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Abstract In this paper, a new approach to maintenance
scheduling for a multi-component production system which
takes into account the real-time information from worksta-
tions including remaining reliability of equipments as well as
work-in-process inventories in each workstation is proposed.
To model dynamics of the system, other information like
production line configuration, cycle times, buffers’ capacity
and mean time to repair of machines are also considered.
Using factorial experiment design the problem is formu-
lated to comprehensively monitor the effects of each pos-
sible schedule on throughput of the production system. The
optimal maintenance schedule is searched by genetic algo-
rithm-based optimization engine implemented in a simula-
tion optimization platform. The proposed approach exploits
all of makespans of planning horizon to find the best opportu-
nity to perform maintenance actions on degrading machines
in a way that maximizes the system throughput and mitigates
the production losses caused by imperfect traditional main-
tenance strategies. Finally the proposed method is tested in
a real production line to magnify the accuracy of proposed
scheduling method. The experimental results indicate that
the proposed approach guarantees the operational productiv-
ity and scheduling efficiency as well.
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Introduction

Scheduling in manufacturing systems is a complicated and
challenging task requiring the precise consideration of com-
peting alternative resources coupled with the ability to
respond rapidly to changing requirements. Optimized sched-
uling is a key factor and is one of the most crucial plan-
ning and operational issues in manufacturing environments to
increasing system productivity. There is a trade-off between
assigned time to production and available time to perform
maintenance actions in production systems (Yang et al.
2007a). Therefore there is a great need to develop a sys-
tematic maintenance scheduling support tool to incorporate
available information about production and machine failure
condition to exploit maintenance opportunities during the
shift.

In the recent years, the maintenance of systems has been
becoming more and more complicated. The reason of this
complexity is that systems have so many components which
are interconnected with each other. In one side, interac-
tions among components make it complicated to model and
optimize a maintenance system. On the other side, interac-
tions also propose the opportunity as well as group mainte-
nance which may save costs (Nicolai and Dekker 2008). In
today’s complex manufacturing systems such as automotive
assembly line, the maintenance scheduling should not con-
sider only a single machine’s condition, but also intercon-
nection between equipments should be taken into account
(Wang 2002). In the literature there are two relevant main-
tenance policies for interconnected and multi-equipment
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systems which can be categorized into group maintenance
policies and opportunistic maintenance policy.

Under the category of group maintenance policy, a group
of failed equipments are replaced instead of replacing failed
equipments individually. Most of researches on optimal
maintenance strategies focus on one-unit systems. However,
in many real cases, systems are including groups of identical
units. By replacement of groups of failed equipments instead
of replacing failed equipments individually, cost reduction
can be realized. This cost saving which is known as the econ-
omy of scale, results mostly from the quantity discount or
reduction of maintenance set-up cost per equipment (Sheu
and Jhang 1996).

Under the opportunistic maintenance policy, a main-
tenance model proposed where repair or replacement of
equipment’s component is available at an opportunity. An
opportunity arises if the repair or replacement of a component
in other equipment of system allows the other equipments in
question to be repaired (Dagpunar 1996).

The optimization methods for multi-component systems
are categorized based on planning horizon of maintenance
model. In the first category which majority of researches
have been done, the time horizon is infinite. It facilitates
the mathematical analysis which in the most cases is able to
derive analytical expressions for optimal control parameters
and corresponding optimal costs. Therefore, in the category
of infinite horizon, models policy optimization is the most
popular optimization method. In the category of finite hori-
zon, the system is considered in this horizon merely, and
assumed that is not used afterwards, unless a residual value
for estimation of industrial value of the system at the end
of the planning horizon is incorporated. The optimization
methods which are applied to finite horizon are either exact
methods or heuristics. Exact methods always are able to find
the global optimum solution for problems. If the complexity
of an optimization problem is high and the computing time of
the exact method increases exponentially with the size of the
problem, then heuristics can be applied to find a near opti-
mal solution in reasonable time (Nicolai and Dekker 2008).
In this context, Langdon and Treleaven (1997) proposed a
heuristic which has been combined with genetic algorithm
to solve a multi-component maintenance scheduling prob-
lem. The combination of their proposed hand coded heu-
ristic and GA demonstrates that the time taken to perform
GA fitness evaluations and also program run time grows
quickly with problem size and the number of potential fail-
ures which should be taken into account. However their pro-
posed heuristic yields good schedules within a reasonable
time. In another study Higgins (1998) proposed a model for
determining the best allocation of maintenance activities and
crews. The proposed model is subject to constraints. The
problem has been solved using the tabu search heuristic for
which the neighborhood is defined by swapping the order of

