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Abstract Many research works in mathematical modeling
of the facility location problem have been carried out in dis-
crete and continuous optimization area to obtain the opti-
mum number of required facilities along with the relevant
allocation processes. This paper proposes a new multi-objec-
tive facility-location problem within the batch arrival queu-
ing framework. Three objective functions are considered: (I)
minimizing the weighted sum of the waiting and the travel-
ing times, (II) minimizing the maximum idle time pertinent
to each facility, and (III) minimizing the total cost associated
with the opened facilities. In this way, the best combination
of the facilities is determined in the sense of economical,
equilibrium, and enhancing service quality viewpoints. As
the model is shown strongly NP-hard, two meta-heuristic
algorithms, namely genetic algorithm (GA) and simulated
annealing (SA) are proposed to solve the model. Not only
new coding is developed in these solution algorithms, but
also a random search algorithm is proposed to justify the effi-
ciency of both algorithms. Since the solution-quality of all
meta-heuristic algorithms severely depends on their parame-
ters, design of experiments and response surface method-
ologies have been utilized to calibrate the parameters of
both algorithms. Finally, computational results obtained by
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implementing both algorithms on several problems of dif-
ferent sizes demonstrate the performances of the proposed
methodology.
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Introduction and literature review

The introduction and literature review section of the paper is
organized into four subsections, in which research works on
the facility location problem, is first reviewed. Then, some
relevant research on queuing theory is surveyed. Next, the
multi-criteria decision-making works are assessed. Finally,
scope and purpose of the research is given.

Facility location problem (FLP)

The facility location problem (FLP), formally introduced by
Weber (1909), is still receiving significant attentions due
to its wide applications. Balinski (1965) also addressed the
problem of locating a new set of facilities based on dif-
ferent criteria. The FLP attractions are mostly due to both
economical viewpoint and customer satisfaction. In fact,
making a decision on a location of a facility is a critical
element in strategic planning so that a wrong decision leads
to long-term resource wastage and customer dissatisfaction.
Decision makers need to determine the optimal number of
facilities such that different constraints are met and the
facilities are profitable during their lifetime when environ-
mental factors change, populations shift, and market trends
evolve. Love et al. (1988), Marianov and ReVelle (1995),
and Hodgson and Berman (1997) have comprehensively pro-
posed several models and different solutions methodologies
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for FLP. Moreover, in order to solve FLPs, McKendall and
Hakobyan (2010) introduced a boundary search technique,
where they tested heuristics on some instances of the dynamic
FLP and static facility layout problem in the literature.

Different classifications of discrete location–allocation
models include set covering, maximal covering, p-center,
p-dispersion, p-median, fixed charge, and hub. Among these
models, the p-median model is the concentration of this
paper. The specification of an optimal p-median has two com-
ponents: (1) selecting vertices to be median locations and
(2) assigning vertices to medians that are always interpreted
decision variables (Francis et al. 1992).

The simple facility location and p-median models are the
two well-known deterministic un-capacitated FLP, which are
based on some assumptions that make them unrealistic. As
an example, in real environments the demand and the ser-
vice rate are not constants but random variables (Boffey et al.
2007). Nowadays, combinations of FLP with other aspects of
industrial and operational management such as supply chain,
queuing theory, and pricing management have received con-
siderable attentions. For example, Dong et al. (2009) pre-
sented a new type of dynamic multi-stage facility layout
problem under dynamic business environment with short-
est path. Chan and Kumar (2009) developed a leagile supply
chain based model for manufacturing industries to empha-
size the various aspects of leagile supply chain modeling and
implementation. They proposed a new hybrid chaos-based
fast genetic Tabu simulated annealing (CFGTSA) algorithm
to solve the model.

In this research, in order to make the p-median model
more realistic, we investigate FLP within the framework of
a queuing approach for each facility. In fact, queuing theory
is utilized to optimize decisions in decreasing waiting time
of both customers and manufactures (Cooper 1980).

Queuing theory

One of the oldest and the best-developed analytical tech-
niques to model waiting lines is the queuing theory (Porter
et al. 1991). As a main purpose of manufactures and ser-
vice providers, customer satisfaction is mirrored as customer-
desired characteristics (Berman and Krass 2001). Receiving
goods or services as soon as possible is one of these character-
istics. To optimize decisions and to decrease waiting time for
customers, manufactures and service providers usually need
to utilize queuing theory. Besides, the most important fac-
tors for improving queuing systems performance are made
by appropriate resource allocation and getting to customer
satisfaction especially in highly competitive environments.

Expanded applications that involve combinations of FLP
and queuing theory are used in many services and
industries. Besides, based on the service type, queuing facil-
ity-location problems (QFLPs) can be divided into two

categories. The first category is so-called immobile serv-
ers where customers travel to a facility for a service. Auto-
mated teller machines (ATMs), internet mirror sites, vending
machines (VM), intercity service centers (e.g. hotels and res-
taurants), and the like are examples of immobile servers. The
second category is mobile servers where servers travel from
facilities to the users to provide services. Ambulances, taxis
that use wireless equipments, restaurants providing foods
based on telephone orders and the like are examples of mobile
servers. Berman and Krass (2001) provided some coverage
of the mobile servers.

Wang et al. (2002) proposed a facility location model
based on an M/M/1 queuing system, where customers visit
the closest facility and a maximum expected waiting time
considered a restriction. Visiting the nearest facility was also
considered constraint in some location-allocation models
such as Hakimi (1964), Ghosh and Rushton (1987), Current
et al. (2002). Berman et al. (2006) proposed a similar model
to minimize the number of facilities where the amount of lost
demand was considered a constraint. Furthermore, the pro-
posed model of Wang et al. (2002) was extended by Berman
and Drezner (2007), in which more than one server could
be allocated to each facility and the M/M/m queuing frame-
work was employed. Pasandideh and Niaki (2010) proposed
a bi-objective facility location problem within M/M/1 queu-
ing framework on the p-median problem. They solved their
model using a genetic algorithm (GA) in which the desirabil-
ity function technique was utilized. Recently, Chambari et al.
(2011) proposed a bi-objective model for the facility location
problem with M/M/1/k queues under a congestion system.
To solve their model, two Pareto-based meta-heuristic algo-
rithms including non-dominated sorting genetic algorithms
(NSGA-II) and non-dominated ranking genetic algorithms
(NRGA) were provided.

