9)–(11). The maximum number of facilities
that can be opened to serve the demands of CZs in the pro-
posed OLN is restricted by Eqs. (12)–(14). Equations (15)
and (16) define the constraints of non-negativity and binary
values for the intended decision variables respectively.

Multi objective optimization

The salient features of multi-objective optimization problem,
Pareto optimality, multi objective genetic algorithms, and
non-dominated sorting genetic algorithm-II are discussed in
this section.

Multi objective optimization problem (MOP) and Pareto
optimality

Multi-objective optimization problems (MOPs) deal with
simultaneous optimization of several objective functions.
The notion of optimality in case of a MOP is not as obvi-
ous as that of a single objective optimization problem. In
the case of multiple objectives, a best or global solution may
not exist with respect to all objectives. The presence of mul-
tiple objectives in a problem usually gives rise to a family
of nondominated or non-inferior solutions, largely known as
Pareto-optimal solutions (Sarkar and Modak 2005). In Pa-
reto-optimal solutions, each objective component of any
solution along the Pareto-front can only be improved by
degrading at least one of its other objective components.
Since none of the solutions in the nondominated set is abso-
lutely better than any other, any one of them is an acceptable
solution. As it is difficult to choose any particular solution
for a multi-objective optimization problem without iterative
interaction with the decision-maker, one general approach
is to choose the entire set of Pareto-optimal solutions. The
algorithms which are used to generate non-dominated Pareto-
optimal solutions include tabu search, simulated annealing,
Ant-Q algorithms, fuzzy logic, evolutionary strategies, neu-
ral networks, and genetic algorithms (Luh et al. 2003).

Multi objective genetic algorithms (MOGA)

Evolutionary algorithms (EAs) possess a unique ability to
deal simultaneously with a set of possible solutions, which
result into the evolution of an entire set of Pareto-optimal
solutions in a single run instead of running a series of sep-
arate runs as in the case of traditional mathematical pro-
gramming techniques. Thus, EAs are recognized to be well
suited for multi-objective optimization problems. Further-
more, EAs are less amenable to the shape or continuity of the
Pareto front (Coello 1999). These superior characteristics of
EAs have led to the development of a slew of evolutionary
multi-objective optimization algorithms.

Multi-objective genetic algorithms have been categorized
as Pareto-based methods and Non-Pareto based methods.
The concept of Pareto optimality is used explicitly in the
former and the latter do not incorporate the concept of
Pareto optimality directly. Vector Evaluated Genetic Algo-
rithm (VEGA) is a Non-Pareto based method and was the
first GA proposed for multi-objective optimization. A num-
ber of Pareto-based evolutionary multi-objective optimiza-
tion algorithms were developed based on two principles,
Pareto dominance and niching, as proposed by Goldberg
(1989). The principle of Pareto dominance helps to exploit
the search space in the direction of the Pareto front while
the niching principle helps to explore the search space along
the Pareto front to maintain diversity. Pareto-based meth-
ods include Multi-objective Genetic Algorithm (MOGA),
Niched Pareto Genetic Algorithm (NPGA), Non-dominated
Sorting Genetic Algorithm (NSGA), Strength Pareto Evo-
lutionary Algorithm (SPGA), Multi-objective Evolutionary
Algorithm (MOEA) etc. Readers are referred to Konak et al.
(2006) for an in-depth tutorial on multi-objective optimiza-
tion using genetic algorithms, and to Coello (1999) and Deb
(2001) for excellent review on the state of the art in the field.

Non-dominated sorting genetic algorithm-II (NSGA-II)

Goldberg (1989) was the first to suggest the concept of non-
dominated sorting genetic algorithm (NSGA) and Srinivas
and Deb (1995) were the first to implement it. The central
idea of the non-dominated sorting procedure is that a ranking
selection method is used to identify good points and a niching
method is used to maintain a stable subpopulation of good
points. NSGA differs from a simple GA only in the way the
selection operator works. The efficacy of NSGA lies in the
way multiple objectives are reduced to a single fitness mea-
sure by the creation of number of fronts, sorted according to
nondomination.