jobs, maintenance crews, or both. This model also produces
a computationally efficient optimal solution. In the problem
which has been solved by Papadakis and Kleindorfer (2005)
they have formulated the problem by binary programming
method, Rhys–Balinski method, max-flow min-cut method,
and enforced maintenance formulation. Finally they could
find an exact solution which computationally is efficient to
solve the problem. Grigoriev et al. (2006) proposed several
models for a periodic maintenance scheduling problem that
has applications in many different areas. Their approach has
been to fix the length of the period to a given constant T . In
their study most of mathematical formulations are linear inte-
ger programs. They have shown that this formulation can be
solved using column generation. This resulted in a branch and
price algorithm to find the exact solution for problem. Budai
et al. (2006) presented two versions of the preventive main-
tenance scheduling problem for a multi-component system,
first one with fixed intervals between two consecutive execu-
tions of the same routine work, and another one with only a
maximum interval. Apart from giving a math programming
formulation for the maintenance scheduling problem and for
its extension they also presented some heuristics which are
based on intuitive arguments. Rakowsky (2006) proposed a
modeling of reliability-adaptive multi-system operation to
increase the reliability and overall performance such system.
In his study, two independently operating systems and a sin-
gle maintenance unit were considered. Using a convolution-
based approach, he quantified the problem, and tailored it
for fleets of ships, aero-planes, spacecraft, and vehicles. His
study indicates that the reliability-adaptive system (RAS)
concept makes sense if average system output loss due to
lowered performance level is smaller than average loss due
to waiting for maintenance in a non-adaptive case. Dietl and
Rakowsky (2006) presented a strategy which applies a reli-
ability-adaptive operating strategy in combination with tool
derating in order to hold the system harmonization of main-
tenance actions. Thy compared the output-time functions of
a transfer line without reliability-adaptive with functions of
a system with reliability-adaptive control. In their study, the
economic efficiency of a multi-station transfer line was eval-
uated in term of the quantity of manufactured parts. Schutz
et al. (2009) proposed periodic and sequential preventive
maintenance policies for a system which performs differ-
ent missions based on a dynamic system failure law over a
finite planning horizon. In their study, first step is to achieve
the set of missions to perform by determining the optimal
business plan in order to maximize the profit of missions
minus maintenance costs. Therefore, for each plan, main-
tenance planning is determined by taking into account two
maintenance policies. For the periodic maintenance policy
the objective is to find the optimal number of preventive
maintenance actions. For the sequential maintenance pol-
icy, the optimal number of preventive maintenance intervals
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and the duration of these different intervals are determined.
For those interested readers, a thorough review on optimal
maintenance of multi-component systems can be found at
published paper by Nicolai and Dekker (2008).

Online information about the system status, defined as the
dynamic distribution of the work-in-process in the production
line to find maintenance work-order prioritization already
has been proposed by Yang et al. (2007b). Yang et al. (2008)
also introduced another maintenance scheduling method for
manufacturing systems using the continuous evaluation and
prediction of the performance degradation level of equip-
ment, as well as the complex interaction between the pro-
duction process and maintenance operations. They used a
genetic algorithm based optimization procedure to search
for the most cost-effective maintenance schedule, taking into
account both production throughputs and maintenance costs.
Their algorithm was implemented in a simulated environ-
ment and benchmarked against several traditional mainte-
nance strategies, such as corrective maintenance, scheduled
maintenance and condition-based maintenance. Their study
indicates that their proposed maintenance scheduling method
could result in significant gains obtained by optimal mainte-
nance scheduling. In the same year, a systematic approach to
find maintenance opportunities utilizing real-time informa-
tion of production status so that maintenance decisions can
be made responsively at all times proposed by Chang et al.
(2007).

The importance of real-time information in maintenance
scheduling of multi-component systems already has been
stressed by Yang et al. (2007b, 2008), and Chang et al. (2007),
but it can be much more efficient if we utilize the real-time
information from workstations including remaining reliabil-
ity of equipments in the beginning of each production shift,
as well as amount of work-in-process in the production line
to find the best maintenance opportunities during entire of
the production shift in question which considers the dynam-
ics of production system. The objective of this research is
to find the best schedule to perform maintenance actions on
machines in a production line that are subject to failure based
on given information by predictive embedded devices like
Watchdog Agents (Ni et al. 2006) about their condition in
the beginning of the shift. Real-time information from work-
stations is a very important issue in this research. However, a
continuous information retrieval from workstations is unreal-
istic and useless action. Therefore, the real-time information
retrieval mechanism is meant to be applied every hour, shift,
day, or week, depending on the situation at hand (which in
this research is the scheduling baseline at the beginning of
planning horizon), and not necessarily in minutes or seconds.