Multi criteria decision making

Multiple criteria decision-making (MCDM) can be defined
as the body of methods and procedures by which the concern
for multiple conflicting criteria can be formally incorporated
into an analytical process (Ehrgott and Gandibleux 2000).
MCDM are consisted of multi-attribute decision-making
(MADM) and multi-objective decision-making (MODM)
techniques.

MADM usually provides a limited number of prede-
termined alternatives to satisfy each objective in a speci-
fied level. Then, regarding to the priority of each objective
and the interaction between them, the decision-maker (DM)
selects the best solution among all alternatives. While there
are many MADM techniques, the most popular ones are
dominant, maximin, maximax, lexicographic, permutation,
simple additive weighting (SAW), elimination, choice
expressing reality (ELECTRE), technique for order
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preference by similarity to ideal solution (TOPSIS), and lin-
ear programming for multidimensional analysis of prefer-
ence (LINMAP) (Hwang and Yoon 1981).

The applications of multi-objective optimization tech-
niques in engineering sciences grew over the recent decades.
Among these techniques, MODM tries to design the best
alternative with various interactions that satisfies DM by
attaining some acceptable levels of a set of objectives. Among
many MODM techniques, global criterion method, utility
function, metric L-P methods, bounded objective method,
lexicographic method, goal programming (GP), and goal
attainment methods are the most popular ones (Farahani et al.
2009).

Ohsawa (1999) investigated a single facility, quadratic
Euclidean distance bi-criteria model defined in the contin-
uous space, with convex combination of the minisum and
minimax objectives including efficiency and equity. Costa
et al. (2008) presented a bi-criteria approach to the single
allocation hub location problem. The first objective was a
minisum cost and the second one had two forms of mini-
sum or minimax of the process time. For large-scale man-
ufacturing facilities, Kerbache and Smith (2000) proposed
a multi-objective routing model employing an open finite
queuing network with a multi-objective set of performance
measures. Harewood (2002) considered a queuing probabi-
listic location set covering problem with Euclidean distances
and maxisum and minisum objectives including coverage and
cost for locating ambulances. Singh and Singh (2010) pro-
posed solving the issues of selecting the objective weights
that makes the design process of multi-objective FLP com-
pletely designer independent.

Scope and purpose

Although a considerable amount of research works has been
devoted to model development and solution procedures of
both the single-objective and the multi-criteria facility loca-
tion problem in the past decade, less attention has been given
to the multi-objective QFLP (a facility location problem
within queuing framework). In other words, each facility is
considered to serve customers in QFLP problem and not only
is the traveling time important, but also utilization of the facil-
ities is essential. In this research, a novel tri-objective QFLP
model is proposed to FLP where the servers are immobile and
the customer demand is stochastic. Moreover, in real-world
FLPs, sometimes a batch of primary customers arrives into
the system. In this case, none of the existing models of the
FLP that utilize queuing approach is designed to deal with
this situation. In this research, we also intend to develop a
new multi-objective QFLP model within batch arrival queu-
ing framework. Furthermore, while an unreal constraint on
the available budget is considered in many research works,
the minimization of the total cost is a more realistic goal of

operation managers. Including this kind of objective to the
model generates a desired combination of the facilities that
are more economical. Consequently, to obtain more effica-
cious solutions, another objective has been considered to pro-
vide more appropriate combination of the decision variables.
The other contributions of this paper that make it more appli-
cable to real-world problems involve: (1) assigning weights
for each part of the first objective function and (2) deter-
mining a coefficient to enhance the service quality level in
the capacity constraints of the model. Finally, to determine
the number of required facilities associated with the allo-
cation of the customers to the facilities, two meta-heuris-
tic algorithms namely GA and simulated annealing (SA) are
used. While various discrete chromosome structures are con-
sidered to code the solution of the QFLP in the literature
(Berman et al. 2006; Aytug and Saydam 2002; Topcuoglua
et al. 2005), a new type of representation is proposed in this
research to enhance the feasibility of the chromosomes in
satisfying more constraints. The justification of the obtained
solutions of both algorithms has been performed by com-
paring them with the results obtained by a random search
method. Moreover, since the output quality of any meta-
heuristic algorithm severely depends on its parameters, the
response surface methodology (RSM) has been utilized to
increase the accuracy and precision of model solutions. It
should be mentioned that the current research concentrates
on a discrete facility location problem where a finite number
of possible locations is available.

The remainder of the paper is organized as follows: In the
next section, the problem, the assumptions, the parameters,
the decision variables are first defined and then the model
is described. “The proposed multi-objective decision mak-
ing technique” concentrates on combining the objectives into
one. In “Solving methodologies”, the characteristics of the
proposed GA and SA are illustrated. In order to obtain more
accurate solutions, a parameter tuning procedure is proposed
in “Tuning the parameters”. “Analysis of results and compar-
isons” demonstrates the performance of the proposed solv-
ing methodologies on different problems of various sizes.
Finally, conclusions are made and possible future research
works are provided in “Conclusion and directions for future
researches”.

Model description

The number of required facilities and the allocation of
the customers to the facilities are the two main questions
involved in FLPs. While considerable research works have
been devoted to a single-objective discrete FLP with immo-
bile servers and stochastic demand, many real-world prob-
lems involve simultaneous optimization of several objectives.
The objectives in these problems are usually conflicting such
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that there is usually no single optimal solution. Hence, find-
ing a set of alternative solutions in a search space is desired
so as in a broader sense no other solutions can be found supe-
rior. These solutions are known Pareto-optimal. Therefore, a
general multi-objective problem can be defined to minimize
a function f (x) with p, (p > 1), decision variables and
Q objectives, (Q > 1), subject to several constraints (Deb
2001) in Eq. (1).