Although NSGA has been effectively used to solve a vari-
ety of MOPs, its main drawbacks are: (i) high computational
complexity of nondominated sorting with where is the num-
ber of objectives and is the population size, (ii) lack of elitism,
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and (iii) the need for specifying a tunable sharing parameter.
Hence, in order to address these limitations, Deb et al. (2002)
proposed an improved version of NSGA called NSGA-II.
NSGA-II alleviates the limitations of NSGA by introducing
a fast non-dominated sorting procedure with computational
complexity, an elitist-preserving approach, and a parameter-
less niching operator for preserving diversity. NSGA-II, in
the recent past, has been successfully employed by some
researchers in solving optimal control problems and SCM
problems: Sarkar and Modak (2005) had used NSGA-II to
solve a multi-objective optimal control problem; NSGA-II
was employed for optimizing networked enterprises by Ding
et al. (2006), Serrano et al. (2007) had applied NSGA-II to
handle multiple objectives in case of supply chain disrup-
tions; Amodeo et al. (2008) used NSGA-II to guide the opti-
misation search process towards high-quality solutions for
effective inventory management across a supply chain for
reducing inventory costs and improving services to custom-
ers; The utility of NSGA-II was suitably employed in SCM
where firms are constantly under pressure to cut costs and
improve profit margins while maintaining customer satis-
faction at desired levels by Koo et al. (2008), Bhattacharya
and Bandyopadhyay (2010) have solved a bi-objective facil-
ity location problem formulated in mixed integer nonlinear
programming by NSGA II; Cheng and Ye (2011) have suc-
cessfully applied NSGA-II to find the feasible solution set
of Pareto for a supply chain problem with two objectives
where the orders are to be split among parallel suppliers for
improving agility and competitiveness.

However, to the best of our knowledge, there is no liter-
ature which makes use of NSGA-II approach for solving an
OLND problem. Hence, to solve our multi-objective mathe-
matical model for the proposed outbound logistics network,
we have selected NSGA-II. Following are the few additional
features of NSGA-II (Cheng and Ye 2011) which merit its
selection as our solution approach:

(i) its modular and flexible structure
(ii) the possibility of upgrading a single-objective GA to

NSGA-II, and
(iii) its successful application to a wide range of optimiza-

tion problems.

The following section describes the solution methodology
followed in applying NSGA-II to our model and the compu-
tational experiments carried out to obtain the results for the
proposed outbound logistics network.

Solution methodology and computational experiments

The NSGA-II algorithm makes use of a fast non-dominating
sorting approach to discriminate solutions, which is based
on the concept of Pareto dominance and optimality. The
pseudocode of the algorithm is presented in Table 1. We
have solved the proposed problem based on the standard
framework of NSGA-II algorithm alone. The programs are
coded in MATLAB 7.8.0.347 (R2009a) and all the compu-
tational experiments are executed on a system with Intel (R)
Core (TM) i3 CPU M350 @ 2.27 GHz and 3 GB RAM. For
a typical outbound logistics network with 4 manufacturing
plants (I), 3 CDCs (J), 5 RDCs (K), and 7 CZs (L), there will
be I * J + I * K + I * L + J * L + K * L = 116 continuous variables
and I+J+K = 12 binary variables. The parameters used for
optimization in NSGA-II algorithm are listed in Table 2.

The set of experimental values used for the parameters of
the mathematical model are generated randomly using uni-
form distribution and are listed in Table 3. Two data sets com-
prising of potential facilities and the maximum number of
facilities to be opened are presented in Table 4. The codes are
run at different combinations of population and generation to
obtain possible optimum configurations for the proposed out-
bound logistics network with better performance measures.

Table 1 Pseudocode of
NSGA-II 1) Generate initial solution of random solutions

2) Repeat

2.1) Evaluate fitness of each solution in the population

2.2) Pareto Front = 1

2.3) Repeat

2.3.1) Find non-dominated solutions in the current population

2.3.2) Rank Pareto optimal front from among the nondominated solutions

2.3.3) Apply Crowding Distance strategy to maintain diversity in the solutions

2.3.4) Remove non-dominated solutions from the current front from further consideration

2.3.5) Pareto Front = Pareto Front + 1

2.4) Until all the solutions in the front are ranked

2.5) Select solutions based on non-dominated rank for reproduction

2.6) Apply genetic operators crossover and mutation to generate new solutions

3) Until the termination conditions are satisfied
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Table 2 NSGA-II parameters used for optimization