In the continuation of this paper, first, basic concept of
dynamics of production system toward maintenance sched-
ule based on a simplified model is discussed. Next, the model
in the simulation optimization platform is introduced. After-

wards, the model is implemented using commercial simula-
tion optimization software. Finally, the paper is concluded
with experiments, results and discussions.

Dynamics of production system

The purpose of this research is to find the best schedule to
perform maintenance actions on machines that are subject to
failure. A machine becomes idle when maintenance action is
performed on it. Under this circumstances, the buffer feeding
into the workstation as shown in Fig. 1, may cause a conges-
tion in the upstream machines, while the buffer fed by the
station may become empty, causing a starvation in the down-
stream machines. The main concern is to utilize the time in
an efficient manner, so that the production system’s behavior
is cost effective and operationally efficient.

Consider a simple production line as described in Fig. 2.
The rectangular shapes represent the machines and the cir-
cular shape is the buffer. Let the cycle time of machine M1

and M2 be 1 min. In fact, it is the processing time to realize
one piece from each workstation and transfer it to the next
downstream inventory bank. The buffer capacity is one unit
only. Let the mean time to repair (MTTR) of machines M1

and M2 be 1 min. Assume that there is one work piece as
initial buffer level in the buffer B1 at the beginning of the
shift and the shift length is 3 min only. We are to investi-
gate the dynamics of production system in term of the final
throughput and the work-in-process distribution at the end
of the shift by performing the maintenance actions during
the shift which makes a machine idle while another one may
continue to function. To do so, a factorial experiment should
be designed. Generally in factorial experiment design, exper-
imental trials (or runs) are performed at all combinations of
factor levels (Montgomery and Runger 2006). By a factorial
experiment we mean that in each complete replication exper-
iment, all possible combinations of the levels of the factors
are investigated and the response of each set of factors in a
variety of factor levels should be estimated.

Fig. 1 The effect of a machine shutdown on upstream and downstream
workstations

Fig. 2 The shutdown on workstations
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Table 1 Combination of factor levels and their corresponding response

Combinationa (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2,0) (2,1) (2,2)

Partially processed 1 1 2 1 1 1 1 0 2

Fully processed 2 2 1 1 2 2 2 2 2

Response value 2.5 2.5 2 1.5b 2.5 2.5 2.5 2 3c

a The first and second elements in parenthesis represent the shutdown time for machine M1 and M2 respectively
b The minimum response value
c The maximum response value

In this experiment, we take the workstations’ shutdown
times as factors, and the effect of combination of these fac-
tor levels (which forms a possible breakdown schedule) on
throughput of the production line and work-in-process distri-
bution in the production line as response. Thus, each factor
will have three factor levels which are beginning of the 1st,
2nd, and 3rd minutes. Therefore, each replication of cross-
ing the factor levels of these two factors contains nine com-
binations. The effect of crossing factor levels produces a
response which in this experiment is defined to be the num-
ber of work pieces which have been fully or partially pro-
cessed. Let the value of “1” be assigned to fully processed
work pieces and value of “0.5” be assigned to partially pro-
cessed parts (because half of the total process is done at M1).
These values are multiplied by the corresponding number
of work pieces and the cumulative amount of all of them
makes the response value for the system. Mathematically,
RV = 0.5P P + F P , where RV is the response value of the
system, PP represents the number of partially processed parts
and FP is the number of fully processed parts. The derived
responses for all of possible combinations calculated through
a manual discrete-event simulation are shown in Table 1. The
result of this experiment indicates that the highest response
(response value of “3”) occurs at combination (2, 2) when
both machines should go shutdown at the beginning of 2nd
minute in order to be repaired, while the lowest response
value (response value of “1.5”) occurs at combination (1,
0) when machines M1 and M2 should go shutdown at the
beginning of 1st and 0th minutes respectively. This simple
experiment obviously demonstrates that the number of par-
tially and fully produced parts and therefore, the dynamics
of production system significantly depends on maintenance
schedule and it is worth to find a solution which searches the
optimal maintenance schedule to avoid production losses and
disruptions to the next shift. In the next section, this solution
will be described.

