
J Intell Manuf (2013) 24:729–740
DOI 10.1007/s10845-011-0621-6

An upgraded artificial bee colony (ABC) algorithm for
constrained optimization problems

Ivona Brajevic · Milan Tuba

Received: 25 October 2011 / Accepted: 26 December 2011 / Published online: 10 January 2012
© Springer Science+Business Media, LLC 2012

Abstract Artificial bee colony (ABC) algorithm developed
by Karaboga is a nature inspired metaheuristic based on
honey bee foraging behavior. It was successfully applied to
continuous unconstrained optimization problems and later it
was extended to constrained design problems as well. This
paper introduces an upgraded artificial bee colony (UABC)
algorithm for constrained optimization problems. Our UABC
algorithm enhances fine-tuning characteristics of the modifi-
cation rate parameter and employs modified scout bee phase
of the ABC algorithm. This upgraded algorithm has been
implemented and tested on standard engineering benchmark
problems and the performance was compared to the perfor-
mance of the latest Akay and Karaboga’s ABC algorithm.
Our numerical results show that the proposed UABC algo-
rithm produces better or equal best and average solutions in
less evaluations in all cases.

Keywords Artificial bee colony (ABC) · Constrained
optimization · Swarm intelligence · Nature inspired
metaheuristics

This research is supported by Ministry of Education and Science of
Republic of Serbia, Grant No. III-44006.

I. Brajevic
Faculty of Mathematics, University of Belgrade, Studentski trg 16,
11000 Belgrade, Serbia
e-mail: ivona.brajevic@googlemail.com

M. Tuba (B)
Faculty of Computer Science, Megatrend University Belgrade,
Bulevar umetnosti 29, 11070 Belgrade, Serbia
e-mail: tuba@ieee.org

Introduction

Engineering problems normally include mixed, continuous
and discrete, design variables, nonlinear objective functions
and nonlinear constraints. Constraints are very important in
these types of problems since they are usually imposed in
the statement of the problem and sometimes are very hard
to satisfy, which makes the search difficult and inefficient.
General constrained optimization problem is to find x so as
to

minimize f (x), x = (x1, x2, . . . , xn) ∈ Rn (1)

where x ∈ F ⊆ S. The objective function f is defined on the
search space S ⊆ Rn and F ⊆ S defines the feasible region.
The search space S is defined as an n-dimensional rectangle
in Rn . The variable domains are limited by their lower and
upper bounds:

li ≤ xi ≤ ui , for i = 1, . . . , n (2)

whereas the feasible region F ⊆ S is defined by a set of m
additional constraints (m ≥ 0):

g j (x) ≤ 0, for j = 1, . . . , q (3)

h j (x) = 0, for j = q + 1, . . . , m (4)

Deterministic approaches to constrained nonlinear pro-
gramming problems, such as sequential quadratic program-
ming methods and generalized reduced gradient methods, are
inflexible to adapt the solution algorithm to a given problem.
Generally, a given problem is modeled in such a way that a
classical algorithm can handle it. This usually requires mak-
ing additional assumptions which might not be easy to justify.
Therefore the applicability of such deterministic approaches
is limited.

123

730 J Intell Manuf (2013) 24:729–740

During last decades most approaches to hard constrained
optimization problems are based on metaheuristics which
make no assumptions about the problem being optimized and
can search very large spaces of candidate solutions. However,
they do not guarantee that the optimal solution is ever found.

Recently, nature inspired intelligence has become very
popular. Some of the most famous nature inspired metaheu-
ristics are those methods representing successful animal team
behavior, such as swarm or flocking intelligence (Kennedy
and Eberhart 1995), ant colonies (Dorigo and Gambardella
1997) or performance of bees. Pure versions of these algo-
rithms are later enhanced to improve performance in general
or for some class of the problems (Pan and Liu 2011; Wang
et al. 2011; Jovanovic and Tuba 2011; Lu and Romanowski
2011). Sometimes they are combined (Aydin 2010; Jun-Qing
Li and Xie 2010) or adjusted for multi-objective problems
(Pasandideh et al. 2011; Cheshmehgaz et al. 2011). Swarm
intelligence algorithms are successfully used for wide range
of practical problems (Gaitonde and Karnik 2010; Puranik
et al. 2011; Chang and Huang 2010).

The algorithms based on the behavior of bees are
divided into three types according to their behavior in nature
(Baykasoglu et al. 2007): the marriage behavior, the forag-
ing behavior and the queen bee concept. Some of them were
successfully applied to solve unconstrained and constrained
optimization problems. The approach that simulates the mar-
riage behavior of the bees is honey bees mating optimiza-
tion algorithm (Haddad et al. 2006) proposed to solve highly
non-linear constrained and unconstrained real valued math-
ematical models. The approaches that simulate the foraging
behavior of bees and which were applied to continuous func-
tional optimization problems are the virtual bee algorithm
(Yang 2005), the bees algorithm (Pham et al. 2006) and the
artificial bee colony (ABC) algorithm (Karaboga 2005).

The ABC algorithm was first designed for unconstrained
optimization problems but was later also applied to con-
strained (engineering design) problems by extending the
basic ABC algorithm simply by adding a constraint handling
technique into the selection step of the ABC algorithm in
order to prefer the feasible regions of the entire search space.
In this paper an upgraded artificial bee colony (UABC) algo-
rithm is presented. UABC algorithm enhances fine-tuning
characteristics of the control parameters of the ABC algo-
rithm in order to produce better balance of exploitation and
exploration of candidate solutions in the search space. To
show the power of this approach the UABC algorithm was
applied to various standard benchmark engineering optimi-
zation problems and the obtained results were compared with
the results reached by latest Akay and Karaboga’s extended
ABC algorithm (Akay and Karaboga 2010).

The rest of the paper is organized as follows. A brief lit-
erature review on ABC and its application are provided in
section “Literature review”. Our upgraded ABC algorithm is

presented in section “Our proposed approach: UABC”. The
standard engineering design problems are described in sec-
tion “Benchmark problems”. Section “Experimental study”
presents the adopted experimental setup and provides an
analysis of the results obtained from our empirical study.