Minimize f (x) = [
f1(x) , f2(x) , . . . , fQ(x)

]
(1)

Subject to

x ∈ X

where X ⊆ R
Q is the feasible solution space and x ={

x1,, x2, . . . , x p
}

is set of p-dimensional decision variables.
To make model more realistic, the three objective func-

tions of this research that require to be minimized simulta-
neously are:

(I) The aggregate travel time of customers plus the aggre-
gate waiting time of customers per unit time

(II) Maximum idle time pertinent to each facility
(III) Fixed cost of establishing the facilities

Simultaneous aggregation of the above three objectives pro-
vides equilibrium between the customer’s and the owner’s
goals. It should be mentioned that the second objective has
been considered to provide more appropriate combination
of the decision variables. In fact, objective equilibrium is
constructed to obtain more efficacious solutions. Although
available budget is usually considered a constraint, it is bet-
ter to concentrates on the minimization of the total cost to
obtain solutions that are more economical.

The next big step in developing the model concerns with
the fact that each facility acts as a batch arrival queuing sys-
tem. An interesting variant of the M[x]/M/1 queuing model
occurs when one assumes batch arrivals. That is, each arrival
epoch now corresponds to the arrival of a batch of customers
where the batch sizes are independent, identically distrib-
uted random variables (Cooper 1980). The customers within
a batch are served one by one at a time, and, as before, the
service times of the customers are independent, identically
distributed random variables. Furthermore, a random process
can model the number of customers in the batches. It should
also be mentioned that customers are assumed to visit the
closest open facility and each facility have finite capacity. To
make the model more realistic, as other contributions of this
paper, we investigate several conditions including (1) con-
sidering the weight for each part of the first objective func-
tion and (2) contemplating the coefficient to increase service
quality level. For more clarification, the scheme of a queuing
facility problem with batch arrival is shown in Fig. 1.

1
1

Customer Batch Facilities

2

M

. . .

2

Nλλ ×= nPn

Queue

Customer Arrival

λλ ×= nPn

λλ ×= nPn

. . .

Fig. 1 Queuing facility location problem (QFLP) scheme

In the following subsections, the assumptions, the param-
eters, and the variables of the model are first defined. Then,
the Non-linear mixed- integer programming model is pre-
sented. Finally, the objective functions and the constraints
are illustrated.

Assumptions

The assumptions to formulate the problem at hand are:

• In order to receive the service batch of customers travel
to each facility (immobile servers)

• An open facility behaves like an M[x]/M/1 queue. It means
that: (I) the service request of each batch follows an inde-
pendent Poisson distribution; (II) each open facility has
only one server with exponential service time.

• Each batch of customers can only be assigned to a facility.
• Batch size is considered a random variable.

Notations

The notations to be used in this article are described as follow.

Indices

i : Index for batch nodes (customers); i = 1, 2, . . . , M
j : Index for potential facility nodes; j = 1, 2, . . . , N

Parameters

V : Maximum number of on-duty servers; (V ≤ N )

ti j : Travelling time from a customer in batch i to facility
node j
w j : Expected waiting time of customer batches assigned
to facility node j
λi : Demand rate of service requests by customers in
batch i
μ j : Service rate of server j
τ j : Demand rate at open facility node j
c j : Fixed cost of establishing a facility at potential node j
α : Weight factor used in the first objective function
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β : Coefficient of service quality level
U : A large positive number
πO j : Probability of open facility j being idle
ρ j : Utilization factor of facility j
S : Batch size as a random variable
E(S) : Mean of the batch size
V (S) : Variance of the batch size

Decision variables

xi j =
{

1; if customer i is assigned to facility j
0; otherwise

y j =
{

1; if facility j is opened
0; otherwise

The proposed mathematical model

The first objective function is divided into two parts. The
first part represents aggregate travel time of customers per
unit time and the second shows aggregate waiting time of
customers per unit time. To derive both parts, the demand
rate at each opened facility, τ j , is first obtained as

τ j =
∑

∀i

E(S)λi xi j ; j = 1, 2, . . . , n (2)

Then, since each open facility behaves like an M[x]/M/1
queue, the expected waiting time at open facility j is given
as (Gross and Harris 1998)

wj =
ρ j

1−ρ j
+

ρ j

(
E(S2)

E(S)
−1

)

2(1−ρ j )

τ j
; j = 1, 2, . . . , n (3)

where ρ j = τ j/μ j is the utilization factor of facility j . As a
result, the first objective that is the sum of aggregate traveling
and waiting time can be obtained.

The second objective considers another aspect of the sys-
tem provider’s goal and involves probabilities of facilities
being idle. While previous research works concentrated on
minimizing the average idle probability, this research makes
an important contribution and defines the idle probabilities
using their maximum. Minimizing the average probabilities
does not necessarily cause the idle probabilities of all facili-
ties to be minimized. However, minimizing the maximum of
the idle probabilities causes all idle probabilities to become
less. In other words, we first define the idle probability of
a facility j by π0 j = 1 − τ j

μ j
(Costa et al. 2008). Then,

the second objective function becomes minimizing the max-
imum of these probabilities. Furthermore, the idle probabili-
ties are used for the facilities that are open. Hence, minimiz-
ing the maximum of a weighted sum of these probabilities,

the weights being y j , is the second objective function. Even-
tually, the extended model will be:

Min T1 = α
∑

∀i

∑

∀ j

λi ti j xi j + (1 − α)

∑

∀i

∑

∀ j

λi

ρ j
1−ρ j

+
ρ j

(
E(S2)

E(S)
−1

)

2(1−ρ j)

τ j
xi j (4)

Min T2 = max j

{(
1 − τ j

μ j

)
y j

}
(5)

Min T3 =
∑

∀ j

c j y j (6)

Subject to:

∑

∀ j

y j ≤ V (7)

∑

∀ j

xi j = 1; i = 1, 2, . . . , m (8)

E(S)
∑

∀i

λi xi j < βμ j y j ; j = 1, 2, . . . , n (9)

∑

∀k∈N

tik xik ≤ (
ti j − U

)
y j + U ;

i = 1, 2, . . . , m; j = 1, 2, . . . , n (10)

xi j ∈ {0, 1} , y j ∈ {0, 1} ; i = 1, 2, . . . , m,

j = 1, 2, . . . , n (11)

where τ j is given in Eq. (2) and ρ j = τ j/μ j .
As seen, the first objective function of the extended model

in Eq. (4) includes two parts; the aggregate travel time of
customers per unit time and the aggregate waiting time of
customers per unit time. These two parts are multiplied by α

and (1 − α), respectively. Equation (5) is the second objec-
tive function that minimizes the maximum of ideal time per-
tinent to each facility. The third objective function given in
Eq. (6) minimizes the fixed cost of establishing opened facili-
ties. The first constraint (Eq. 7) ensures maximum number of
open facilities. Equation (8) ensures that each customer must
be assigned only to a facility. Equation (9) considers capacity
constraint for each server. Actually, the input to each server
should be less than its capacity. Moreover, to have a high
service quality, the service rate is multiplied by a coefficient
β. Equation (10) ensures that the assignment is carried out
to the closest facility. Finally, Eq. (11) enforces the binary
restrictions on the decision variables.
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The proposed multi-objective decision making
technique

One of the most widely used methods for solving multi-
objective optimization problems is transforming a multi-
objective problem into a single one. When an appropriate
collection of solutions is obtained by the single-objective
optimization problem, the solutions approximate a Pareto
front or Pareto surface in objectives space (Stadler 1984).