Optimal maintenance scheduling through simulation
optimization

In this section, the algorithm for optimal maintenance sched-
uling will be described. In the real world’s problems, imple-
menting such an experiment to find the best response

and its corresponding schedule is not so straightforward.
For instance, consider a production system consisting ten
machines which four of them are subject to repair during the
shift. It means that there are four factors. If the mean time
to repair for each of these machines is 20 min, then in a shift
which consists of 8 h (480 min), the available time range to
performing maintenance actions during the shift is within
0th to 460th minutes. Therefore, each factor has 460 factor
levels. Logically, in this experiment, the number of complete
combinations of factor levels which their response should
be investigated will be 4604 = 44,774,560,000. Obviously,
for such large solution space, analytical calculations using
designed experiments are very hard or even impossible to be
used. In contrast, discrete-event simulations are able to faith-
fully represent the behavior of such complicated systems.
However, conducting an exhaustive discrete-event simula-
tion for all combinations to search the best (optimal) response
is neither effective nor efficient (Ólafsson 2006). One of the
most efficient methods to find the optimum and near optimum
level of response surface which has been introduced yet is
“simulation optimization” (Fu 2002). Simulation optimiza-
tion is defined as the optimization of performance measures
based on outputs from simulations. In this process a general
purpose optimization engine is interfaced with a general pur-
pose simulation program (Fu et al. 2005). The optimization
engine generates the set of input factors to perform the sim-
ulation. The simulation program measures the performance
of candidate solutions. This process continues until satisfied
solution or termination condition is obtained (Rogers 2005).
Figure 3 illustrates the mechanism of simulation optimiza-
tion for discrete-event systems. The general problem setting
for simulation optimization is the following parametric opti-
mization problem:

min θ∈� J (θ) = E[L(θ, ω)] (1)

where J (θ) = E[L(θ, ω)] is the performance measure of
interest, L(θ, ω) is called the sample performance, ω indi-
cates the stochastic effects of the system, θ is a controlla-
ble vector of p parameters, and � is the constraint set on
θ , either defined explicitly or implicitly (as in mathematical
programming formulations), but assumed to be a closed set.
The optimum is defined as follows:
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Fig. 3 Mechanism of simulation optimization for discrete-event sys-
tems (Fu 2002)

θ∗ = arg min θ∈� J (θ) (2)

As an approach to global optimization, genetic algorithm
(GA) is applicable to optimization problems which are intrac-
table for exact solutions by conventional methods (Holland
1975). Moreover, most of existing studies in this context are
on basis of numerical evaluations and the claim is made that
genetic algorithm is robust and therefore applicable to sim-
ulation optimization (Ólafsson 2006). Therefore, it can be
used to search the near optimal maintenance schedule of
this problem; thus, we implement the problem in question
in a simulation optimization platform facilitated by GA. The
chromosome evolution process to search the near optimal
maintenance schedule should be able to perform the repair
mechanism to recover those selected chromosomes which
are out of constraint (Kampen et al. 1996). To implement the
proposed scheduling platform, first the production system
should be simulated by discrete-event simulator. Next, the
maintenance actions in the production system will be simu-
lated through a series of “workstation waiting” and “work-
station starting” events manipulating according to the gener-
ated shutdown sets by optimization engine. Then the derived
response through simulation is sent to the GA-based opti-
mization engine to evaluate the fitness of solutions. In each
generation, based on performance of the current set of solu-
tions, a subset of theses solution is chosen and these solu-
tions are combined into new solutions. In GA, the operators
which are used to generate the new solutions are survival,
where a solution is carried to the next generation without
any change, mutation, where a solution is modified slightly,
and crossover, where the properties of two solutions are com-
bined into one solution. The same process is then repeated
with the new set of solutions. The mutation and crossover
operators depend on the representation of the solution, but
not on the evaluation of its performance, while selection of
solutions is carried out on basis of their performance. Solu-
tions with higher performance should have more chance of
both surviving and being allowed to generate new solutions
via crossover. The simplest approach is to order the solutions

J (θ[1]) ≤ J (θ[2]) ≤ · · · ≤ J (θ[n]), and only operate on the
best solutions. If a strict selection of the top k solutions were
needed, this considerably complicates the issue in the simu-
lation optimization context, and substantial simulation effort
should be spent to achieve a precise ordering of the solutions
(Ólafsson 2006).

With respect to which solutions are chosen to generate
the next set, genetic algorithms are quite robust. Neverthe-
less, a purely deterministic selection of the top k solution is
typically not the best approach for deterministic problems,
and some randomness is usually involved into the optimiza-
tion process. Roulette strategy is an instance of this which
probability of selecting a solution θ is figured out as follows:

P(θ) = Ĵ (θ)
∑

Allθ Ĵ (θ)
(3)

where Ĵ (θ) is an estimation for the fitness function J : � →
R which measures the quality of the solution which should
be maximized (because the higher value implies more fit).