Literature review

Artificial bee colony algorithm proposed by Karaboga is
a metaheuristic technique inspired by the foraging behav-
ior of natural honey bee swarms (Karaboga 2005). In the
ABC algorithm a colony of artificial bees consists of three
groups of bees: employed bees, onlookers and scouts. All
bees that are currently exploiting a food source are known as
employed bees. Onlookers are those bees that are waiting in
the hive for the employed bees to share information about the
food sources presently being exploited by them. Employed
bees share information about food sources by dancing in the
dance area inside the hive. The dance is dependent on the
nectar content of food source just exploited by the danc-
ing bee. Onlooker bees watch the dance and choose a food
source according to the probability proportional to the qual-
ity of that food source. Therefore, good food sources attract
more onlooker bees. Scouts are those bees that are search-
ing for new food sources in the neighborhood of the hive.
The employed bee whose food source has been abandoned
by the bees becomes a scout. Scout bees can be viewed as
performing the job of exploration, whereas employed and
onlooker bees can be viewed as performing the job of exploi-
tation. Each food source is a possible solution for the prob-
lem and the nectar amount of a food source represents the
quality of the solution represented by the fitness value. The
fitness value of a solution x from Karaboga’s ABC algo-
rithm is:

f i tness(x) =
{

1/(1 + f (x)), if f (x) ≥ 0
1 + abs(f (x)), if f (x) < 0

(5)

The main steps of the algorithm are:

– send the employed bees onto the food sources and deter-
mine their nectar amounts,

– calculate the probability value of the sources by which
they are preferred by the onlooker bees,

– stop the exploitation process of the sources abandoned by
the bees,

– send the scouts into the search area for discovering new
food sources, randomly

– memorize the best found source so far.

These steps are repeated the predefined number of times
(maximum cycle number, MC N). In the basic ABC algo-
rithm the control parameters are the size of the population

123

J Intell Manuf (2013) 24:729–740 731

which is equal to the sum of numbers of employed and
onlooker bees (S P), the limit which represents the number
of trials for releasing food source and the number of scouts.

The algorithm (Karaboga 2005) was tested on three well
known test functions and it was concluded that the proposed
algorithm can be used for solving uni-modal and multi-modal
unconstrained numerical optimization problems.

Later Karaboga and Bastruck tested the performance of
ABC algorithm for optimizing multivariable unconstrained
functions (Karaboga and Basturk 2007b, 2008) and the
results were compared with genetic algorithm (GA), particle
swarm optimization (PSO) algorithm, and particle swarm
inspired evolutionary algorithm (PS-EA) (Srinivasan and
Seow 2003). The results showed that ABC outperforms the
other algorithms.

Karaboga and Bastruck have also studied an extended
version of the ABC for constrained optimization problems
(Karaboga and Basturk 2007a). The performance of the algo-
rithm, when it was applied to thirteen standard benchmark
g functions, has been compared with the performance of the
state-of-the-art algorithms based on the PSO and differen-
tial evolution (DE). It has been shown that ABC algorithm
can be successfully used for solving constrained optimi-
zation problems. In that extended version of the ABC for
constrained optimization, there are two additional control
parameters in comparison with the basic version of the
ABC. The first additional control parameter is the modi-
fication rate (MR) that controls the possible modifications
of optimization parameters. The second additional control
parameter is scout production period (SPP) that is used in
scout bee phase of the algorithm and it denotes a predeter-
mined period of cycles for producing artificial scouts. At
every SPP cycle, if there is an abandoned food source, it is
replaced with a new randomly produced solution. In order to
handle the constraints of the problem, the extended ABC
algorithm employs Deb’s rules (Deb 2000). The method
uses a tournament selection operator, where two solutions
are compared at a time by applying the following crite-
ria:

– Any feasible solution satisfying all constraints is pre-
ferred to any infeasible solution violating any of the con-
straints

– Among two feasible solutions, the one having better fit-
ness value is preferred

– If both solutions are infeasible, the one with the lowest
sum of constraint violation is preferred, where the sum
of constraint violation is defined as:

CV (x) =
q∑

j=1

max(0, g j (x)) +
m∑

j=q+1

h j (x) (6)

Akay and Karaboga proposed a version of the ABC
algorithm to solve engineering design problems (Akay and
Karaboga 2010). The difference from the version of ABC
extended for constrained problems (Karaboga and Basturk
2007a) is in calculating probability values for solutions.
In the version of ABC algorithm proposed in Akay and
Karaboga (2010), probability values of infeasible solutions
are between 0 and 0.5, while those of feasible solutions
are between 0.5 and 1. In onlooker bee phase of the algo-
rithm, by a selection mechanism, infeasible solutions are
selected inversely proportional to their violation values. In
the case of feasible solutions, they are selected probabilis-
tically proportional to their fitness values. In the version of
ABC algorithm for constrained problems, probability val-
ues for feasible solutions, as well as for infeasible solutions,
are between 0 and 1, and they are are selected probabi-
listically proportional to their fitness values. The perfor-
mance of the ABC algorithm when it was applied on five
standard engineering problems was compared to the perfor-
mance of society and civilization algorithm (SCA) (Ray and
Liew 2003), versions of the PSO algorithm (He et al. 2004;
Parsopoulos and Vrahatis 2005), and the evolution strategy
((μ + λ) − E S) (Mezura-Montes and Coello Coello 2005).
The ((μ+λ)− E S) achieved better performance in the terms
of best solution, while the performance of ABC showed more
robustness than the other algorithms. It was concluded that
ABC is a promising tool for optimizing constrained engi-
neering problems.