In order to transform the three objective functions given in
Eqs. (4)–(6) into a single one, the LP -metric (Pis an integer in
([1,∞) ∪ {∞}) is utilized as a weighting scheme in this
research (Stadler 1984; Ehrgott and Gandibleux 2003). In
this method that is given in Eq. (12), the differences between
the objective functions and their optimum values are mini-
mized. Besides, this method chooses a desired point T∗

i ∈ R
Q

and looks for an optimal solution that is as close as possible
to this point.

Min F(x) =
⎡

⎣
Q∑

i=1

[
ηi

∣∣
∣∣
T ∗

i − Ti (x)

T ∗
i

∣∣
∣∣

]P
⎤

⎦

1
P

(12)

Subject to:

x ∈ X ⊂ R
Q

where ηi is the weight of objective function Ti (x) determined
by DM and Q indicates the number of investigated objective
functions. The LP -metric for P = 1 is called Manhattan met-
ric and L2 is the Euclidean metric that is used in this research.

In the next section, two common meta-heuristic algo-
rithms of a population-based (GA) and an individual-based
(SA) are proposed to solve the tri-objective model at hand.
Literature shows GA and SA are very useful in the area of
location problems. Besides, since the verification of selected
solving methodologies is essential in every optimization
problem, a random search method is also chosen for verifica-
tions. Then, in order to select the appropriate meta-heuristic
algorithm, the computational results in the selection process
of the solving methodologies will be investigated.

Solving methodologies

Since the proposed mathematical model of the problem at
hand is of a constrained non-linear integer programming
(NLIP) type that is NP-hard, an exact solution is hard (if not
possible) to obtain (Ehrgott and Gandibleux 2000). Instead,
the use of meta-heuristic algorithms, as a common and effi-
cient way, is justified. Formerly, GA has been victorious in
solving models similar to the proposed model of this research
(Ghosh and Rushton 1987; Harewood 2002). To increase the
performance of GA, a new chromosome representation is

developed in each of which three constraints of the proposed
model are satisfied. In other words, only feasible chromo-
somes are generated. Besides, another meta-heuristic search
algorithm, namely simulated annealing (SA), is developed to
validate the solution obtained by GA. To justify the results
obtained and to evaluate the efficiencies and intelligence of
both algorithms, a random search method is employed as
well. The parameters of these algorithms are tuned using
response surface methodology (RSM) to obtain better solu-
tions.

In the following subsections, the steps involved in the pro-
posed GA are illustrated.

A GA for QFLP

Genetic algorithm (GA) is one of the most well known meta-
heuristic optimization technique that was originally devel-
oped by Holland (1975). Vose (1991) provided the whole
concept of a basic GA. Haupt and Haupt (2004) investigated
a bit of updating, including some of the latest research results
on GA.

Briefly, the GA mechanism is based on natural selection
process that starts with an initial set of random solutions (pop-
ulation). Each individual in the population (chromosome)
indicates a solution to the problem at hand. During a genera-
tion, the chromosomes are evaluated using a cost function. In
order to produce next generation, two operators are used in
GA. The first, called crossover, merges two chromosomes of
a current generation to create offspring and the other, called
mutation, modifies a chromosome. Then, based on the cost
function values, some of the parents and offspring with bet-
ter cost function values form a new generation. By this way,
better chromosomes of successive generations have higher
probabilities of being selected and the algorithm converges
to the best chromosome that expectantly indicates the opti-
mum or a near optimal solution to the problem after several
generations. Since GA can find the global optimum solution
with a high probability (Gen et al. 2008), in this research it is
selected to be a meta-heuristic algorithm to solve the model.

In the next subsections, the steps involved in the GA are
explained.

Initialization

In this step the parameters of the GA, i.e., the population
size (n Pop) that is the number of the chromosomes in each
generation, the number of iterations (nI t), the crossover
probability (Pc) and the mutation probability (Pm) are first
initialized. Then, to generate initial population, a random
generation policy is utilized in this step. Further, since the
solutions obtained by a meta-heuristic algorithm are sensi-
tive to their parameters values, a statistical procedure is used
to tune the parameters.
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(I) First part:

(II) Second part:

(III)  Third part:

…

…

A random number between 1 and V 
( )

Fig. 2 Chromosome structure

The developed coding process

In order to increase the feasibility of the chromosomes in
satisfying more constraints, a new type of chromosome is
proposed in this research to code the solution. The coding
process takes place in two steps, encoding and decoding,
described in the following two subsections.

Encoding scheme
The numbers of required facilities associated with the allo-

cation of the customers to the facilities are decision variables
that must be considered in a chromosome. In the following
three steps, the three parts of a chromosome by which some
constraints are satisfied based on the values of theses decision
variables are described.

(I) The customer nodes are coded in the first part of the
chromosome using a 1 × M vector. Each member of
this vector contains a random number between zero
and one.

(II) The facility nodes are coded in the second part of the
chromosome using a 1 × N vector. Similarly, each
member of this vector includes a random number
between zero and one.

(III) The third part of a chromosome is consisted of a ran-
dom number between one and the maximum number
of servers that can be on-duty (V ).

The most important feature of the proposed chromosome
structure is satisfying constraints (6), (7), and a part of con-
straint (8), in which each customer is assigned only to an
open facility (xi j ≤ y j ; ∀i, j). Figure 2 shows the general
form of a chromosome and the upper section of the flowchart
given in Fig. 3 describes the proposed coding process.