Parameter Value

Population size 200

Selection strategy Roulette wheel selection

Crossover type (binary) Multi-point crossover

Crossover type (real) Simulated binary crossover

Mutation type (binary) Bitwise mutation

Mutation type (real) Polynomial mutation

Crossover probability 0.85

Mutation probability (binary) 0.08

Mutation probability (real) 0.05

Distribution index (crossover) 25

Distribution index (mutation) 125

Maximum number of generations 2,000

Termination criterion Specified number of generations

Table 3 Range of parameter values

Parameter Value

Production capacities (in units) of plants

Fast moving items 35,000–36,000

Slower moving items 17,000–18,000

Very slow moving items 3,500–3,600

Demand quantities (in units) from CZs

Fast moving items 9,000–10,000

Slower moving items 4500–5,000

Very slow moving items 900–1,000

Fixed cost $ of facilities

Plants 5,400,000–6,300,000

CDCs 1,600,000–1,800,000

RDCs 2,500,000–2,700,000

Unit cost $ of transportation

Fast moving items (from Plants to RDCs) 10–15

Fast moving items (from RDCs to CZs) 6–9

Slower moving items (from Plants to CDCs) 6–9

Slower moving items (from CDCs to CZs) 16–20

Very slow moving items (from Plants to CZs) 21–27

Storage capacities (in units) of each facilitya

Fast moving items (at RDCs) 20,000

Slower moving items (at CDCs) 20,000

Very slow moving items (at Plants) 4,000

a Fixed values

The results obtained and the corresponding graphs are elabo-
rated in the following section.

Results and discussions

We consider two data sets for conducting the computational
experiments for our proposed outbound logistics network.

Table 4 Datasets

Facilities Potential number Maximum number
of facilities of facilities to be opened

Dataset 1

Plants 4 2

CDCs 3 2

RDCs 5 4

Dataset 2

Plants 4 3

CDCs 5 3

RDCs 7 5

The number of potential facilities considered in data set 1
is 4 plants, 3 CDCs, and 5 RDCs. The maximum number
of facilities to be opened is restricted to 2 plants, 2 CDCs,
and 4 RDCs to satisfy the customer demands from 7 CZs.
Similarly, in data set 2, the number of potential facilities is
4 plants, 5 CDCs, and 7 RDCs, and maximum number of
facilities to be opened to satisfy customer demands from 9
CZs is 3 plants, 3 CDCs, and 5 RDCs. A minimum datum
line of 80 % is set for both performance measures: UFR and
resource utilization (RU) for the proposed OLN. The UFR
implies the level of customers’ demands met immediately
from the available stocks, while RU stands for the quantum
of capacity utilization of facilities in the network.

The computational results obtained for the various combi-
nations of populations and generations for data set 1 are listed
in Table 5. The cost of OLN, the resulting configuration of
the network, the percentages of UFR and RU are tabulated.
The summary of overall results obtained from all the experi-
ments for data set 1 is listed in Table 6. It can be observed that
the most minimum cost obtained is 4.38E+07 and the corre-
sponding configuration will have 2 plants (2nd and 3rd), 1
CDC (3rd) and 3 RDCs (1st, 2nd, and 4th) opened to satisfy
the customers’ demands with 91 % of UFR and 81 % of RU.
The network configuration with highest possible UFR (96 %)
at minimum possible cost (6.33E+07) will have 2 plants (1st
and 3rd), 2 CDCs (2nd and 3rd), and 3 RDCs (2nd, 4th, and
5th). Similarly the highest possible RU of 84 % at minimum
possible cost of 5.10E+07 will have a network configuration
of 2 plants (1st and 4th), 2 CDCs (1st and 2nd), and 3 RDCs
(1st, 2nd, and 4th). The 100 % of UFR and RU is achieved at
a cost of 8.72E+07 and 9.71E+07 respectively.

The similar computational results obtained for data set 2
are listed in Table 7 and Table 8.

A few sample configurations of the outbound logistics net-
work (OLN) obtained from the computational study for data
set 1 and data set 2 are pictorially presented in Tables 9 and
10 respectively with the corresponding values for cost, UFR
and RU.