A new modification of the ABC algorithm for con-
strained optimization is proposed by Karaboga and Akay
(2011). The difference from the version of the ABC algo-
rithm proposed for engineering problems is in employed
and onlooker bee phases of the algorithm as follows: even
if M R parameter dictates that none of the solution param-
eters should be modified, one solution parameter is ran-
domly selected and modified. This version is tested to
solve the same thirteen benchmark problems as the version
of ABC from Karaboga and Basturk (2007a). Its perfor-
mance was compared with the performance of the state-of-
the-art algorithms: homomorphous mapping (HM) method
(Koziel and Michalewicz 1999), stochastic ranking (SR)
method (Runarsson and Yao 2000), improved stochastic
ranking (ISR) method and over-penalty (OPA) approach
(Runarsson and Yao 2005), adaptive segregational constraint
handling evolutionary algorithm (ASCEA) (Hamida and
Schoenauer 2002), GA, simple multimembered evolution
(SMES) (Mezura-Montes and Miranda-Varela 2005), PESO
version of PSO (Zavala et al. 2005) and DE (latest results
on DE are in Mezura-Montes et al. (2010)). Their computa-
tional results showed that the modified ABC algorithm can
be efficiently used for solving constrained optimization prob-
lems.

123

732 J Intell Manuf (2013) 24:729–740

Our proposed algorithm: UABC

In the population-based optimization algorithms both exploi-
tation and exploration abilities are necessary. The exploita-
tion refers to the ability of algorithm to apply the knowledge
of the previous good solutions to find better solutions (by
improving on these known good solutions). The exploration
refers to the ability of algorithm to investigate the various
unknown and less promising regions of the solution space
to bring diversity and ability to avoid being trapped in local
optima and eventually to discover the global optimum. The
exploitation and exploration contradict each other and the
two abilities should be well balanced in order to achieve
good optimization performance.

Even though in general exploitation sticks to good known
solutions, while exploration brings diversity, fine modifica-
tions and tuning of some population-based algorithm lead
to more complex situations where it is possible (and desir-
able) to increase diversity during exploitation, or reduce
diversity during exploration. Such modifications can improve
algorithm performance since increasing diversity by some
modification, while decreasing it by some other modi-
fication at the same stage, e.g. exploitation, may lead
search to more desirable places, rather than canceling each
other.

In our UABC algorithm in the onlooker phase (exploita-
tion) we reduce the diversity, as may be expected, by reducing
the space where new generated solution can be. In the original
ABC algorithm (Akay and Karaboga 2010) new solution is
generated from the current solution and one random solution
so that new solution is inside the hyper-cube where these
two old solutions are located at the opposing points of the
cube’s diagonal, while in our UABC algorithm only points
on the diagonal, not from the whole cube, are permitted as
new solutions.

On the other hand, original ABC algorithm lacks some
diversity (or courage to search towards infeasible points)
because in order to handle the constraints of the problem it
employs Deb’s rules and consequently, infeasible points are
heavily suppressed. Additionally, in the Akay and Karaboga
(2010) ABC algorithm, pseudo-code step 7, probability for
selection by onlookers is calculated in such a way that all
feasible solutions have that probability above 0.5 and all
infeasible solutions below 0.5. Our UABC algorithm, like the
ABC algorithm, employs Deb’s rules, but we found that algo-
rithm works better if mentioned discrimination is removed
and infeasible solutions get better chance of being selected
by being judged only on their fitness value (our pseudo-code
step 8), not inversely proportional to their constraint viola-
tion values. This increases diversity in onlooker phase, but
only in that specific direction of less discriminating infeasible
solutions, which in no way contradicts previously mentioned
reduced diversity by allowing new solutions only on the diag-

onal of the hyper-cube; just the opposite: both modifications
work together towards faster convergence.

By doing such fine adjustments at the same stage, increas-
ing and decreasing diversity, but differently in targeted
directions, we better control the balance of exploitation and
exploration.

In order to produce better solutions than Akay and
Karaboga (2010) ABC algorithm proposed for engineering
problems, our upgraded artificial bee colony (UABC) algo-
rithm also enhances fine-tuning characteristics of modifica-
tion rate (M R) parameter and employs modified scout bee
phase. In the mentioned version of the ABC algorithm pro-
posed for constrained problems and in the modified ABC
algorithm for constrained problems (Karaboga and Akay
2011) there are several control parameters: size of popula-
tion (S P), maximum cycle number (MC N), modification
rate (M R), limit and scout production period (S P P). In the
UABC algorithm we kept the control parameters S P, MC N
and limit, but we divided M R parameter into two parameters:
modification rate for employees (M RE) and modification
rate for onlookers (M RO). Additionally, we included a new
parameter which we named the infeasible solution replace-
ment period (I S R P).

In order to produce neighborhood solutions our UABC
algorithm uses M RE parameter in employed bee phase and
M RO parameter in onlooker bee phase. Both parameters
take values between 0 and 1. As the values for these param-
eters become higher, the probability of changing the opti-
mization parameter x j , j = 1, 2, . . . , D is higher. It can be
considered that if any of these two parameters take the smaller
value we are looking for a new solution in the closer neigh-
borhood. Otherwise, if any of the two parameters take the
higher value we are looking for a new solution in the further
neighborhood. Our experiments show that it is beneficial to
amplify exploitation by staying in the closer neighborhood
in the onlooker phase, so M RO parameter is set to a lower
value.

In the scout bee phase we need to determine the food
sources which can be abandoned, i.e. which are not worth
exploiting anymore. Hence, the algorithm calculates values
f ailurei , i = 1, 2, . . . , S P/2, which represent the non-
improvement number of the solution xi used for the aban-
donment. We considered that solution can be abandoned if
its f ailurei value is greater or equal to the value of limit con-
trol parameter. In the UABC algorithm, by the new parame-
ter I S R P , the scout bee phase is changed as follows: after
each I S R P th iteration, every infeasible solution and one
feasible solution with the highest failure value that exceeds
abandonment threshold (if such solutions exist) are replaced,
each with a new randomly produced solution. In any other
iteration only one solution (infeasible or feasible) with the
highest failure value that exceeds abandonment threshold, if
such solution exists, is replaced with a new randomly created

123

J Intell Manuf (2013) 24:729–740 733

solution. It can be concluded that in our modified scout bee
phase the number of scout bees is changeable. Such modi-
fied scout bee phase increases the exploration of the search
space, but only every I S R P iterations, which helps to leave
the local minima.

As in the ABC algorithm, the UABC algorithm does not
start with the feasible initial population since initialization
with feasible solutions is very hard and in some cases impos-
sible to achieve randomly. Structure of the algorithm already
directs the solutions to feasible region due to the Deb’s rules.