Decoding scheme
The decoding process that comes after chromosome repre-

sentation is one of the most important steps in meta-heuristic
algorithm. The decoding process of this research takes place
in an order shown in Fig. 3. The parentheses containing num-
bers in different boxes of this flowchart correspond to step
numbers.

In order to better illustrate the coding process consisting
of encoding and decoding schemes, consider a numerical
example in which M = 7, N = 5, and V = 4. Then, the
steps (1)-(8) shown in the boxes of the flowchart in Fig. 3

are taken to both encode and decode the chromosomes. The
descriptions of these steps follow:

(1) Regarding the third part of a chromosome, a random
number (v) is generated between one and four, say
v = 3.

(2) Based on the second part of a chromosome, vector 
n
with five genes is generated in which each gene con-
tains a number between zero and one. Let Fig. 4 show
the 
n vector.

(3) Sort the genes of vector 
n in ascending order while
reserving the positions. Figure 5 show this step.

(4) As illustrated in Fig. 6, the first three (v) genes of the
sorted vector are chosen to be open facilities.

(5) This step reports the facilities that are selected for the
assignment process. The position number of the poten-
tial facilities before the sorting process represents the
selected facilities. Figure 7 illustrates this step.

(6) According to the second part of a chromosome, vector

m with seven genes is generated in which each gene
contains a number between zero and one (see Fig. 8).

(7) Obtain 
H vector where Hi = �v × mi� + 1. Figure 9
illustrates this step.

(8) In the final step, each customer is allocated to a num-
ber (facility) in vector 
H shown in Fig. 10. In this fig-
ure, the selected facilities have been distinguished using
different colors.

By taking the above eight steps, chromosomes represent-
ing solutions of the proposed model are generated.

Cost function evaluation and constraint handling

To evaluate chromosomes of each generation, the combined
objective function given in Eq. (12) is utilized for Q = 3.
Besides, to handle non-feasibilities of chromosomes in terms
of constraint satisfaction the well-known penalty policy is
employed, where the penalty is defined a big positive con-
stant. The penalty is considered zero, when a chromosome is
feasible and it takes a positive value, even if one of the con-
straints is not satisfied. In other words, regarding to a general
form of the constraints as g (x) ≤ b, the penalty value of a
chromosome is defined as (Yeniay and Ankare 2005):

P(x) = U × Max

{(
g (x)

b
− 1

)
, 0

}
(13)

where U, g (x), and P (x) indicate a big positive number,
the constraint, and the assigned penalty for chromosome x ,
respectively. For infeasible chromosomes, the penalty is then
multiplied by F(x) to obtain the corresponding cost function.
In other words

F(x) =
{

F (x) ; x ∈ feasible region
F (x) × P (x) ; x /∈ feasible region

(14)
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(III)
Third
Part

(II)
Second

Part

(I)
First 
Part

(1) Generate a random number 

Start

(6) Generate random vector  
where 

and

(2) Generate random vector  
where and

(5) Consider the position 
number of the opened facilities 

as selected facilities 

opened facilities 

Finish

(3) Sort vector in ascending 
order (Clearly from left to right)

(4) Select the first genes as 

(8) Allocate each i (customer) to the position of 
th gene of second part of chromosome

(7) Obtain vector where
and

Fig. 3 The proposed coding process

Fig. 4 Generated vector n

Implicitly, two points need to be mentioned: (1) when the
constant is selected larger, the penalty is considered larger;
(2) for each type of constraint, the average of violations is
considered. Moreover, in order to normalize all constraints, a
normalization policy within the penalty function framework
is considered in this research.

Fig. 5 Sorted vector n

Parent selection

In each generation, a collection of offspring chromosomes is
generated through a recombination process of parents using
the roulette wheel procedure. The steps involved in this pro-
cedure follow:
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Open facilities

Fig. 6 Opened facilities

Selected (active) facilities       2, 5, 1

Fig. 7 Number of selected facilities

Fig. 8 Generated vector m

Fig. 9 Vector 
H

(I) Sort the chromosomes in ascending order based on
their objective function values (fitness).

(II) Select a particular population member to be a parent
with a probability equal to its fitness divided by the
total fitness of the population (Al Jadaan et al. 2006).
In other words,

Pi = Fi/
∑

∀i

Fi ; i = 1, 2, . . . , n Pop (15)

where i, Fi , and Pi denote an individual, its objective
function value, and its probability of being selected,
respectively.

(III) To choose the other parents a random number
between zero and one is generated and multiplied by
the total sum of the fitness values.

(IV) The obtained value belongs to the interval formed by
two successive values of the cumulative function.

(V) The number associated with the upper value is chosen
a parent.

The above selection process is based on spinning the roulette
wheel n Pop times. The individuals selected from the select-
ing process are then stored in a mating pool (Shavandi and
Mahlooji 2006). It should be noted that an elitist strategy is
also applied to achieve faster convergence, i.e., the lowest
objective function value is reserved in the next generation
during the search process without any alteration.

The crossover operator

The following steps demonstrates the crossover operation of
this research:

1

1

Customer Batch Facility

2

4

2

3

Queue

Customer Arrival

3

5

6

7

4

5

Fig. 10 The allocation process

(I) At least, one of the three parts of a chromosome is
considered.

(II) Regarding to the crossover probability (Pc), a num-
ber of chromosomes are randomly selected to gen-
erate offspring. In fact, the number of chromosomes
for carrying out the crossover operator is obtained by
Pc × n Pop.

(III) A continuous crossover operator is implemented in
which a random vector (θ ) is first generated and then
the offspring is generated based on Eq. (16) (Gross
and Harris 1998).

O f f spring(I ) = θ×Parent(I )+(1−θ) Parent(I I )

O f f spring(I I ) = θ×Parent(I I )+(1−θ) Parent(I )

(16)

To illustrate this operation, suppose a random vector θ with
a dimension equal to the size of the selected part (say
the second part) of the selected chromosome (parent) is
generated. Then, offspring is obtained using Eq. (16) as
shown in Fig. 11. We note that in order to avoid generat-
ing infeasible offspring, each exchange is examined upon
constraint (9) and (10) to assure feasibility of the generated
offspring.