With respect to robustness of GA-based simulation opti-
mization platforms, in this study, we have implemented the
model in question using ProModel simulation software and
its embedded GA-based optimization software called Sim-
Runner which fits the best our simulation modeling para-
digm, and optimization requirements as well. SimRunner
uses genetic algorithm which is designed to find near opti-
mal control parameters with respect to a defined objective
function. SimRunner turns simulation model into an answer
machine to perform sophisticated “what-if ” analysis and
optimization automatically. The ActiveX connection of Pro-
Model and SimRunner enables the automation of creating
sophisticated and large-scale simulation optimization mod-
els, without manually coding the simulation optimization
models giving the best answer possible while saving the most
time. Furthermore, Simrunner provides a quick and modular
control parameters setting option which is a crucial issue in
efficiency of GA-based optimization (Harrell et al. 2004).

It should also be pointed out that, since the genetic algo-
rithm yields near optimal solutions, thus in this study, from
“optimal maintenance schedule”, in fact we mean “the near
optimal maintenance schedule”.

In order to set the objective function to evaluate the
effects of maintenance schedule on production throughput,
as described in the simple designed experiment, the effects
of maintenance schedule on the number of fully processed
and partially processed parts in the system at the end of
planning horizon (shift) constructs the backbone of our objec-
tive function. To give a value to each work piece in produc-
tion line, a method needed to faithfully assign these values
to work pieces in each workstation. One of such methods
called gravity heuristic proposed by Yang et al. (2007a) using
the analogy between production line and gravity field, by
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minimum spanning tree algorithm used in the graph theory.
The response value’s objective function is as follows:

W (t) =
n∑

i=1

m∑

j=1

(
vi, j ·Ci, j (t)

)
(4)

where W (t) is the response value of a production line at a
given time t, vi, j is the value of part type j at station i, Ci, j

is the buffer content level of part type i at station j, n is
the number of workstations inside the system, including all
machines and buffers, and m is the number of part types the
system is capable to produce. Since in this study only one
part type exists, Eq. (4) reduced to following equation:

W (t) =
n∑

i=1

(vi · Ci (t)) (5)

where W (t) is the system value of production line at given
time t, n is the number of stations in the system, Ci is the
number of parts held in station i , at given time t , and vi is the
part value for a part in station i . The part value vi for each
station should be assigned based on layout of production line.
It can be calculated based on the shortest time to finish STi

for station i . It is the minimum needed processing time to
finish a part, starting from station i indeed. Therefore vi can
be calculated by following transformation function:

vi = max(STk) − STi (6)

If the calculated vi be divided by max(vi ), it yields the nor-
malized value of vi which is in the range of [0, 1]. The sys-
tem response value represents all of the work done by the
production system in given time on the existing parts in the
system (including work-in-process and finished parts). The
higher system value is, the more performance of maintenance
schedule.

Model implementation

In order to use SimRunner, first a simulation model in Pro-
Model must be created. The crucial issues associated with
using this simulation optimization tool are selection of con-
trol parameters, the objective function and constraints. These
are defined as follows:

1. Objective Function: The objective function will be to
maximize the total throughput. It will include finished
goods inventory, and work in process inventory within
buffers. As mentioned earlier, it should be in accordance
to Eq. 5.

2. Constraints: There is a capability in SimRunner to pro-
vide some constraints to restrict the solution space. Here,
the available range of time within planning horizon to

complete the maintenance action on each machine is con-
sidered as constraints.

3. Control Parameters: The control parameters or the
decision variables are the parameters which can be
changed from a lower limit to an upper limit. Shut-
down time for machines which are subject to repair
will be considered as the control parameters. These
variables are defined in the SimRunner’s “Macro” and
“Variable” modules. As described earlier, SimRunner
provides modular options to set optimization parame-
ters. In an ad hoc manner, we set all the available opti-
mization parameters on the most precise option given by
SimRunner. To do so, we set the convergence percent-
age on 0.001; the maximum number of generations is set
on 100 generations; the number of replication per exper-
iment is set on 100; the confidence level on 99%; the
percentage of error on objective function estimation on
1%; and the “Optimization Profile” on “Cautious” mode.
Also the MTTRs, cycle times and shutdown variables are
set as deterministic values.

Experiments and results

In this section the proposed optimal maintenance scheduling
method was tested in seven different simulated scenarios, and
finally validated through practicing in a real production sys-
tem. Scenario 1 is used as benchmark to analyze the dynamics
of the production system.