The pseudo-code of the UABC algorithm is:

1. Initialize the population solutions xi j , i = 1 . . . , S P/2,

j = 1 . . . , D:

xi j = l j + δ ∗ (u j − l j) (7)

where j ∈ 1, 2, . . . , D, l j and u j are the lower and upper
bound of the parameter xi j and δ is a random number in
the range [0, 1)

Initialize f ailurei = 0, i = 1 . . . , S P/2

2. Evaluate fitness value of the population by Eq. (5)
3. cycle =0
4. repeat
5. Produce a new solution vi for each employed bee:

{
xi j = xi j + ϕi ∗ (xi j − xk j), if R j < M RE
xi j , otherwise

(8)

where ϕi is random number in range [−1,1),
k ∈ {1, 2, . . . , S P/2}, k �= i is randomly chosen index,
R j is randomly chosen real number in range [0,1) and
j = 1, 2, . . . , D (D is dimension of the problem)

6. Apply selection process based on Deb’s method
7. If solution xi does not improve f ailurei = f ailurei +

1, otherwise f ailurei = 0
8. Calculate the probability values Pi for the solutions xi j :

Pi = 0.9 ∗ (f i tnessi/max f i t) + 0.1 (9)

where maxfit is the best fitness value of the population.
Values 0.9 and 0.1 in Eq. (9) ensure some diversity in
the case when one solution is superior to all others by
allowing 10% of onlookers to select different solution.

9. Produce the new solutions vi for the onlookers from the
solutions xi j selected depending on Pi :

{
xi j = xi j + ϕi ∗ (xi j − xk j), if R j < M RO
xi j , otherwise

(10)

and evaluate their fitness value

10. Apply selection process based on Deb’s method
11. If solution xi does not improve f ailurei = f ailurei +

1, otherwise f ailurei = 0
12. If (cycle mod ISRP = 0) every infeasible solution and

one feasible solution with the highest failure value that
exceeds abandonment threshold (if such solutions exist)
are replaced, each with a new randomly produced solu-
tion xi j by Eq. (7)
else
only one solution (infeasible or feasible) with the high-
est failure value that exceeds abandonment threshold, if
such solution exists, is replaced with a new randomly
created solution

13. Memorize the best solution achieved so far
14. cycle = cycle+ 1
15. until cycle = MC N

The state variables were treated in the UABC algorithm as
follows: for continuous variables, initial values were gener-
ated randomly between upper and lower bounds of the speci-
fication values. The value was also modified in the employed
and onlooker bee’s phases between the bounds. For discrete
variables, they could be handled in Equations (7), (8) and (10)
with a small modification, i.e., as though they were continu-
ous with nearest available discrete values then being chosen.
In that way, both continuous and discrete numbers can be
handled by the algorithm with no inconsistency.

The key difference between UABC and ABC algorithm,
as explained, is in different balance of exploitation and explo-
ration, on the global level as onlooker bees and scouts, as well
within these phases. The exploitation in the onlooker phase
is improved by limiting new solutions only to the diagonal
between two solutions and by decreasing M RO parameter
that limits the number of parameters that will be changed,
while at the same time diversity is added by different selec-
tion probability formula that relaxes suppression of infeasible
solutions. The exploration at the scout phase is increased by
allowing more scouts periodically that helps to leave the local
minima.

Benchmark problems

In order to evaluate the performance of the UABC algorithm
we used five well-known standard engineering problems:
welded beam, pressure vessel, tension/compression spring,
speed reducer and gear train, same as used by Akay and
Karaboga (2010). Additionally, since Akay and Karaboga
(2010) compare to SCA (Ray and Liew 2003) which also
includes the three-bar truss problem, we included that prob-
lem. Akay and Karaboga (2010) do not compare the welded
beam problem with SCA (Ray and Liew 2003) and PSO (He
et al. 2004) algorithms since they used different version of

123

734 J Intell Manuf (2013) 24:729–740

Table 1 Summary of main properties of the benchmark problems

Problem D LI NI

Welded beam 4 2 5

Pressure vessel 4 3 1

Tension/compression spring 3 1 3

Speed reducer 7 4 7

Gear train 4 0 0

Three-bar truss 2 0 3

Fig. 1 Welded beam design structure

that problem. We also included that second version of the
welded beam problem.

These non-linear engineering design problems have dis-
crete and continuous variables. Discrete variables are used
in many ways such as the representation of the set of stan-
dard sized components, the decision on the number of iden-
tical parts or the choice between different design options.
The number of optimization parameters (D), the number of
linear inequalities (L I) and nonlinear inequalities (N I) are
given in Table 1.

The welded beam design problem consists in dimen-
sioning a welded steel beam and the welding length so as
to minimize its cost subject to constraints on shear stress, τ ,
bending stress in the beam, σ , buckling load on the bar, Pc,
end deflection of the beam, δ, and side constraints. The beam
has a length of 14 in and 6000 lb force is applied at the end of
the beam. There are four continuous variables: x1, x2, x3, x4

which in structural engineering are commonly symbolized
by the letters shown in Fig. 1.

The design variables are thickness of the weld h, length
of the weld l, width of the beam t, and thickness of the
beam b. The welded beam problem consists of a nonlinear
objective function, five nonlinear and two linear inequality
constraints. The solution is located on the boundaries of the
feasible region. The ratio of feasible region to entire search
space is quite small for welded beam problem. Since the

Fig. 2 Pressure vessel design

Fig. 3 Tension/compression spring

problem has four continuous variables it is a continuous con-
strained optimization problem.

The pressure vessel problem is to design a compressed
air storage tank with a working pressure of 3000 psi and a
minimum volume of 750 f t3. The schematic of a pressure
vessel is shown in Fig. 2.