The mutation operator

Mutation operator alters a certain percentage of the bits in the
list of chromosomes and keeps GA from converging too fast
before sampling the entire cost surface (Deb 2001). The solu-
tion spaces that are not discovered by the crossover operator
are found using the mutation operator. The steps involved in
the mutation operation of this research at each iteration are:

123



340 J Intell Manuf (2013) 24:331–348

Fig. 11 An example of the crossover operator

Fig. 12 An example of the mutation operation

(I) At least, one of the three parts of a chromosome is
considered.

(II) Regarding to the mutation probability (Pm), a number
of chromosomes are randomly selected to generate
offspring. This number is obtained by Pm × n Pop.

(III) The swap mutation is considered for mutation imple-
mentation (Gross and Harris 1998). In the swap muta-
tion, two positions are randomly selected to swap with
each other. Figure 12 illustrates this operation.

Once more, to avoid infeasible offspring, each exchange is
examined upon constraints (9) and (10) to assure generating
feasible offspring.

Stopping criteria

Stopping criteria is a set of conditions such that when satis-
fied a good solution is obtained. While different policies are
taken to stop GA, in this research, when an improvement in
the fitness function values for several successive generations
is not achieved, GA stops.

In the next subsections, another meta-heuristic algorithm,
simulated annealing (SA), is developed to solution verifica-
tion purposes.

A SA for QFLP

Simulated annealing was first introduced by Kirkpatrick et al.
(1983) to obtain near optimum solutions of optimization
models that are hard to solve using conventional proce-
dures. Since then several authors employed SA in various

optimization problems. SA is a general random search algo-
rithm based on stochastic mechanism of physical annealing
process in metallurgy. Generally, the objective value of a
solution is equivalent to the internal energy state.

The steps involved in the developed SA of this research
are explained in the following subsections.

Initialization

In this step, the input parameters of SA are initialized. The
parameters are: (1) The initial temperature T0 that is the start-
ing point of temperature computation at each iteration, (2)
The population size nPopp that is the number of the sustain-
ing solutions at each generation, (3) The number of iteration
in each temperature nI t , and (4) The temperature reduction
rate β. Then, the temperature at iteration h, Th , is obtained
based on Eq. (17) (Kirkpatrick et al. 1983).

Th = β × Th−1; h > 2 , 0 < β < 1 (17)

Further, to generate initial population, the random generation
policy is utilized in this research.

The coding process

As mentioned in “The developed coding process”, to enhance
feasibility of solutions and to satisfy more constraints, a new
type of coding process that include encoding and decoding
schemes is proposed. These schemes for SA are similar to
the ones described for GA.

Main loop of the SA

SA starts with a high temperature and randomly chooses ini-
tial solution ω0. The initial value of T0 acts as a controller
parameter of the temperature. Then, a new solution ωn within
the neighborhood of the current solution ω is calculated
at each iteration. In the minimization problem at hand, if
the value of the combined objective function in Eq. (12),
( f (ωn), is less than the previous value f (ω), the new solu-
tion is accepted. Otherwise, in order to escape from the local
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optimal solution, the new solution is accepted with a prob-
ability (ProbabiltyS A) given in Eq. (18) (Kirkpatrick et al.
1983).

Probabili t yS A = e−�/T ; � = f (ωn) − f(ω)

f (ωn)
× 100 (18)

This process is repeated until the desired state of the algo-
rithm is reached.

Neighborhood representation

To represent the neighborhood structure, the proposed muta-
tion operator of GA, described in “The mutation operator”,
is utilized to avoid fast convergence of SA.

Stopping criteria

This algorithm is also stopped after a predetermined number
of iterations without improving the current best solution.

In the next section, the solutions obtained by GA and SA
are verified by a comparative study using a random search
method.

Solution verification

Since the model at hand is of a minimization type, employing
a random search method to solve it enables one to obtain an
upper bound on the solution. This bound acts as a measure
to assess the quality of the solutions obtained by GA and
SA.

Let f : R
Q → Rbe the combined cost function that

must be minimized and x ∈ R
Q designate a position or

candidate solution in the search space. The pseudo-code of
the random search algorithm is shown in Fig. 13 (Rastrigin
1963).

As mentioned previously, since the solutions obtained by
meta-heuristic algorithms are sensitive to their parameters,
in the next section a statistical approach is taken to tune the
parameters of GA and SA.

Initialize with a random position in the search space.

of  a  given  radius  surrounding  the

Until a termination criterion (number of iterations) is 
met, repeat the following: 

Sample a new position from the hyper 
sphere

current position 

If ( then move to the new 

position by setting 

Now holds the best-found position.

Fig. 13 The random search procedure

Tuning the parameters

In order to calibrate the parameters of the developed solv-
ing methodologies, design of experiments (DOE) approach
is first employed in this Section to investigate the effect of
the parameters (factors) on the solution (response) obtained.
Then, the response function is estimated and finally using
response surface methodology (RSM) a combination of the
influential factor levels is obtained so that the response func-
tion is optimized.

Since the responses may have curvatures over the search
ranges of the factors, the central composite design (CCD) of
a 3k−p fractional factorial with four central points is selected
to run the experiments (Montgomery 2004), where there are
k = 4 factors, each factor has three levels of low, medium,
and high coed by (−1), (0), and (+1), respectively and p = 1.
The search ranges and the levels of the parameters are shown
in Table 1.

The developed algorithms are coded in MATLAB 15
(R2010a) software environment (MATLAB 2010) and the
experiments are performed on a laptop with a Pentium 1860
processor and one GB RAM, to estimate the response func-
tions. The QFLP with 16 customers and 7 facilities is con-
sidered for experiments.

There are two parameters in the CCD that must be
considered: (1) the distance α of the axial points from
the design center and (2) the number of center runs
(Montgomery 2004). The value of α depends on spheri-
cal property of the design. Since the region of interest is
cubodial, the central composite face-centered design is uti-
lized in which α = 1 (Pasandideh and Niaki 2010; Najafi
et al. 2009). It should be mentioned that the correspond-
ing response of this paper is a combination of three objec-
tives using the LP -metric technique. The value of P is
first assumed two; resulting in Euclidean distance. How-
ever, it can be changed conveniently regarding the DM view-
point.