Scenario 1 consider a virtual production line which consists
of seven machines and four buffers as shown in Fig. 4. In the
beginning of the shift, based one given predicted information
about machines condition, machines M2, M4, M5, M7 are
below reliability threshold. Thus, they should be repaired in
a near optimal schedule during 8 h shift length. The cycle time
for each workstation and the corresponding MTTR for each
degraded machine (according to the information from the
maintenance database) are described in Table 2. The infor-
mation about buffers’ capacity and their corresponding ini-
tial buffer levels distribution remained from previous shift
are described in Table 3. In this scenario, half of the capacity
of each buffer is full of WIP.

As described earlier in Section “Optimal maintenance sched-
uling through simulation optimization”, the parts value in
each workstation should be determined to set the objective
function. The part values are calculated according to Eq. (6).
In this production line, the max(STk) belongs to the first
workstation which is equal to total cycle time (115 s). Table 4
illustrates the value of variables used to calculate the nor-
malized values of vi which are required to set the objective
function of problem. According to Eq. (4) the generic form
of objective function for this scenario will be as follows:
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Fig. 4 Layout of production line used in Scenario 1

Table 2 Cycle time and MTTRs for stations in Scenario 1

Station M1 M2 M3 M4 M5 M6 M7

Cycle time (s) 15 13 30 30 16 15 16

MTTR ( min) N/A 20 N/A 18 22 N/A 24

Table 3 Buffers’ capacity and initial buffer level in Scenario 1

Buffer B1 B2 B3 B4

Buffer capacity 100 50 50 100

Initial level 50 25 25 50

Table 4 Part values calculation for Scenario 1

Station M1 M2 M3 M4 M5 M6 M7 Finished
parts
store

STi 105 90 77 77 47 31 16 0

vi 0 15 28 28 58 74 89 105

Normalized vi 0 0.14 0.26 0.26 0.55 0.70 0.84 1

V = W (Te) − W (Ts) =
n∑

i=1

vi · Ci (Te) −
n∑

i=1

vi · Ci (Ts)

= [(0.14 × C1(Te)) + (0.26 × C2(Te))

+(0.55 × C3(Te)) + (0.70 × C4(Te))

+(1 × C7(Te))] − [(0.14 × 30)

+(0.26 × 20) + (0.55 × 40) + (0.70 × 10)]
where W (Ts) and W (Te) are the value of the production sys-
tem in the beginning and at the end of the shift respectively.
The reason that the W (Ts) extracted from W (Te) is to not
consider the initial buffer levels which remained from pre-
vious shift as the response of production system to the pro-
posed maintenance schedule. The derived near optimal main-
tenance schedule and its corresponding response of produc-
tion system are shown in Table 5. In this table SDTi rep-
resents the shutdown time for machine i, Ci (Te) represents
the final amount of buffer at stationi , and C7(Te) represents
the number of fully processed parts at the end of the shift.
As shown in the table, the highest response value in term of
production throughput and final buffer levels distribution is
achieved when M2, M4, M5, and M7 go shutdown on 115th,

343rd, 462nd, and 456th minutes after the beginning of the
shift respectively (the shift length is 480 min).

Scenario 2 In this scenario, the same system and set of
parameters as in Scenario 1 is used, except that the initial
buffer levels varies from Scenario 1. In this scenario, the
buffers are empty of initial inventories. The aim is to study
the effect of initial buffer levels distribution on their lower
limit to the outcome of maintenance schedule and produc-
tion system dynamics. In this scenario, the parts value in
each workstation is the same as Scenario 1. The derived near
optimal maintenance schedule for this scenario is shown in
the Table 6. It indicates that the best response by produc-
tion system occurs, when machines M2, M4, M5 and M7 all
go shutdown to be repaired at the starting point of the shift.
Comparing the results with Scenario 1 indicates that by evac-
uating the buffers, more throughputs will be obtained. Fur-
thermore, when distribution of WIP varies, the near optimal
maintenance schedule has significantly changed.

Scenario 3 In this scenario, the same system and set of
parameters as Scenario 1 is used, except that the initial buffer
levels varies from Scenario 1. In this scenario, the buffers
are full of initial inventories. The aim is to study the effect
of initial buffer levels distribution on their upper limits to
the outcome of maintenance schedule and production system
dynamics. In this scenario, the parts value in each workstation
is the same as Scenario 1. The results as indicated in Table 7
shows that the best performance occurs when M2, M4, M5,
and M7 go shutdown on 345th, 0th, 462nd, and 456th elapsed
minutes from the beginning of the shift respectively. Further-
more, when there is not any free space in the buffers, the
lowest throughputs is obtained.