Furthermore, the graphical representations of computa-
tional study are presented in Figs. 3, 4, 5 and 6.
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Table 5 Computational results for data set 1

S no Cost of OLN $ Configuration of OLNa UFR (%) RU (%) Remarks

Plants CDCs RDCs

Population: 40; Generations: 400

1 6.11E + 07 0 0 1 1 1 0 1 1 0 0 1 1 86 80 Min Cost

2 7.21E+07 0 0 1 1 1 0 1 1 1 0 1 1 90 80 –

3 7.71E+07 0 1 0 0 0 0 1 0 0 1 1 1 80 85 –

4 9.71E+07 0 1 0 0 0 0 1 0 0 0 1 1 83 100 –

5 1.36E + 08 1 1 0 0 0 0 1 1 1 1 0 1 100 95 Max Cost

Population: 70; Generations: 700

1 6.33E + 07 1 0 1 0 0 1 1 0 1 0 1 1 96 83 Min Cost

2 8.27E+07 1 0 1 0 0 1 1 0 1 1 1 1 99 80 –

3 8.72E+07 1 0 1 0 0 1 1 0 1 1 1 1 100 80 –

4 3.09E+08 0 0 1 0 0 0 1 0 0 0 0 1 83 99 Max Cost

Population: 90; Generations: 900

1 4.38E+07 0 1 1 0 0 0 1 1 1 0 1 0 91 81 Min Cost

2 5.96E+07 0 1 1 0 0 1 1 1 1 0 1 0 95 80 –

3 1.21E+08 0 1 1 0 0 1 1 1 1 0 1 1 100 86 –

4 2.86E+08 1 0 0 0 0 0 1 0 0 0 0 1 86 99 Max Cost

Population: 160; Generations: 1600

1 8.54E+07 1 0 1 0 0 0 1 1 0 0 0 1 95 81 Min Cost

2 1.45E+08 1 0 1 0 0 1 1 1 1 0 0 1 99 80 –

3 2.33E+08 1 0 1 0 0 1 1 1 0 1 0 1 100 81 –

4 1.64E+09 1 0 0 1 0 0 1 0 0 0 0 1 87 97 Max Cost

Population: 200; Generations: 2000

1 5.10E+07 1 0 0 1 1 1 0 1 1 0 1 0 90 84 Min Cost

2 1.64E+09 1 0 0 1 1 0 1 1 0 1 1 1 100 80 Max Cost

The values in italic are the minimum and maximum costs of the outbound logistics network (OLN) with the corresponding values for unit fill rate
(UFR) and resource utilization (RU)
a1 indicates OPEN facility and 0 indicates NON-OPEN facility

Managerial insights

The results obtained in this study offer a wider scope for oper-
ations managers to explore and exploit them to the best pos-
sible advantage. The results can be best utilised to select any

desired network configuration based on any of the objectives:
lower network cost or higher UFR or higher RU or any combi-
nation of UFR and RU at an available network cost. For exam-
ple, some of the options the managers will have at their discre-
tion are as follows:

Table 6 Summary of overall results for data set 1

Overall results

S no Cost of OLN $ Configuration of OLNa UFR (%) RU (%) Remarks

Plants CDCs RDCs

1 4.38E+07 0 1 1 0 0 0 1 1 1 0 1 0 91 81 Most Min Cost

2 5.10E+07 1 0 0 1 1 1 0 1 1 0 1 0 90 84 Min Cost with Highest RU

3 6.33E+07 1 0 1 0 0 1 1 0 1 0 1 1 96 83 Min Cost with Highest UFR

4 8.72E+07 1 0 1 0 0 1 1 0 1 1 1 1 100 80 Highest UFR

5 9.71E+07 0 1 0 0 0 0 1 0 0 0 1 1 83 100 Highest RU

OLN outbound logistics network, UFR unit fill rate, RU resource utilization
a 1 indicates OPEN facility and 0 indicates NON-OPEN facility
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Table 7 Computational results for data set 2