In short, this research concentrates on 24−1 fractional
factorial central composite face-centered design with 10
axial points and 4 center runs. The design points along
with the results of the experiments are shown in Tables 2
and 3 for GA and SA, respectively. In these tables, the
values of all three objectives together with the fitness val-
ues that is obtained by the combined objective function are
reported.

The results in Tables 2 and 3 are used to estimate the
responses, RG A and RS A, given in Eqs. (19) and (20) for GA
and SA, respectively.

RG A = 0.324922 − 0.0451820 Pc − 0.810931 Pm

− 0.806992 n PopG A − 0.0188820 nI tG A

+ 0.310387 P2
c + 0.286402 P2

m
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Table 1 Search range and the
levels of the factors Solving Parameter Range Low (−1) Medium (0) High (+1)

methodologies

GA n PopG A 25–200 25 100 200

Pc 0.6–0.99 0.6 0.8 0.99

Pm 0.01–0.4 0.01 0.2 0.4

nI tG A 100–500 100 300 500

SA T0 500–1,000 500 750 1,000

n PopS A 5–15 5 10 15

nI tS A 100–500 100 300 500

β 0.9–0.99 0.9 0.95 0.99

Table 2 Experimental results obtained by GA implementation

Run order GA parameters GA implementing Combined objective
function amount
(RG A) with p = 2

n PopG A Pc Pm nI tG A First objective Second objective Third objective

1 0 0 0 0 0.282050 0.082353 0.527780 0.357960

2 −1 1 1 −1 0.288060 0.153850 0.284480 0.480740

3 1 −1 1 −1 0.285460 0.129410 0.283630 0.492150

4 0 0 0 0 0.285010 0.102560 0.527780 0.330140

5 0 0 0 0 0.281980 0.082353 0.361110 0.443100

6 0 0 0 0 0.282050 0.102560 0.527780 0.315700

7 −1 −1 1 1 0.284820 0.063291 0.284620 0.803330

8 1 −1 −1 1 0.281980 0.128210 0.283810 0.524040

9 1 1 1 1 0.282050 0.102560 0.284140 0.536540

10 −1 −1 −1 −1 1.234600 15.484500 2.978700 4.328200

11 −1 1 −1 1 1.170400 5.257100 1.524900 4.337300

12 1 1 −1 −1 0.301100 0.223530 0.282900 0.837400

13 0 1 0 0 0.276350 0.112736 0.492352 0.453220

14 0 −1 0 0 0.282050 0.063291 0.376235 0.768330

15 0 0 1 0 0.275250 0.102580 0.364525 0.298740

16 0 0 −1 0 0.376530 0.217490 0.282900 0.874840

17 1 0 0 0 0.285120 0.081320 0.364525 0.346330

18 −1 0 0 0 0.285010 0.124317 0.597634 0.675840

19 0 0 0 1 0.282050 0.082353 0.527780 0.465430

20 0 0 0 −1 0.432620 0.217490 0.226527 0.897940

+ 0.210698 n Pop2
G A + 0.381298 nI t2

G A

− 0.0524613 Pc Pm + 0.0612837 Pc n PopG A

+ 0.903706 Pc nI tG A (19)

RS A = 0.408939 + 0.0115532 T0 − 0.0685529 β

− 0.0577630 n PopS A − 0.0326809 nI tS A

− 0.0427505 T 2
0 + 0.0221682β2

+ 0.0310227 n Pop2
S A + 0.0108662 nI t2

S A

− 0.0524613 T0 β + 0.0612837 T0n PopS A

+ 0.903706 T0nI tS A (20)

Moreover, the analysis of variance results that are given
in Tables 4 and 5 for GA and SA, show that both regression
functions are appropriate and can be used in RSM. Then,
the models in (19) and (20) are solved by LINGO software
within the range of the parameters and the optimum com-
binations of the parameters are shown in Table 6 for each
algorithm.
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Table 3 Experimental results obtained by SA implementation

Run order SA parameters SA implementing Combined objective
function amount
(RS A) with p = 2

T0 n PopS A β nI tS A First objective Second objective Third objective

1 0 0 0 0 0.283431 0.058828 0.527780 0.366630

2 1 1 −1 −1 0.288060 0.075380 0.296320 0.365324

3 −1 1 1 −1 0.285329 0.056433 0.287590 0.346257

4 0 0 0 0 0.283431 0.063335 0.527780 0.362521

5 0 0 0 0 0.282432 0.052666 0.487653 0.292874

6 0 0 0 0 0.285430 0.102560 0.525232 0.373635

7 −1 1 −1 1 0.324565 0.145115 0.527820 0.526222

8 −1 −1 1 1 0.283645 0.058330 0.283210 0.291373

9 1 1 1 1 0.280284 0.503922 0.283748 0.282738

10 −1 −1 −1 −1 0.381262 0.172363 0.537321 0.398367

11 1 −1 −1 1 0.320921 0.632910 0.763210 0.524525

12 1 −1 1 −1 0.313081 0.223530 0.282900 0.627128

13 1 0 0 0 0.293822 0.052421 0.514550 0.345223

14 −1 0 0 0 0.392742 0.151345 0.481475 0.467187

15 0 1 0 0 0.286545 0.053220 0.543636 0.288785

16 0 −1 0 0 0.387424 0.198173 0.288724 0.653462

17 0 0 1 0 0.284633 0.042425 0.493400 0.324634

18 0 0 −1 0 0.324150 0.117163 0.523720 0.635322

19 0 0 0 1 0.283763 0.052622 0.502502 0.352526

20 0 0 0 −1 0.416252 0.082633 0.291873 0.567117

Table 4 Analysis of variance
for the performance of the
response (RG A)

Source Degree of freedom (d f ) Seq-SS Adj-SS Adj-MS F test P value

Regression 11 24.6739 24.6739 2.24308 9.63 0.002

Linear 4 13.1124 13.1124 3.27811 14.07 0.001

Square 4 4.9759 4.9759 1.24398 5.34 0.022

Interaction 3 6.5855 6.5855 2.19518 9.42 0.005

Residual error 8 1.8639 1.8639 0.23299

Lack-of-fit 5 1.8542 1.8542 0.37084 114.08 0.001

Pure error 3 0.0098 0.0098 0.00325

Total 19 26.5378

Table 5 Analysis of variance
for the performance of the
response (RS A)