Scenario 4 In this scenario again, the same system and set
of parameters as in Scenario 1 is used, except that the buf-
fers capacity is different from Scenario 1. In this scenario,
the buffers’ capacities are two times higher than Scenario 1.
The objective of designing this scenario is to study the effect
of buffer capacity enlargement on outcome of maintenance
schedule and production system dynamics. In this scenario
also, the parts value in each workstation is the same as Sce-
nario 1. As shown in Table 8, this change has significantly
influenced the maintenance schedule and production sys-
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Table 5 Derived results of Scenario 1

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

115 343 462 456 64 50 50 71 1,707 1,743.9

Table 6 Derived results of Scenario 2

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

0 0 0 0 0 28 50 5 1,707 1,745.2

Table 7 Derived results of Scenario 3

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

345 0 462 456 100 50 50 100 1,707 1,707

tem’s behavior. As shown in the Table 8, in this scenario,
the highest production value has been obtained so far.

Scenario 5 In this scenario again, the same system and set
of parameters as in Scenario 1 is used, except that the buf-
fers capacity is different from Scenario 1. In this scenario,
the buffers’ capacities reduced to the half of the Scenario 1.
The objective of designing this scenario is to study the effect
of decreasing buffer capacity on outcome of maintenance
schedule and production system dynamics. As shown in
Table 9, by decreasing the buffers capacities, the production
value diminishes, and optimal maintenance schedule changes
significantly. The interesting point is that the same value as
Scenario 3 has been gained. Thus, the more free space in
buffers are, the more productive the system works in its near
optimal condition.

Scenario 6 In this scenario, consider that in the same sys-
tems as Scenario 1, the mean time to repairs have been dou-
bled. Obviously, because of trade-off between assigned time
to maintenance and production time, as shown in Table 10,
the production system’s response to the near optimal mainte-
nance schedule has significantly been decreased. The optimal
maintenance actions in this scenario should be performed on
440th, 444th, 436th, and 432nd minutes after beginning of

the shift for machines M2, M4, M5, and M7 respectively. In
contrast, the worst derived schedule yields the production
value of 1,457, when M2, M4, M5, and M7 go shutdown on
440th, 333rd, 0th, and 216th minutes respectively. Logically,
the longer MTTRs results in less production value.

Scenario 7 In this scenario, consider that in the same sys-
tems as Scenario 1, the mean time to repair has reduced
by half. As shown in Table 11, the near optimal mainte-
nance actions in this scenario should be performed at 117th,
353rd, 469th, and 468th minutes after beginning of the shift
on machines M2, M4, M5, and M7 respectively. Moreover,
because of dedicating more production time, the highest pro-
duction value has been obtained.

Validation through practicing in real production system

In this section, in a real case of industry, as shown in Fig. 5,
a production system consisting thirteen machines and four
buffers with adjustable capacities is used to test the pro-
posed maintenance scheduling method via comparing the
estimated response by scheduling algorithm, and the real
given response by production line to each set of solutions.
Under four different conducted circumstances, first the near
optimal maintenance schedules were derived by proposed

Table 8 Derived results of Scenario 4

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

345 343 462 456 0 64 100 71 1,707 1,766.1

Table 9 Derived results of Scenario 5

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

230 458 346 342 50 25 25 50 1,707 1,707
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Table 10 Derived results of Scenario 6

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

440 444 436 432 100 50 50 63 1,617 1,653.3

Table 11 Derived results of Scenario 7

SDT 2 SDT 4 SDT 5 SDT 7 C1(Te) C2(Te) C3(Te) C4(Te) C7(Te) Response value

117 353 469 468 38 50 50 52 1,752 1,772

Fig. 5 Layout of production line used as case study

Table 12 Cycle time and MTTRs of stations in the real production
system

Station Cycle time (s) MTTR ( min)

M1 37 72

M2 37 N/A

M3 37 64

M4 25 N/A

M5 25 N/A

M6 36 55

M7 36 55

M8 36 55

M9 11 60

M10 49 N/A

M11 49 42

M12 49 N/A

M13 49 N/A

algorithm, and then the proposed maintenance schedule was
practiced in the real production system to measure the accu-
racy of the proposed maintenance scheduling method. First
we explain the circumstances in each experiment, and after-
wards the results are presented and compared.