A cylindrical vessel is capped at both ends by hemi-
spherical heads. Using rolled steel plate, the shell is made
in two halves that are joined by two longitudinal welds to
form a cylinder. Each head is forged and then welded to
the shell. Let the design variables be denoted by the vector
x = [x1, x2, x3, x4]T , where x1 is the spherical head thick-
ness, x2 is the shell thickness, x3 and x4 are the radius and
length of the shell, respectively. The objective is to minimize
the manufacturing cost of the pressure vessel. The manufac-
turing cost of pressure vessel is a combination of material
cost, welding cost and forming cost. The design variables x1

and x2 have to be integer multiples of 0.0625 inch which are
the available thickness of rolled steel plates. The radius x3

and the length x4 are continuous variables. Pressure vessel
problem has a nonlinear objective function, a nonlinear and
three linear inequality constraints. Since the problem has two
discrete variables and two continuous variables it is a mixed
discrete-continuous constrained optimization problem.

The tension/compression spring problem is shown in
Fig. 3.

It minimizes the weight of a tension/compression spring,
subject to constraints of minimum deflection, shear stress,

123

J Intell Manuf (2013) 24:729–740 735

Fig. 4 Speed reducer

Fig. 5 Gear train design

surge frequency, and limits on outside diameter and on design
variables. There are three continuous variables: the wire
diameter x1, the mean coil diameter x2, and the number of
active coils x3. This problem has a nonlinear objective func-
tion, a linear and three nonlinear inequality constraints.

The speed reducer problem represents the design of a
simple gear box such as might be used in a light airplane
between the engine and propeller to allow each to rotate at its
most efficient speed. The design of the speed reducer shown
in Fig. 4, is considered with the face width x1, module of
teeth x2, number of teeth on pinion x3, length of the first
shaft between bearings x4, length of the second shaft between
bearings x5, diameter of the first shaft x6, and diameter of the
first shaft x7.

Speed reducer problem has seven nonlinear and four lin-
ear constraints. Four constraints are active at the best known
feasible solution. Since the problem has one discrete variable
and six continuous variables it is a mixed discrete-continuous
constrained optimization problem. The best known feasible
solution [3.5000, 0.7000, 17.0000, 7.3000, 7.7153, 3.3502,
5.2867] producing a 2994.34 kg gearbox.

The gear train problem is to optimize the gear ratio for
the compound gear train arrangement shown in Fig. 5.

Fig. 6 Three-bar truss design

The gear ratio for a reduction gear train is defined as the
ratio of the angular velocity of the output shaft to that of the
input shaft. In order to produce the desired overall gear ratio,
the compound gear train is constructed out of two pairs of the
gearwheels, d − a and b − f . The overall gear ratio between
the input and output shafts can be expressed as:

itot = w0

wi
= zd zb

zaz f
(11)

where w0 and wi are the angular velocities of the output and
input shafts, respectively, and z denotes the number of teeth
on each gearwheel. It is desirable to produce a gear ratio as
close as possible to 1/6.931. For each gear, the number of
teeth must be from 12 to 60. Variables to be optimized are in
discrete form since each gear has to have an integral number
of teeth.

Three-bar truss problem shown in Fig. 6 can be stated
as a single objective optimization problem with minimiza-
tion of its weight, subject to stress constraints in the three
members.

The truss is subjected to a concentrated load, and the cross-
sectional areas of members 1 and 3 are the same. Two design
variables, x1 and x2 are the cross-sectional areas of mem-
bers 1 and 2, respectively. Since the problem has two con-
tinuous variables and three nonlinear inequality constraints
it is a continuous constrained optimization problem. The
best known feasible solution is f (0.788675, 0.408248) =
263.895843.

The second version of the welded beam design prob-
lem used by some authors differs from the first version in
two constraints.

The mathematical models of the benchmark problems are
given as appendixes for the first five problems in Akay and
Karaboga (2010) and for additional two problems in Ray and
Liew (2003).

123

736 J Intell Manuf (2013) 24:729–740

Table 2 The values of the control parameters of the algorithms

ABC UABC

SP 30 SP 60

MCN 1,000 MCN 250

MR 0.9 MRE 0.9

MRO 0.5

SPP 400 ISRP 100

limit SP*D*5 limit SP*D*0.5

Experimental study

The proposed UABC algorithm has been implemented in
Java programming language. We used JDK (Java Devel-
opment Kit) version 6 and Eclipse platform SDK 3.4.2 to
develop the application which includes user-friendly graphi-
cal user interface (GUI). Tests for seven engineering bench-
mark problems were done on an Intel(R) Core(TM) 2 Duo
CPU E8500@4-GHz computer with 4 GB RAM memory.

The values of the algorithm-specific control parameters
are given in Table 2 where parameters are: S P—size of
bee population, MC N—maximum cycle number, M R—
modification rate, M RE—modification rate for employ-
ees, M RO—modification rate for onlookers, S P P—scout
production period, I S R P—infeasible solution replacement
period, limit—limit for nonimprovement and D—dimension
of the problem.

We compare our results to the state-of-the-art ABC
algorithm for engineering constrained problems (Akay and
Karaboga 2010) where their results were favorably com-
pared to SCA (Ray and Liew 2003), PSO (He et al. 2004),
(μ+λ)− E S (Mezura-Montes and Coello Coello 2005) and
UPSOm (Parsopoulos and Vrahatis 2005) algorithms. The
results of the experiments for the UABC algorithm, as well
as comparative results for the ABC algorithm from Akay and
Karaboga (2010) are presented in Table 3.

For each problem we performed 30 independent runs, as
in Akay and Karaboga (2010) but for our algorithm a dif-
ferent ratio of S P and MC N was more suitable. The best
results show the ability of an algorithm to find the optimal
result, while mean and standard deviation values determine
the robustness of the algorithm. The maximum number of
evaluations can be considered as a convergence rate.

From Table 3 it can be seen that the UABC algorithm
reached better or equal best results than ABC algorithm for all
five engineering design problems (best results are bold) with
the lower number of evaluations for the first four problems.
Both algorithms are of the same computational complexity
but the UABC reduced the number of fitness function eval-
uations by a factor of 2, from 30,000 to 15,000. For the fifth
problem, gear train design, in Akay and Karaboga (2010) we

believe that there is an error in the table since 60 evaluations
are reported in the table, while in the text 60 generations are
mentioned. We believe that 60 fitness function evaluations is
too few considering that the problem has around 6 million
possible solutions (or around 1,5 million if symmetry is con-
sidered). For the reported colony size of 30, algorithm would
have to find the optimum solution in just 2 iterations which
is impossible considering that algorithm starts with random
points.