Source d f Seq-SS Adj-SS Adj-MS F test P value

Regression 11 0.179528 0.179528 0.016321 1.13 0.442

Linear 4 0.092376 0.092376 0.023094 1.60 0.265

Square 4 0.008161 0.008161 0.002040 0.14 0.962

Interaction 3 0.078991 0.078991 0.026330 1.82 0.221

Residual error 8 0.115518 0.115518 0.014440

Lack-of-fit 5 0.111267 0.111267 0.022253 15.71 0.023

Pure error 3 0.004251 0.004251 0.001417

Total 19 0.295046
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Table 6 Optimum parameter levels

Solving methodologies Parameter Optimum amount

GA n PopG A 25

Pc 0.6

Pm 0.4

nI tG A 100

SA T0 500

n PopS A 5

nI tS A 500

β 0.99

In the next section, using a set of test problems, the perfor-
mances of both algorithms are investigated, where for each
problem, the parameters are tuned.

Analysis of results and comparisons

The combined objective function value is considered a
measure to evaluate and compare the performances of the
solution methodologies under different environments using
several test problems. The experiments are implemented on
20 problems, each having four different sizes. Then, these
instance problems are solved not only by the proposed two
GA and SA algorithms, but also for a random search (RS)
algorithm as well. In other words, 240 problems are solved in
this research using the three methods. Furthermore, to elimi-
nate uncertainties of the solutions obtained, each problem is
used three times under different random environments. Then,
the averages of these three runs are treated as the ultimate
responses.

For illustration, consider the following scenario for which
the input data and the results are shown in Table 7 for 20 test
problems.

• The number of customer zones (M), the number of poten-
tial facility sites (N ), and the number of servers that are
on-duty (V ) are given in the second, the third, and the
fourth column of Table 9, respectively.

• The demand rate of service requests from customer
batch node ifollows a uniform distribution, that is λi ∼
Uni f orm[2, 15].

• The service rate for server j follows a uniform distribu-
tion, i.e., μi ∼ Uni f orm[65, 95].

• The travelling time ti j is calculated as a proportion of the
Euclidean distance between customer batch i and poten-
tial facility j , that is ti j ∼ Uni f orm[65, 95].

• The batch size follows a geometric distribution with
parameter 0.5, i.e., S ∼ Geometric(0.5)

• The fixed cost of locating is related to service rate for
each size of problem.

• The fixed cost of establishing facility j at potential
node j follows a uniform distribution, that is C j ∼
Uni f orm[100, 500].

• The other input data are α = 0.5, β = 0.95, and η =
[0.5 0.2 0.3]

For the 20 test problems given in Table 7, the experimen-
tal results show appropriate performances of both GA and
SA in comparison with RS to solve the proposed QFLP
model. Similar patterns were observed for the other test
problems. Figure 14 provides a pictorial proof of this state-
ment. It should be mentioned that the values of all objec-
tives along with the combined objective function values
are reported in Table 7 to show the performances of the
algorithms, the difference between the tri-objectives and
a single objective optimization, and non-dominated solv-
ing methodologies. Moreover, to show the convergence of
the proposed GA and SA algorithms, the diagram of the
objective function values in terms of iteration number for
problem number 3 are shown in Fig. 15 and 16, respec-
tively.

In order to compare the efficiency of proposed GA and
SA to the RS procedure, the one-way analysis of variance
has been utilized. Analysis of variance was introduced in the
context of the linear model as a schematic way of calculating
the residual sum of squares as a basis for estimating residual
variance and then as a device for testing a null hypothesis
constraining the parameter vector of the linear model to a
subspace (Montgomery 2005). This process was performed
in Minitab 15 software environment. Table 8 presents the sig-
nificant difference between the proposed GA, SA, and RS.
Moreover, the significant difference of RS from GA and SA
can be observed from Fig. 17.

To provide the similar efficiency of GA and SA for solv-
ing the proposed QFLP model, once again the analysis of
variance is performed on the results obtained. Table 9 and
Fig. 18 both show the output of the Minitab software, in
which identical performance is observed.

Conclusion and directions for future researches

In this research, a new multi-objective facility location
problem within M[x]/M/1 queuing framework was pro-
posed to determine the number of required facilities and
the relevant allocation process. Three objective functions
including (1) minimizing sum of the travel time and wait-
ing, (2) minimizing maximum of ideal time pertinent to
each facility, and (3) minimizing opened facilities total
cost were involved. Moreover, two features (I) the weight
for each part of the first objective function and (II) the
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Fig. 14 The intelligence of the
proposed GA and SA in
comparison with RS

Fig. 15 Convergence diagram of GA for problem #3

coefficient to increase service quality level were considered.
Since the problem was a NP-hard, two meta-heuristic algo-
rithms, namely GA and SA, were developed with new coding
schemes to solve the model. To verify the efficiency and intel-
ligence of the both algorithms, a RS algorithm was used as
well. Furthermore, RSM was utilized to tune the parameters
of both algorithms. Finally, to demonstrate the efficiency of
both algorithms, computational results on different problem
sizes were reported. The results were in favor of both algo-
rithms in solving different problems.

The following can be considered in future research
works:

I. Other queuing disciplines can be considered to model
QFLP.

II. A different QFLP model can be developed when
customers encounter multi-echelon queuing
networks.

III. Various service rates can be considered for facilities.
IV. A different all-feasible chromosome representation

can be used.
V. Different multi-objective solution methodologies can

be proposed.
The demand and the service rates can be considered
fuzzy inputs to model a M̃/M̃/1 queuing system.
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Fig. 16 Convergence diagram of SA for problem #3

Table 8 Analysis of variance for performance comparisons

Source d f SS MS F test P value

Response 2 1.89978 0.94989 127.21 0.000

Error 57 0.42562 0.00747

Total 59 2.32541

Fig. 17 The significant difference of the RS method

Table 9 Analysis of variance for the algorithms comparison

Source d f SS MS F test P value

Response 1 0.0041 0.0041 0.38 0.539

Error 38 0.4012 0.0106

Total 39 0.4052

Fig. 18 Identical performance of GA and SA
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