Experiment 1 In this experiment, seven out of thirteen
machines are subject to repairs as bolded in the Fig. 5. The
cycle time for each workstation and its corresponding MTTR

Table 13 Buffers’ capacities and initial level of buffers in Experiment 1

Buffer B1 B2 B3 B4

Buffer capacity 100 100 100 100

Initial level 56 64 30 50

Table 14 MTTRs of machines for Experiment 2

Machine name M1 M3 M6 M7 M8 M9 M11

MTTR ( min) 40 25 18 18 18 30 36

(if applicable) are described in Table 12. Also the buffers
capacity and their initial level are explained in Table 13.

Experiment 2 In this experiment, the machines go shut-
down according to decreased MTTRs given in Table 14, and
the rest of conditions are the same as Experiment 1.

Experiment 3 In this experiment, each buffer’s capacity is
decreased to 65 units. The rest of conditions are the same as
Experiment 1.

Experiment 4 In this experiment, each buffer’s capacity is
increased to 200 units. The rest of conditions are the same as
Experiment 1.

Table 15 represents the derived schedule, the real response
of system after practicing the proposed schedule by algo-
rithm, and the relative error between former and latter one.
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Table 15 The derived schedule from algorithm and experimental results and their relative errors

Experiment Measures SDT1 SDT3 SDT6 SDT7 SDT8 SDT9 SDT11 C3(Te) C5(Te) C8(Te) C9(Te) C13(Te) Response value

1 Scheduled 204 0 425 213 213 210 219 48 100 1 31 2,123 2,103.8

Experimental 204 0 425 213 213 210 219 47 100 1 31 2,124 2,104.6

Relative error N/A N/A N/A N/A N/A N/A N/A 0.02 0 0 0 0.0005 0.0004

2 Scheduled 220 0 462 231 231 225 222 16 26 1 83 2,293 2,272.5

Experimental 220 0 462 231 231 225 222 16 26 1 84 2,292 2,272.2

Relative error N/A N/A N/A N/A N/A N/A N/A 0 0 0 0.01 0.0005 0.0001

3 Scheduled 204 0 425 212 212 210 219 65 65 0 1 2,115 2,065.3

Experimental 204 0 425 212 212 210 219 65 65 0 1 2,115 2,065.3

Relative error N/A N/A N/A N/A N/A N/A N/A 0 0 0 1 0 0

4 Scheduled 408 208 213 425 425 210 438 0 107 0 93 2,104 2,117.9

Experimental 408 208 213 425 425 210 438 0 106 0 91 2,105 2,116.5

Relative error N/A N/A N/A N/A N/A N/A N/A 0 0.009 0 0.02 0.0005 0.0006

In Experiment 1, the proposed maintenance algorithm sug-
gests that the highest response by production system occurs,
when machines M1, M3, M6, M8, M9, and M11 go shutdown
at the beginning of 204th, 0th, 425th, 213th, 213th, 210th,
and 219th minutes respectively. After implementing this sug-
gested schedule on real system, almost the same response
with relative error of 0.0004 was given. In the Experiment 2,
by practicing the proposed schedule, the given response by
real production system had only 0.0001 relative errors. In
Experiment 3, exactly the estimated response by algorithm
yielded by the real system, and in Experiment 4, the amount
of relative error was only 0.0006. Like Scenarios 1–4, in the
Experiment 1–4, the system had the same behavior toward
the similar changes which were imposed to the system. In all
of circumstances, the relative error is zero or near to zero,
thus it can be ignored.

Conclusions and future work

A method of maintenance scheduling which incorporates the
dynamics of production system and uses real-time informa-
tion about workstations was developed. The method captures
the dynamism of production system and uses information
about work-in-process and remaining reliability of equip-
ments and uses them in an optimal control algorithm called
simulation optimization. The GA-based optimization engine
of the algorithm in a reasonable time searches the solution
space to find the best combination of performing maintenance
actions on degrading machines which the highest response
by production system can be yielded.

Furthermore, it is concluded that, the available space to
store WIPs (which depends on number of initial buffers and
buffers’ capacity), as well as the length of MTTRs influ-
ence the dynamics of production system, and consequently

affect optimal maintenance schedule. The more free space in
buffers, or the shorter MTTRs are, the more productive the
system works in its optimal condition.

The research indicates that, the proposed method enables
productivity improvement of production system and mini-
mizes production losses which happen due to performing
maintenance action. Moreover, it considers the benefit of the
system rather than an individual machine.

Our current proposed method does not address the stocas-
ticity, while due to randomness nature of many of produc-
tion systems like the semiconductor industries, more efficient
method should be developed to address randomness of such
systems. Also other potential important factors which due to
maintenance may affect the dynamics of production system
should be studied. This will be addressed in our future work.
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