For the mean results and standard deviations, the UABC
algorithm showed better performance than the ABC for all
five benchmarks, therefore UABC is more robust than the
ABC algorithm. UABC algorithm has faster convergence for
all tested problems (unknown for the gear train problem, as
explained before).

The results for SCA, PSO, (μ + λ)-E S and UPSOm are
from Akay and Karaboga (2010) and even though ABC com-
pared favorably to them, it was not uniformly better. The
UABC algorithm, however, is better or equal compared to the
mentioned algorithms also in the cases where ABC was not.
For speed reducer problem the UABC algorithm achieved
the best known result. For the pressure vessel problem, the
evolution strategy (μ + λ)-E S (Mezura-Montes and Coello
Coello 2005) reports better result in the table, but in the same
paper in another table where solution vector is reported the
value for the solution function is the same that we achieved
and which is generally known to be the best result.

As mentioned in the benchmark description section, since
Akay and Karaboga (2010) compare to SCA (Ray and Liew
2003) which also includes the three-bar truss problem, we
included that problem also and obtained better results. Also,
Akay and Karaboga (2010) do not compare welded beam
problem with SCA (Ray and Liew 2003) and PSO (He et al.
2004) algorithms since they used different version of that
problem. We included that second version of the welded
beam problem and also obtained better results than men-
tioned algorithms.

Tables 4, 5, 6, 7 and 8 show the solution vectors of the
best solution reached by ABC and UABC algorithms and the
values of the constraints for each of the problems tested (in
Table 9 comparison is to SCA algorithm). Objective function
best value was equal for welded beam, tension/compression
spring and gear train problems, with slight improvement for
pressure vessel and three-bar truss problems and more sig-
nificant improvement for speed reducer problem for which,
as mentioned before, we obtained the best known result.

Conclusion

Artificial bee colony optimization has been proven to be an
effective method for solving many hard optimization prob-
lems. In this article we presented an upgraded artificial bee

123

J Intell Manuf (2013) 24:729–740 737

Table 3 Statistical results of the SCA (Ray and Liew 2003), PSO (He
et al. 2004), (μ + λ)-E S (Mezura-Montes and Coello Coello 2005),
UPSOm (Parsopoulos and Vrahatis 2005), ABC (Akay and Karaboga

2010) and UABC algorithms for seven standard engineering problems
(best results bold)

Prob. Stats SCA PSO (μ + λ)-E S UPSOm ABC UABC

Welded Best NA NA 1.724852 1.92199 1.724852 1.724852

beam Mean NA NA 1.777692 2.83721 1.741913 1.724853

SD NA NA 8.8E−02 0.682980 3.1E−02 1.7E−06

Eval. NA NA 30,000 100,000 30,000 15,000

Pressure Best 6171.00 6059.7143 6059.701610 6544.27 6059.714736 6059.714335a

vessel Mean 6335.05 6289.92881 6379.938037 9032.55 6245.308144 6192.116211

SD NA 3.1E+02 2.1E+02 995.573 2.05E+02 2.04E+02

Eval. 20,000 30,000 30,000 100,000 30,000 15,000

Tension/ Best 0.012669 0.012665 0.012689 0.0131200 0.012665 0.012665

compress. Mean 0.012923 0.012702 0.013165 0.0229478 0.012709 0.012683

spring SD 5.9E−04 4.1E−05 3.9E−04 0.00720571 0.012813 3.31E−05

Eval. 25,167 15,000 30,000 100,000 30,000 15,000

Speed Best 2994.744241 NA 2996.348094 NA 2997.058412 2994.471066

reducer Mean 3001.758264 NA 2996.348094 NA 2997.058412 2994.471072

SD 4.0E+0 NA 0 NA 0 5.98E−06

Eval. 54,456 NA 30,000 NA 30,000 15,000

Gear Best NA NA NA 2.700857E−12 2.700857E−12 2.700857E−12

train Mean NA NA NA 3.80562E−08 3.641339E−10 3.500171E−10

SD NA NA NA 1.09631E−07 5.525811E−10 4.690420E−10

Eval. NA NA NA 100,000 60 3,0001

Three- Best 263.895847 NA NA NA NA 263.895843

bar Mean 263.903357 NA NA NA NA 263.895843

truss SD 1.26E−02 NA NA NA NA 0

Eval. 17,610 NA NA NA NA 12,000

Welded Best 2.385435 2.380957 NA NA NA 2.380957

beam Mean 3.255137 2.381932 NA NA NA 2.380973

(2. ver) SD 9.59E−01 5.24E−03 NA NA NA 7.73E−05

Eval. 33,095 30,000 NA NA NA 18,000

a Explained in the text

colony algorithm (UABC) for constrained engineering prob-
lems. The proposed approach was tested on seven standard
engineering benchmark problems. The obtained results were
compared with the latest results reached by the ABC algo-
rithm extended to solve engineering design problems (Akay
and Karaboga 2010) which has been compared to other opti-
mization algorithms and was considered a promising tool
for solving that kind of problems. UABC proved to be more
robust and outperformed ABC algorithm in terms of best
results, robustness and with faster convergence.

For seven benchmark problems (welded beam, pressure
vessel, tension/compression spring, speed reducer, gear train,
three-bar truss and the second version of welded beam) and
four results and parameters for each of these problems (best
solution, mean solution and standard deviation for all runs
and number of evaluations of the fitness function) i.e. 28
different experiment results, the proposed UABC algorithm
produced 26 results that are better (in few cases equal) com-
pared to all five other algorithms. In two cases where it seems
that UABC was not the best, there are some unclear details

123

738 J Intell Manuf (2013) 24:729–740

Table 4 Parameter and constraint values of the best solutions obtained
for welded beam problem

ABC UABC

x1 0.205730 0.205730

x2 3.470489 3.470489

x3 9.036624 9.036624

x4 0.205730 0.205730

g1(x) 0.000000 −0.000028

g2(x) −0.000002 −0.000025

g3(x) 0.000000 −0.000000

g4(x) −3.432984 −3.432984

g5(x) −0.080730 −0.080730

g6(x) −0.235540 −0.235540

g7(x) 0.000000 −0.000050

f (x) 1.724852 1.724852

Table 5 Parameter and constraint values of the best solutions obtained
for pressure vessel problem