S no Cost of OLN $ Configuration of OLNa UFR (%) RU (%) Remarks

Plants CDCs RDCs

Population: 40; Generations: 400

1 1.2937E+15 1000 10011 1000010 93.30 89.30 Min Cost

2 0010 10000 0111000 98.30 100

3 1.2940E+15 1101 10001 0101101 88.30 92.50 Max Cost

Population: 70; Generations: 700

1 1.2937E+15 1010 11100 0101100 93.14 99.30 Min Cost

2 1001 01110 1110100 92.60 96.30

3 1101 01011 0010111 91.40 90.90

4 2.2939E+15 0011 00100 0101101 80.60 91.34 Max Cost

Population: 90; Generations: 900

1 1.2937E+15 1100 01000 1000001 96.20 88.4 Min Cost

2 1100 00101 0010001 94.70 88.8

3 0010 00011 1000111 92.30 86.8

4 2.2939E+15 1000 01000 1000111 82.90 93.6 Max Cost

Population: 160; Generations: 1600

1 1.2937E+15 0111 11100 0011100 93.90 94.10 Min Cost

2 1101 01110 0000010 96.70 93.80

3 0111 01011 1010010 96.11 89.10

4 3.2938E+15 1110 01101 0101001 92.80 89.10 Max Cost

Population: 200; Generations: 2000

1 1.2937E+15 0111 01101 0101010 96.60 96.30 Min Cost

2 1110 00011 1110110 95.60 89.20

3 2.2939E+15 1000 01001 0000100 90.70 89.60 Max Cost

OLN outbound logistics network, UFR unit fill rate, RU resource utilization
a1 indicates OPEN facility and 0 indicates NON-OPEN facility

Table 8 Summary of overall results for data set 2

Overall results

S no Cost of OLN $ Configuration of OLNa UFR (%) RU (%) Remarks

Plants CDCs RDCs

1 1.2937E+15 1101 01011 0010111 91.40 90.90 Most Min Cost

2 1.2937E+15 0010 10000 0111000 98.30 100 Min Cost with Highest RU

3 1.2937E+15 0010 10000 0111000 98.30 100 Min Cost with Highest UFR

4 1.2937E+15 0010 10000 0111000 98.30 100 Highest UFR

5 1.2937E+15 0010 10000 0111000 98.30 100 Highest RU

OLN outbound logistics network, UFR unit fill rate, RU resource utilization
a1 indicates OPEN facility and 0 indicates NON-OPEN facility

� A configuration which has least total cost for the network
with UFR and CU above the datum line of 80 percent

� A configuration which has highest possible level of UFR
with an acceptable level of total network cost

� A configuration which has highest possible level of RU
with an acceptable level of total network cost

� A configuration which has 100 percent of UFR irrespec-
tive of total network cost

� A configuration which has 100 percent of RU irrespective
of total network cost

Thus the managers will have numerous choices to suit any
kind of practical situation and constraints.
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Table 9 Sample configurations
for data set 1 with corresponding
values for three objectives

S 
No 

Configuration of OLN Cost of OLN ($) UFR (%) RU (%) 

1 

2 

3 

4.38E+07 

6.33E+07 

5.10E+07 

91 

96 

90 

81 

83 

84 

Note: Filled in facilities are open facilities in the respective configuration 
 Plants;      CDCs;       RDCs 

Conclusions

In this paper, we have proposed the design of an innova-
tive and hybrid outbound logistics network for an automo-
tive manufacturing supply chain for delivering three variants
of a product labelled as fast moving, slower moving, and
very slow moving items based on their nature of demand to
CZs at known locations through a set of potential facilities
like manufacturing plants, CDCs, and RDCs in a determin-
istic, single time period, single country, and multi objec-
tive context. The proposed network is designed so as to
minimize the total network cost, maximize the UFR, and
maximize the resource (facility) utilization subject to a host
of capacity, demand, flow, and resource constraints. The

MILP model formulated for the problem under investiga-
tion is NP-hard and a multi objective evolutionary algorithm
called NSGA-II is employed to solve the problem and obtain
different configurations of the network. A host of differ-
ent configurations of the network are obtained with vary-
ing levels of performance measures viz, UFR and resource
utilization at competitive cost values. The outcomes of the
study prove to be beneficial for the managerial community
of similar supply chains. The possible extensions of this
concept and study may include: a global network, multi-
ple time periods, scalable capacities for facilities, and ele-
ments of uncertainty in demands, unit costs, and capacities
etc to make the problem more pragmatic in approach and
scope.
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Table 10 Sample
configurations for data set 2
with corresponding values for
three objectives

S 
No 

Configuration of OLN Cost of OLN ($) UFR (%) RU (%) 

1 

2 

3 

1.2937E+15 

1.2937E+15 

1.2937E+15 

91.40 

93.90 

95.60 

90.90 

94.10 

89.20 

Note: Filled in facilities are open facilities in the respective configuration 
 Plants;      CDCs;       RDCs 

Fig. 3 Population versus minimum cost of the OLN Fig. 4 Unit fill rate (UFR) versus minimum cost of the OLN
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Fig. 5 Resource utilization (RU) versus minimum cost of the OLN

Fig. 6 Combined results of the computational experiments
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