ABC UABC

x1 0.8125 0.8125

x2 0.4375 0.4375

x3 42.098446 42.098446

x4 176.636596 176.636596

g1(x) 0.000000 −0.000000

g2(x) −0.035881 −0.035881

g3(x) −0.000226 −0.000000

g4(x) −63.363404 −63.363404

f (x) 6059.714339 6059.714335

Table 6 Parameter and constraint values of the best solutions obtained
for tension/compression spring problem

ABC UABC

x1 0.051749 0.051691

x2 0.358179 0.356769

x3 11.203763 11.285988

g1(x) −0.000000 −0.000000

g2(x) −0.000000 −0.000000

g3(x) −4.056663 −4.053886

g4(x) −0.726713 −0.727694

f (x) 0.012665 0.012665

in the articles with which we compare, so the solutions we
reached may be the best.

The UABC algorithm achieved better results since it more
precisely controls balance of exploitation and exploration,
on the global level as onlooker and scout phase, as well
within these phases. The exploitation in the onlooker phase

Table 7 Parameter and constraint values of the best solutions obtained
for speed reducer problem

ABC UABC

x1 3.499999 3.500000

x2 0.7 0.7

x3 17 17

x4 7.3 7.3

x5 7.8 7.715320

x6 3.350215 3.350215

x7 5.287800 5.286654

g1(x) −0.073915 −0.073915

g2(x) −0.197999 −0.197999

g3(x) −0.499172 −0.499172

g4(x) −0.901555 −0.904644

g5(x) 0.000000 −0.000000

g6(x) 0.000000 −0.000000

g7(x) −0.7025 −0.7025

g8(x) 0.000000 −0.000000

g9(x) −0.583333 −0.583333

g10(x) −0.051326 −0.051326

g11(x) −0.010695 −0.000000

f (x) 2997.058412 2994.471066

Table 8 Parameter and constraint values of the best solutions obtained
for gear train problem

ABC UABC

x1 49 49

x2 16 16

x3 19 19

x4 43 43

f (x) 0 0

Table 9 Parameter and constraint values of the best solutions obtained
for three-bar truss problem

SCA UABC

x1 0.788621 0.788675

x2 0.408401 0.408248

g1(x) NA 0.000000

g2(x) NA −1.464102

g3(x) NA −0.535898

f (x) 263.895847 263.895843

is improved by limiting new solutions only to the diagonal
between two solutions and by decreasing M RO parameter
that limits the number of parameters that will be changed,
while at the same time diversity is added by different selec-
tion probability formula that relaxes suppression of infeasible

123

J Intell Manuf (2013) 24:729–740 739

solutions. The exploration at the scout phase is increased by
allowing more scouts periodically that helps to leave the local
minima.

From this work, it can be concluded that our upgraded arti-
ficial bee colony algorithm can be efficiently used for solving
engineering design problems due to its simplicity, reliabil-
ity and robustness. Future research will include additional
adjustments of algorithm exploitation/exploration mecha-
nisms, with continued respect to a generally accepted rule
that any change should be universal, i.e. not adjusted for any
specific problem.

Acknowledgments This research is supported by Ministry of Educa-
tion and Science of Republic of Serbia, Grant no. III-44006.

References

Akay, B., & Karaboga, D. (2010). Artificial bee colony algo-
rithm for large-scale problems and engineering design opti-
mization. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-010-0393-4 (Published online).

Aydin, M. E. (2010), Coordinating metaheuristic agents with swarm
intelligence. Journal of Intelligent Manufacturing. doi:10.1007/
s10845-010-0435-y (Published online).

Baykasoglu, A., Ozbakir, L., & Tapkan, P. (2007). Artificial bee col-
ony algorithm and its application to generalized assignment
problem. In F. T. S Chan & M. K. Tiwari (Eds.), Swarm intel-
ligence, focus on ant and particle swarm optimization (pp. 113–
144). Vienna: I-Tech Education and Publishing.

Chang, F. C., & Huang, H. C. (2010). A refactoring method for
cache-efficient swarm intelligence algorithms. Information Sci-
ences doi:10.1016/j.ins.2010.02.025 (Article in press).

Cheshmehgaz, H. R., Desa, M. I., & Wibowo, A. (2011). A flexible
three-level logistic network design considering cost and time
criteria with a multi-objective evolutionary algorithm. Journal
of Intelligent Manufacturing. doi:10.1007/s10845-011-0584-7
(Published online).

Deb, K. (2000). An efficient constraint-handling method for genetic
algorithms. Computer Methods in Applied Mechanics and Engi-
neering, 186(2–4), 311–338.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the
travelling salesman problem. Biosystems, 43(2), 73–81.

Gaitonde, V. N., & Karnik, S. R. (2010). Minimizing burr size in
drilling using artificial neural network (ann)-particle swarm opti-
mization (pso) approach. Journal of Intelligent Manufacturing.
doi:10.1007/s10845-010-0481-5 (Published online).

Haddad, O. B., Afshar, A., & Marino, M. A. (2006). Honey-
bees mating optimization (hbmo) algorithm: A new heuristic
approach for water resources optimization. Water Resources Man-
agement, 20(5), 661–680.

Hamida, S. B., & Schoenauer, M. (2002). Aschea: New results using
adaptive segregational constraint handling. In Proceedings of
the congress on evolutionary computation 2002 (CEC’2002) (pp.
884–889). IEEE Service Center.

He, S., Prempain, E., & Wu, Q. (2004). An improved particle swarm
optimizer for mechanical design optimization problems. Engi-
neering Optimization, 36(5), 585–605.

Jovanovic, R., & Tuba, M. (2011). An ant colony optimization
algorithm with improved pheromone correction strategy for the
minimum weight vertex cover problem. Applied Soft Comput-
ing, 11(8), 5360–5366.

Jun-Qing Li, Q. K. P, & Xie, S. X. (2010). A hybrid variable neighbor-
hood search algorithm for solving multi-objective flexible job shop
problems. Computer Science and Information Systems, 7(4), 907–
930.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization. Technical report-tr06, Erciyes University, Engineer-
ing Faculty, Computer Engineering Department.

Karaboga, D., & Akay, B. (2011). A modified artificial bee colony
(abc) algorithm for constrained optimization problems. Applied
Soft Computing, 11(3), 3021–3031.

Karaboga, D., & Basturk, B. (2007a). Artificial bee colony (abc) optimi-
zation algorithm for solving constrained optimization problems.
In LNAI 4529: IFSA’07 proceedings of the 12th international fuzzy
systems association world congress on foundations of fuzzy logic
and soft computing (pp. 789–798). Springer.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algo-
rithm for numerical function optimization: Artificial bee colony
(abc) algorithm. Journal of Global Optimization, 39(3), 459–471.

Karaboga, D., & Basturk, B. (2008). On the performance of artificial
bee colony (abc) algorithm. Applied Soft Computing, 8(1), 687–
697.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In
Proceedings of the 1995 IEEE international conference on neural
networks (pp. 1942–1948). Piscataway, NJ: IEEE Service Center.

Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, ho-
momorphous mappings, and constrained parameter optimiza-
tion. Evolutionary Computation, 7(1), 19–44.

Lu, M., & Romanowski, R. (2011). Multi-contextual ant colony
optimization of intermediate dynamic job shop problems. The
International Journal of Advanced Manufacturing Technology 1–
15. doi:10.1007/s00170-011-3634-6 (Published online).

Mezura-Montes, E., & Coello Coello, C. A. (2005). Useful infea-
sible solutions in engineering optimization with evolutionary
algorithms. In MICAI 2005: Advances in artificial intelligence of
lecture notes in computer science (pp. 652–662). Springer.

Mezura-Montes, E., & Miranda-Varela, C. A. (2005). A simple
multimembered evolution strategy to solve constrained optimi-
zation problems. IEEE Transactions on Evolutionary Computa-
tion, 9(1), 1–17.

Mezura-Montes, E., Coello Coello, E. M., & Gomez-Ramon,
R. (2010). Differential evolution in constrained numerical optimi-
zation: An empirical study. Information Sciences, 180(22), 4223–
4262.

Pan, D., & Liu, Z. (2011). An improved particle swarm optimization
algorithm. In H. Deng, D. Miao, F. L. Wang, & J. Lei (Eds.),
Emerging research in artificial intelligence and computational
intelligence, communications in computer and information sci-
ence (Vol. 237, pp. 550–556). Berlin: Springer.

Parsopoulos, K., & Vrahatis, M. (2005). Unified particle swarm
optimization for solving constrained engineering optimization
problems. In ICNC 2005: Advances in natural computation, vol-
ume 3612/2005 of LCNS (pp. 582–591). Springer.

Pasandideh, S. H. R., Niaki, S. T. A., & Hajipour, V. (2011).
A multi-objective facility location model with batch arrivals:
Two parameter-tuned meta-heuristic algorithms. Journal of Intelli-
gent Manufacturing. doi:10.1007/s10845-011-0592-7 (Published
online).

Pham, D. T., Kog, E., Ghanbarzadeh, A., Otri, S., Rahim, S., &
Zaidi, M. (2006). The bees algorithm—a novel tool for complex
optimisation problems. In IPROMS 2006 proceeding 2nd interna-
tional virtual conference on intelligent production machines and
systems (pp. 454–459). Elsevier.

Puranik, P., Bajaj, P., Abraham, A., Palsodkar, P., & Deshmukh,
A. (2011). Human perception-based color image segmenta-
tion using comprehensive learning particle swarm optimi-

123

http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s10845-010-0393-4
http://dx.doi.org/10.1007/s10845-010-0435-y
http://dx.doi.org/10.1007/s10845-010-0435-y
http://dx.doi.org/10.1016/j.ins.2010.02.025
http://dx.doi.org/10.1007/s10845-011-0584-7
http://dx.doi.org/10.1007/s10845-010-0481-5
http://dx.doi.org/10.1007/s00170-011-3634-6
http://dx.doi.org/10.1007/s10845-011-0592-7

740 J Intell Manuf (2013) 24:729–740

zation. Journal of Information Hiding and Multimedia Signal
Processing, 2(3), 227–235.

Ray, T., & Liew, K. (2003). Society and civilization: An optimiza-
tion algorithm based on the simulation of social behavior. IEEE
Transactions on Evolutionary Computation, 7(4), 386–396.

Runarsson, T. P., & Yao, X. (2000). Stochastic ranking for con-
strained evolutionary optimization. IEEE Transactions on Evolu-
tionary Computation, 4(3), 284–294.

Runarsson, T. P., & Yao, X. (2005). Search biases in constrained evo-
lutionary optimization. IEEE Transactions on Systems, Man, and
Cybernetics Part C-Applications and Reviews, 35(2), 233–243.

Srinivasan, D., & Seow, T. (2003). Particle swarm inspired evolution-
ary algorithm (ps-ea) for multiobjective optimization problems.
In: The 2003 congress on evolutionary computation—CEC 2003
(pp. 2292–2297). IEEE Press.

Wang, Y., Zhang, B., & Chen, Y. (2011). Robust airfoil optimization
based on improved particle swarm optimization method. Applied
Mathematics and Mechanics (English Edition), 32(10), 1245–
1254.

Yang, X. S. (2005). Engineering optimizations via nature-inspired
virtual bee algorithms. In Artificial intelligence and knowledge
engineering applications: A bioinspired approach, LNCS (Vol.
3562, pp. 317–323). Springer.

Zavala, A. E. M., Hernandez, A., & Diharce, E. R. V. (2005).
Constrained optimization via particle evolutionary swarm opti-
mization algorithm (peso). In GECCO ’05 Proceedings of
the 2005 conference on genetic and evolutionary computation
(pp. 209–216). ACM Press.

123

	An upgraded artificial bee colony (ABC) algorithm for constrained optimization problems
	Abstract
	Introduction
	Literature review
	Our proposed algorithm: UABC
	Benchmark problems
	Experimental study
	Conclusion
	Acknowledgments
	References

